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A Comparison among Data Mining Algorithms for Outlier Detection using Flow

Pattern Experiments

Abstract

Accurateoutlier detection is an important atter to cosider prior to data applied to preditdw
pattern.ldentifying these outliers and reducing thiempactin measurements could be effective in
presenting the authentic flow pattefihis paper aimsotdetectoutliers in flow pattern experiments
along a 180 degree sharp bend channel waitld withouta T-shaped spur dikeVelocity
components have been collected using 3D velocimeter called Vertrorder to determine flow
pattern Some of atlier detection methodsmployed in the papgsuch asZ-score test, sum of sine
curve fitting, Mahalanobis distance, hierarchical clustering,-M3e, Self-organizing map, Fuzzy
C-Means Clusteringand voting. Considering the experiments carried the, methods were
efficient in outlier detection, however, the voting method appeared tindenost efficientone
Briefly, this paper has calculated different hydraulic parameters in the sharp bend and made
comparison between them for the sake of studiiog effectiverunning the voting methodreon
mean and turbulent flow pattern variatiofe results indicated thdeveloping thesoting method
in flow pattern experiment in the bemebuld cause a decrease in Reyndtisar stresdy 36,
while the mean velocities were not significantly influenced by the method.

Keywords: Outlier DetectionData Mining Flow PatternSharp Bend ChannéVectrino

1. Introduction
True understanding of the flow pattefarther improvesecognition of flow characteristics and the

parameter®ffective onit. It is of high importance and results in creating optimum desigtise
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case ofhydraulc structures such as spur dikeseventing huge compensation and fatality. Spur
dikes are hydaulic structures constructed for protecting canals and rivers against scour and erosion
[1]. Wherevera spur dike is located in the outer bank of a bend, the scour process is a complex
phenomenon. The flow field at a spur dike is coupled with a complegep@ration of approach

flow upstream and a periodic vortex shedding downstream of the spur dike [2, 3].

The experimental dateonsideredas preliminary datafor further analys, numericalanalysisand
mathematicamodeling therefore, they need to be erfage. In practice, measuring erfoee data

is nearly impossible, and some data inconsistent with the normal pattern of the statistical population
arises due to different reasons. Data collection for flow pattern detsron is not an exception,

and may encounteinaccuracies and inconsistencies as w8lich data play a pivotal role in
predictingflow pattern. As they might have arisen due to an error in measurement, detecting and
eliminating them from the collecteclesare requirement® obtainhigh-reliability data;then the

results obtained from the data analysmuld be perfect and reliabl®utlier not only canindicate

error in databut also can be arisen due tioe natural behavior of the flow under unique
circumstances. Therefore, detecting them can provide highly useful informatiba nature of the

flow unknown so far. Accordingly, outlier detection while collectiegjuireddatato determine

flow patternis considered as an inevitable necessity.

Outlier detection is a primary step @nlot of data mining application®utlier detection has been

used for centuries to detect and, where appropriate, remove anomalous observations from data.
There are some factors involved in existence of outliersistorg of mechanicafaults, changes in
systembehavior fraudulentbehavior, human mistakénstrument error or simply through natural
deviations in populationgl]. Goring and Nikoraj] suggeste@new method for detecting spikes in
acoustic Doppler vecimeter data sequenceShe new method was shown to have superior
performance to various other methods and it has the added advantage that it required no parameters.

Of the methods considered, the phapace thresholding method is the most suitable déteating
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spikes in the data related to a delenking ADV. They concludedthat for ADV data with
sampling frequencies from 25 to 100 Hz, the best solution was to use 12 points on either side of the
spike to fit a thirdorder polynomial that was interpolated across the spike. Mori é§] axamined

the ADV velocity measuremesin bubbly flows. They applied the despikialgjorithmbased on

the 3D phase space method and discussed bubble effects on ADV velocity. The results showed that
there was no clear rel ationshi p -tb-eotsevaticeSNR)v el o cC
in bubbly flow. Moreover, spike noise filtering methods based on low correlation and-tignal

