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KEYWORDS Abstract. This paper presents a reliability-based analysis of strip-footing settlement
Foundation by Stochastic Finite-Element Method (SFEM). The Stochastic Response Surface Method
UV (SRSM) and Random Finite-Element Method (RFEM) are used as two formulations of

SFEM. The elastic properties of soil are considered as spatial random variables and modeled
as cross correlated log-normal random fields. Random field discretization is done by
Karhunen-Loeve (K-L) expansion. Two programs were coded by MATLAB so as to take
full advantages of its matrix operations, and in an illustrative example, it was shown that
the results of SRSM are close to RFEM; however, the consumed time in RFEM is at most
50 times longer than that in SRSM. Using the faster method, SRSM, it is concluded that
considering the spatial variability of soil parameters in stochastic analysis is necessary.
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1. Introduction abilistic/stochastic analysis of foundations on soils.
Some of these are Monte Carlo Simulation (MCS),
First-Order Reliability Method (FORM), Second-
Order Reliability Method (SORM), Perturbation the-
ory, SRSM, etc. [3]. For example, Shyamala and
Dodagoudar [4] used Point Estimation Method (PEM)
and First-Order Second Moment (FOSM) along with

the non-linear finite-element analysis to evaluate the re-

The soil properties are inherently uncertain parame-
ters. These properties are spatial variables and vary
from one point in space to another. This leads to the
necessity of representing the soil parameters as char-
acterized random fields. In conventional approaches to
foundation settlement determination, average values of

soil parameters are considered and parameters’ uncer-
tainties are taken into account by applying a global
Factor of Safety (F'S). Probabilistic analysis provides a
tool to consider the uncertain parameters in analysis.

There have been some scientific efforts directed
at applying reliability analysis to the civil engineering
tasks [1,2].

Many methods have been developed for prob-
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liability index in reliability analysis of shallow founda-
tion settlements. The mentioned methods are clubbed
with finite-element method to stochastic analysis of
foundation settlement giving rise to methods like
SFEM and RFEM. Among above methods, the RFEM
and SRSM are two powerful methods to propagate in-
put parameters uncertainties in finite-element models.

In RFEM, the random fields are combined with
the finite-element method through MCS. The RFEM
has been widely used in geotechnical problems [5-9].
For example, Fenton and Griffiths [6] presented relia-
bility analysis of foundation settlement by modeling
the soil as spatially random media. Prediction of
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settlement below the foundation was obtained using
the finite-element method. Griffiths and Fenton [7]
compared the reliability results of foundation settle-
ment, obtained by stochastic finite-element method
based on first-order second-moment approximations,
with the result of random finite-element method based
on generation of random fields combined with Monte
Carlo simulations. Pieczynska-Kozlowska et al. [10]
studied the influence of embedment, soil self-weight,
and anisotropy of random field on bearing capacity of
foundation using RFEM.

In SRSM, the complex numerical model is re-
placed by an analytical one, which is less time-
consuming compared with original numerical model
(deterministic model). The SRSM can be adopted
in both linear and nonlinear problems, and all sta-
tistical moments of outputs can be computed using
this method. The SRSM has been used in many
problems [11-19]. Among important contributions
are the research studies of Huang et al. [14], Li et
al. [17], Li and Zhang [18], and Jiang et al. [16].
Huang et al. [14] presented an extended stochastic
response-surface method for problems in which physical
properties exhibit spatial random variation by using
collocation points as samples for constructing the
output response surface. ILi et al. [17] proposed a
stochastic response surface method for reliability anal-
ysis involving correlated non-normal random variables.
They formulated the closed-form expressions for fourth
to sixth order Hermit polynomial chaos expansions
involving any number of random variables. Li and
Zhang [18] explored a method for uncertainty analysis
of flow in random porous media by combining the
KL expansion and the SRSM based on Probabilistic
Collocation Method (PCM). Jiang et al. [16] proposed
a non-intrusive stochastic finite-element method for
slope reliability analysis considering spatial variability
of shear strength parameters. They adopted the K-L
expansion to discretize the 2-Dimentional (2-D) cross-
correlated non-Gaussian random fields of spatially
variable shear strength parameters.

The objective of this paper is to analyze the reli-
ability of strip foundation settlement by SRSM, which
requires low computational time and low memory
requirements; then, a comparison will be made between
the obtained results with those of RFEM. In reliability
analysis by SRSM, the model outputs are represented
as functions of standard normal variables by polyno-
mial chaos expansion. The unknown coefficients in
the polynomial chaos expansion are determined using a
probabilistic collocation method. For modeling the soil
behavior, elastic-perfectly plastic Mohr-Coulomb yield
criterion, which is common in geotechnical problems,
is used. In elastic-perfectly plastic models, hardening
or softening which shows a more real behavior of soil
cannot be considered. Each spatially random variable

is modeled as cross correlated log-normal 2-D random
field. The log-normal distribution is selected by the fact
that the values of soil parameters are strictly positive.
The well-known K-L expansion is used for random filed
discretization. Furthermore, an example is presented to
compare the predictions of the SRSM and RFEM on
the reliability analysis of settlement strip foundation.

2. Shallow foundation settlement

Foundation settlement will occur when a foundation
is subjected to load. Excessive settlements may lead
to serviceability problems and the desired use of the
structure may be impaired. The foundation settlement
depends on soil type and the water table level. It
consists of three components: immediate settlement,
consolidation settlement, and secondary compression.
Classical formulations are available for computing these
components of settlements. Numerical methods, such
as finite-element and finite-difference methods, can
be used to calculate foundation settlement. These
methods provide the advantage of idealizing the ma-