noise ratio were not adequate for bubbly fland the true 3D phase space method significantly
removes spike noise of ADV velocity in comparison with theyioal 3D phase space method.
Duncan et al.7] developed a new method of outlier detection for both PTV and PIV data based on
the original algorithm oWesterweel and Scaran8][ The current method takes two to three times

as long as the universal outlidetection method of Westerweel and Scarano (2005), which is
mainly due to the time taken by the tessellation prodéss.changes included a different definition

of neighbors based on Delaunay tessellation, a weighting of neighbor velocities based on the
distance from the point in question and an adaptive tolerance to account for the different distances
to neighborsThe new algorithm worked equally well for PIV and PTV up to a level of spurious

data of about 15%ar higher than should be encountered witlod experimental techniqud®azaz

and Kawanisi 9] presented several different techniques for detecting and replacing multipoint

spikes in the acoustic Doppler sensor data time series. Among the methods cdribelenedified

wavelet method was confired to be the most suitable approach for detecting spikes. To improve
the performance of the wavelet method, cutoffs consisting of the universal threshold and a robust
measure of scale were employdthe developed method®r replacing identified spikes combine
times series analyses with a straightforward method, polynomial interpolation, to generate

substitutions retaining both the trends and the fluctuations in the surrounding cledrhdatsults
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indicated that the ethodology was capable of restoring the contaminated signal in such a way that
its statistical and physical properties correlate well with those of the original record.

This study mainly aims to detect outliers in flow pattern datéected via Vecterinwelocimeter

using various outlier detection methods, and consequently suggesting solutions for identifying such
data in a sharp bend.

A variety of definitions have been proposed for outliers so far, although none of them has been
comprehensive and only de#ed data, actually providing a definition of outliers depends on the
type of data and their use. In this paper, outliers are considertee data not consistent with the
normal pattern of the total data, and significantly differ from other obsergatiora way that it
appears to be generateih a different mechanisiji0].

Researchers have categorized outlier detection methods in diféetegoriesin this paper, they

have been classified in fogroupsas follows

1. Statistical methods [[}: these approaches are based on specific distribution of
observations, or statistical estimations of rdsition of unknown parameters, mostly
with high-dimensional dataandwhen there is no information available on distribution
of data these methods auseless.

2. Distancebased method$12: These methods detect outliers using calculating the
distance between the poirtty means of distance metridunction such as Euclidian
function.

3. Clusterbased methodslf]: In these methods, the data are filstssified in clusterslue

to homogeneitylf a data does not belong to any clusters, or the cluster is considerably

smaler than the others, it seems todaglier candidate

4. Densitybasedmethods [4]: These methods have proven to be very effective for

determiningthe density of nearest mgibors in order to detect outliers

For the sake of comparison and elaboratairieast one outlier detection method is selected from



123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

eachof the categories mepmmed abovéo be employed under two conditgrwith aT-shaped spur
dike located in the bend, and without spur dike. Therefoisore test, sum of sine curve fitting,
Mahalanobis distance, hierarchical clustering, U8@e, Seltorganizing map, Fuzzy -®leans
Clustering, and votingire methodemployed in this studyin the following, these methods and
characteristics of the case study reddrto above will be introducedndthe factorsor mechanisms
which causeoutliers during the experimentsand obtained resultsaare discussed in the paper.
Eventually, different hydraulic parameters in mean and terbuflows after eliminating the

detected outliers will be compared.

2. Methodologies

This sectiorpresentshe experimental set up, data set undeestigation and the methods.

2.1. Experimental Set up and Procedure

2.1.1. Laboratory Flume and Spur Dike

In this research, a bend flume with a central angle of 180 degrees, width,ant heightof 0.7

m, glass side walls and steel frames was desigmd built in hydraulic laboratory of Persian Gulf
university of Bushehr, Iran. A plan view of the flume and its geometry is presented in Figure 1. As
displayed, the flume consists of a 6.5 m long upstream straight reach, and a 5.1 m long downstream
straght reach. As seen in Figure 1, these two straight reaches are connected to each other by means
of a 180 degree bend having external curvature radius om2.6onsidering 1m width of the
channel (B) and 2n central radius of the bend (R), based on Lasehzand Rodi classification

[15], the flume has a sharp bend. The bed is rigid and material with average dian®e®€l on is

used to provide the desired bed roughness. To supply theagquater in the channedforages
havingthe capacity o0 n? and a pump 00.095 m*/s delivery capacity are usett is worth to

mention that the flow depth 3.2 m at thestartof the bend and is controlled using an adjustable



148 Dbutterfly gate located at the downstream end of tdagkng experiments. Therefore, Rrde and

149  Reynolds numbers are constant and equal to 0.34 and 119000, correspoidingly [

150 As seen in Figure 1, the spur dike issflaped in the plan and installed at the outer wall in a 90
151  degree angle of the bend. The spur dike wing and web arenOléBg each while their thickness

152 and height are 0.01 m and 0.4 m, respectivihe spur dike used in laboratory is made of Plexiglas
153  with semicircle corners wing.

154

155 Please Insert Figure 1 here.

156

157  2.1.2. Velocimeter

158 In order to measure velocity components and model flow pattern, a three dimensional velocimeter
159 called Vectrino is used. This instrument, is a new generation of ADV series and is conailered
160 one of the most advanced instruments knteocause oits highaccuracy and having the ability of

161 recording threalimensional velocities. Depending upon configuration of sensors, they are called
162  either side looking or down looking probes connected to a comipyteeans of special cablemn

163  which instrument softwares installed. Connecting the instrument to computer, files can be
164 managed simply and velocity monitoring is displaygdusingsoftware installed on the computer.
165 Data recorded by Vectrino is adjustable in a range of £0.01 to +7m/s and the accurac¥®gals

166  of data (x1mm/s)17]. In this study, to carry out experiments, frequency and time are assumed
167 25HZ and 1mip respectively,and hence the instrument is able to record at most 1500 data of
168 velocity in three directions (U: velocity component indXection, V:velocity component in Y

169 directionand W:velocity component in \direction). In Figure2, arrangement of Vectrino andg it

170  sensors on the channel are presented.

171

172 Please Insert Figure 2 here.
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2.1.3.Mesh Grids and Studdrea

During carrying out experimentso as topredict and preserftow pattern, finer mesh is applied
around and downstream of spur dike, compared to a bend without spuddikee whole, 3D flow
velocity profile has been measured @tcBoss sections, 22 longitudinal sections and 5 depth levels
In this research, thegerformance of the outlier detection methods has bkeewnin a case study on
the coordinate of two points (velocity values in U, V and W directioh#f)e recorded points. One
of these points has been recorded in the presence of-shaped spur dikalong a sharp bend
whereaghe other onevaswithout it. The details of the investigated samdgedin Table 1, and

their diagram depicted in Figug

In the second column of thablel1 (on the left side)Z represert distance from the channel bed;

is the horizontal angjend dis defined aghe distance from the outer wall of the bend.
Please Insert Table 1 here.
Please Insert Figure 3 here.
2.2. Statistical Methods
2.2.1.Z-scoreTest
Z-score test i statistical testcommonly usedor detecting outlies in univariate dataets Outliers

are detected usintpe arithmetic mean and standard deviatlmmce its effect depends on sample

members 18]. Thederivedequations ardescribed as followgEq. (1) and Eq. (2))

Zscore(i) = i -
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(1)

Where
SD= (A" (x - 0¥
n-1-""

(2)

According to a general rul&score(i) values whose absolute values exc@edle candidate outliers.

However, such threshold litnvalue has problems in itsglf8]. Moreover,the maximum absolute
valueof Zsore (i) isdefined as(n- )/v/n,and none of Zh,e) nightekceedit. d a't
In the caseof small data set, it is more obviouBotally, selecting the threshold limit value is

generallyrelatedtot he data set and the decision maker 6 s

for data sets is assum@db in this research.

2.2.2. 3um ofSnes CurveFitting

The curve fitting of the data is one of outlier detection methods and can be used in both univariate
and multivariate data sets. In order to detect outliers through this method, the residuals (the
difference between thealand the estimated values) aimstf calculated and then the greater values

are selected as candidate outlier. There are a variety of mddramsve fitting. In this research,

the sum of sines model fits periodic functioratseries of datpoint (Eq. (3))

y=&,,asin@x+c)

3)

Here g is the amplitudeb; is the frequencyandc; is the phase constant for each sine wave term.

Also, n is defined aghe number of terms in the series. To calculate these paranietessiRegion



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

[19] and LevenbergMarquardt PO] are usedThe threshold Vae for the data sets .5 in this

research. And ther@re 5terms in the series.

2.2.3.MahalanobisDistance
The Mahalanobis distance is a known parametric measure which relies on the estimate of the
multivariate parameters distribution and the data covaridtije The covariance matrix is defined

as follows(Eq. (4))

1 .n» - =T
C0v=r1ai:1(& - X)(% - %)

(4)

Thus, the Mahalabis distance can be computed by ushegfollowing relation(Eq. (5))

M, =\/(xi - %) Cov'(x - %

()

In this way x Canbe a outlier candidateproviding that the calculated value of; ¥br the x;
sample under investigation is greatean the threshold limit value df In order toapply the
Mahalanobis distancaethodin this paperas in two methods previously addressbé, threshold
valueis defined3.5. In fact, for cases in whiclthe Mahalanobis distanexceeds$.5,thatsamples

considered soutlier.

2.2.4. Hierarchical Clustering

10
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The goal of clustering is to identify structure in an unlabeled data set by objectively organizing data
into homogeneous groups where the wibioupobject similarityis minimized and théetween
groupobject dissimilarity is maximized2p]. In clustering through hierarchical methods, the
clusters are determined hierarchically in descending or ascending order of size. In this method, the
final clusters are given hierarchical order, normally like a tree, based on their generalizability. The
tree is called a dendogram. In this research, the Single divisive clustering algorithm23] is
employed. It is one of the oldest and simptdastering methodand is also known as the Nearest

Neighbour method. The following measure is used to calculate similarc; andc; clusters are

(Eq. (6))

dy e = Miny el i c2 (d N )

(6)

Wherei is a sampldrom c; cluster and from c; cluster.

Since the hierarchical clustering methods provide both more detailed and accurate information, they

seem to be suitable for analysis in detail. However, they are highly complicated and not appropriate

in terms of calculation for largaetata setsOne way ¢ evaluate the quality of the formed cluster

tree in reflecting the data is to compare the Cophenetic distance with the main distance between the
data. If the clustering is valid, there is a strong correlation between the data link in the cluster tree

andthe data distance in the distance vector. The Cophenetic correlation coefficient can be used to
compare these two distances. The closer calculated coefficiertt, i@better reflecter cluster tree

will be. The Cophenetic correlation coefficient carchiulated thorough theq. (7)[24]:

ai<i (Y” - y)(zij - Z)
éi<j (Yu - Y)Zékj (Zij - 2)2

11
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(7)

Where Yj Representshe main distance betweerandj points inY direction; Z; is Cophenetic

distance betweenandj in Z direction; andy and z are average of the values of Y and Z data

groups respectively.

In this researchto apply the hierarchical clustering method on the dsgts with regard to the

conducted experiments and after trial and error, the values of two parametgithehumber of

clusters) and (threshold) are assumé&dnd30, correspondinglyEuclidean function is selected for

measuring the distance between guients.

2.2.5.LSGMine

LSC-Mine [25] is a densitybased outlier detectiomethodin multivariate data sets. In pursuit of

implying LSGMine method, the following steps mustta&en

1
1

Calculating the kdistance op

Finding kdistance neighborhood @f(Nk(p))
Calculating localsparityratio of anobject p(Isrk(p))
Calculating the pruning factor

Calculating the locakparity coefficient ofp (LSG(p))

The localsparitycoefficientof k is defined as the proportion of the mean of |egarityratio of p

to k-nearest neighbou(&q. (8))

3 Isr, (0)
o Ny (p)

LG (p) =i P
(8

12
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A high coefficientof local sparityindicates that the neighborhood around the point is not dense and
accordingly it seems to be an outliér.this study, the value 6K equals100 The reason why the

great value is definedtdi s t o ascertain the accurltasayuthof tF
that the greater value &fis, the more accurate resulige It is point of note that k parameter value

can be increased up to a specific value above which it may not change the results and will just rises
the volume of calculations resulg in longer time taken by proce3$e thresholdimit parameter

based on the typaf input data, and trial and errordsfined?7.6.

2.2.6. SeHorganizing map

Seltorganizing Maps (SOM)Z6] are unsupervised neural networks which cluster the input data in

to a fixed number of nodes. It learns to cluster data based on similarity, topology, with a preference
(but no guarantee) of assigning the same number of instances to each class. K&©Okerss

called a topologypreserving map because there is a topological structure imposed on the nodes in
the network. A topological map is simply a mapping that preserves neighborhood relations. SOM
apply competitive learning and use a neighborhood fum¢tapreserve the topological properties

of the input space. In competitive learning, the output neurons compete amongst themselves to be
activated, with the result that only one is activated at any one time. This activated neuron is called
winning neuron A SOM consists of components called nodes or neurons. Associated with each
node is a weight vector of the same dimension as the input data vectors, and a position in the map
space. The neurons in the layer of an SOM are arranged originally in physitiaingosccording

to a topology function. The usual arrangement of nodes is @itwensional regular spacing in a
hexagonal or rectangular grid. The performance of the network is not sensitive to the exact shape of
the neighborhoods. The procedurepmécing a vector from data space onto the map is to find the
node with the closest (smallest distance metric) weight vector to the data space vector. Distances

between neurons are calculated from their positions with a distance function. There are several

13
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waysto calculate distances from a particular neuron to its neighbors. In this research, Euclidean
distance function used to find the distances between the layer's neurons given their positions.
Using the same procedure as employed by a competitive layer, &Diifies a winningreuroni'.
However, instead of updating only the winning neuron, all neurons within a certain neighborhood

N..(d) of the winning neuron are updated, using the Kohonen rule. Specifically, all such neurons

il N.(d)are adjusted as follow&q. (9))

W(q) =(1- a);w(q- 1) +ap(q)
9)

Wherew is node's weight vectotjis learning rateandq is the step index. Here the neighborhood

N..(d) contains the indices for all of the neurons that lie within a sadiof the winning neuron

i*(d). Thus, when a vectgr is presented, the weights of the winning neuron and its closeneighbors
move towardp. Consequently, after many presentations, neighboring neurons have learned vectors

similar to each other.

2.2.7. Fuzzy @Means Clustering

The purpose of clustering is to identify natural groupings of data from a large data set to produce a
concise representation of a system's behavior. There are two basic types of clustering algorithms
[27]: partitioning and hierarchical algorithms. Partitioning algorithms is considered here. These

algorithms construct a partition of a datadet {x1 xz,...,xn} of n objects into a set abclustersc

is an input parameter and specified by users. Partitioning algorithms typically start with an initial
partition of the dataset and then iteratively optimize the objective function until it reaches the

optimal for the dataset. Consequently, partitioning algoritiuse a twatep procedure. First,

14
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determinecrepresentatives minimizing the objective function. Second, assign each object to the
cluster with its representative-méand (GW sstad t o
partitioning data clusteringechnique in which a dataset is grouped iQte {cl,cz,...,cn} clusters

with every datapoint in the dataset belonging to every cluster to a certain degree. In FCM, data
elements can belong to more than one cluster, and assigning membership to aapgbirdat
corresponding to each cluster center on the basis of distance between the cluster center and the datz

point. Objective function in FCM i€Eq. (10) and Eg. (11))

. e Nw 2
argmlncai:]_a j=1 i HX H

(10

Where:

w el
X - e

(11

Partition matrix (membership valuegy = vy | i [01],i =1,....n,j =1,...,c where each element;
tells the degree to which elemexitbelongs to clustet;. Fuzzifierm is any real number equal or
greater than 1. The fuzzifieletermines the level of cluster fuzzinessis commonly set to 2| is

any norm expressing the similarity between any measured data and the center.
In FCM, the centroid of a cluster is the mean of all points, weighted by their dédrvelmnging to

the cluste(Eqg. (12))

- WG w2

a, w"

15



363

364 The degree of belongingy, , is related inversely to the distance from datapgind the cluster

365 center as calculated on the previous pass.

366

367 2.2.8.VotingMethod

368 Voting method is not a new methaddperformsusingot her met hods é nddealc o me
369 with outliers. In factthe data which areommonlyrecognized as outliers kilie most of methods

370 are most likely tobe considered asutliersin this method As such,the voting method leads to

371 more accurate and reliable results.

372
373 3. Resultsand Discussion

374  This section undertakes the detection of outliers in the collected data through expeiomtres

375 sake of the flow pattern determination experiments (data provided in Table 1) using the methods
376 elaborated on above. A program has been written using MATEA&#Bvarein order to detect

377 outliers based on each method and the consequences of process presented as follows.

378 Table 2 provides the results of runningstore test on the data 9e4s obvious in thdable, the

379 maximum effect of the method is evident ifoint 2 in both lateral and vertical directions.

380 Moreover, Outlier detection in such directions and at the downstream of spur dike extremely
381 influences the secondary flow strength variation and provides their true values at lower layers where
382 the flow isexceedingly turbulent.

383

384 Please Insert Table 2 here.

385

386 The outliers detected in the data sets are circled in Figurghis figure properly shows the

16
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necessity of outlier detection and algs elimination from the flow velocity components time

series.

Please Insert Figure 4 here.

Results obtained thorough running curve fitting methpglyingthe sum of sines on the data sets
are accessible in Table @omparingTable 3and Table 2, it can be stated that this method has
marked more data as outlier candetathan Zscore. In order to indicate outlier detection using sum
of sine curve fitting, Figur® demonstrates the residuals of 3D velocity data after running method

on Point 2 as a data set.

Please Insert Table 3 here.

Please Insert Figure 5 here.
Accordingto Figureb, the sparityof lateral velocity data due to higher turbulence and disorderly
flow is estimated to begreater than the other two directions. Hence, the maximum nuaibe
detected outliers related lateral velocities in the experimeasf bend with spur dike islentified by
this strategy.
Table 4 presents details of outlier detected through running the Mahalanobis on d#apseéts.
worth to mention about Table 4 is that results from this me#neth accordance with that of-Z

scae test.

Please Insert Table 4 here.

The results of running hierarchical clustering method on data sets is provided in5T ainid

17
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Cophenetic correlation coefficient is given for each data set, separately, inSTAlsl®bviousin

Table 5, this method fundamentally differs from the previous methods in terms of outlier detection
through the flow pattern experiment along the bend (PoiriRdgardingthe experiment with spur

dike inside the bend, unlike previous methods, the tadgial component of flow velocity bears

the greatest proportion of outlier candidatesaddition, Figure6 depicts the dendogram of data
sets. According to this figure and a comparison between correlation coefficients provided in Table 6
will indicate he relationship between clustering tree ahbws how effective data with low
coefficients (such as V in Point 1) and quite appropriate coefficients (such as W in Point 2) are.
Since displaying all the indices on horizontal axis in the dendogram was troglathe lower
clusters were disregarded and only 30 leaf nodélsenh wererepresentedConsequentlysome of

the leaves in the diagram belong to more than one point.

Please Insert Table 5 here.

Please Insert Figure 6 here.

Please Insert Table 6 leer

LSC-Mine method results on data setatedin Table7. A comparison between the results of this

technique and the previous ones suggests that, on the whole, the method has detected the minimum

number of outliers in various directions.

Please Inseifable 7 here.

Similarly, Figure7 demonstrates the locgparitycoefficient (LSC) values (data with a losglarity
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ratio greater than the pruning factor (Pf)) in all the data sets along with the threshold limit value
(horizontal line). The values fallgnabove the horizontal line have been considered as the final

outlier candidates

Please Insert Figure 7 here.

To clusterinput vector using Selbrganizing map, an thy-5 two-dimensional map of 55 neurons
is used. The twalimensional map is eleven neurons by five neurons, with distances calculated
according to the Link distance neighborhood function. Link distance isea distance function in
MATLAB software used to find the distances between the layer's neurons given their positions. The
two-dimensional sefbrganizing map has learned the topology of its inputs' space with Bable
parameters. After training the SOM neik, the data will be divided into 55 clusters. Here as in
Fuzzy GCMeans Clustering method, clusters that the number of their members is less than 7 are
considered as outlier candidates. Tablprovides the results of running SOM on the data sets.
Figure 8 indicates distances between neighboring neuf@nPoint 1, velocity component.UO his
figure uses the following color coding:

1 The blue hexagons represent the neurons.

1 The red lines connect neighboring neurons.

1 The colors in the regions containing tieel lines indicate the distances between neurons.

1 The darker colors represent larger distances.

1 The lighter colors represent smaller distances.

Please Insert Table 8 here.

Please Insert Table 9 here.
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Please Insert Figure 8 here.

Figure9 shows how may data points are associated with each neuron. It is best if the data are fairly

evenly distributed across the neurons. In this example, overall the distribution is fairly even.

Please Insert Figure 9 here.

To apply the Fuzzy @®leans clustering methotb a given data set, it is needed to determine
number of clustersJ parameter), exponent for the partition matrix, maximum number of iterations
and minimum amount of improvement. In this resea@parameter value is selected by trial and
error equal t®5. Other parameter values are as follows, respectively: 2.0, 1660 Clesters that

the number of their members is less than 7 are considered as outlier candidates) pablelés

the results of running FCM on the data sets.

Please Insert Table H&re.

Evidently,employingdifferent approaches led to varioesults Some methods identified a data as
outier, whereaghe samesample considereds normalby other techniquesAs a consequence,
realizing whethersampleis the real outlier or noappeared to be complicated problem. A
substantial way to identify outlier is employing the voting method. The outliers utilizing most of the
methods can be potentially considered as outliers. In this way, the accuracy of the obtained results
surprisingly ncreases.

In this paper, thesamplesmarked as outliers in 3 methods are selected as the final outlier

candidates. In consideration of searching the points and calculation the frequency of each data, the
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486  binary search algorithn2f] is used. Tabld1presetst he dat a iderdiftedbytheovating i er
487 method. Depending upon the nature of each algorithm, different methods result in various
488 outcomes. One factor effective on the performance of each algorithm is taking correct parameters
489 To this endit is attempted to select the best parameters for each algoegardingthe nature of

490 the data. As the voting method usesoaparabilityof the results obtained through the methods, its
491 results can be taken as more accurate and reliabileis study, thdurther investigations has been

492  based on the results (Taldl&).

493

494 Please Insert Table 11 here.

495

496  As seen inrablell, Point 1 had fewer outliers rather than Point 2. This is due to installation of spur
497  dike making the pattern of the turbulent flow aroupdrsdike in the sharp bend more disorderly.

498 Having detected outlierghey can be totally removed providing that there are few such data.

499  Otherwise, theyould be rectified, or measured multiple times

500 A noteworthy fact is that the outlier candidatd®sen via such methods are not always indicative

501 of error occurrence or fault in measurements. Perhaps, they are necessarily caused by variations of
502 the systemdbs nature circumstances (runkhowni n f
503 behavior ofthe system undestudy so far Indeed,detecting them can provide highly important

504 information about the nature of the problem and lead to an even betterstanding. Therefore,

505 detectingoutliers, the causes leading to such outliers musttastigatedand the best approach be

506 introducedthe strategy has been taken into account in this study

507 Allin all, in this research, regarding various experimeat®t of criticalfactors probably involved
508 in arisingoutliers are listed as follows:

509 1 Changes in w condition
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1 Trivial fluctuations of power and concluded effect on the dischairtfee pump system

1 Observational errors

1 Spurious errors

1 Systematic errors

1 Random errors

1 Not following the orrect measurement instructions

1 Other factors such asnvironmental operative factorglifficulties with measurement
devices,norc al i br ated devices, human factors su

experience and skill in using the measurement devices.

We should keep in mind that one method cannot always surpass other methods. One method may be
efficiently employed for a particular sort of data, while it is not efficient for another $yadhsaid,

this paper offers a process while at it just data t&deoy other methods as outliers are identified as

final outlier candidates.

Figure 10 illustrates adata setof vertical and lateral components of flow velocity in the case of
bend with spur dike (Point 2) after running the voting method. As seen iigtine,femploying the

voting method integrates velocity time series data andlisparityis evident through them.

Please Insert Figure 10 here.

Concerning the accurate study of the effect of the detected outliers on flow pattern variations in the
sharpbend, it is essential that different hydraulic parameters in turbulent flows be discussed. In
Tables12 and 13, kinetic energy and shear stress (using: Reyndés TKE [30], and modified
TKE[16,30) ) parameter so val ues wworcensiderechppiatswitldandvi t h

without a spur dike in the bend. Additionally, to observe mean flow pattern variations, the mean
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values of flow velocity components before and after outlier elimination from data sets were

presented in these tabjes

Pleasdnsert Table 12 here.

Please Insert Table 13 here.

A noteworthy point in Tabld.2 is that after running the voting method on data sets)pared to

other methodsthe Reynolds shear stress parameter significantly decreased by about 36%. Since
there areno outliers reported in vertical direction in Taldlé the modified TKE before using

voting method did not differ fronthe oneafter applying it.Overall, based on TablE2, it can be

stated that in the case of the bend without a spur dike, running the voting method does not influence
the mean flow pattern affected by mean velocities. While, 3D velocity components are significantly
exaggerated by spur dike installation at tlhhend apex, undergoing numerous variations.
Considering Table 3, due to section constriction amdsurge in flow velocity, in the centrifugal

force andsubsequentlyn the secondary flow strength, particularly at the downstream wing area
(where BInt 2 falls), a highly turbulent flow velocity will belominated As a result, it is not
feasible to predict a certain ordér flow pattern around spur dike. In spite of turbulence
parameters, the mean flow parameters also undergo remarkable fluctuations fimanalyin
resultant flow vertical component of strong up flows existent at downstream of the spur dike.
According to Tablel3, a 2% growth in vertical component at Point 2 reduced modified TKE
carried out byusingthe voting system b{0%. Regarding otheturbulence parameters, it can be

said that running the voting method at Point 2 resulted in a decrease in all turbulence parameters

except the Reynolds shear stress which increasécdb®y.
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4. Conclusion

Flow pattern analysis can provide highly importainformation on flow characteristics.
Understanding the flow behavior under different circumstances can be achieved to some extent
using the experimental measurements. There are many causéBevs in measurements. Outliers

may be produced by error ofe@surements or variations in the nature of the flow. Thus, detecting
such data is vital from different viewpoints and can provide more reliable re$its data. This

paper employed a combination ofsgore test, sum of sines curve fitting, Mahalanalssance,
Hierarchical clustering, LS®ine, Self-organizing map, Fuzzy ®Means Clustering, and voting
methods to detect outliers in flow pattern experiments in a channel with a 180 degree bend with and
without a Fshaped spur dike, individually. A compson between the differewutlier detection
methods indicates thanhe of the advantages wbting methods thata comparabilityof the results

of the other methodis applied and processeld is highly recommended that before analyzing the
collected dat through flow pattern experiments, the procedure proposed in this paper be used in
outlier detection. This paper has calculated different hydraulic parameters consisting of kinetic
energy and shear stresses (using: Reynolds, TKE, and modified TKE methadsnd with and
without spur dike and made comparison between thems tostudying thempactof running the

voting method on mean and turbulent flow pattern variations in a sharp bend. Resuléesithat

in the case of the bend without a spur dike, mean velocities were not significantly influenced by

the voting method, although it reduced the Reynolds shear stress by about 36%. Results were
different in the case of the bend with a spur dike, and both mean and turbulence parameters of the
flow underwent alteration, in a way that after elimination of outliers detected through the voting
method, under the influence of installing the spur dike in the bend, vertical velocity component

faced a 2% growth whereas modified TKE shear stress has decrbgdéo.
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Point 2 with Spur dike (W data set)
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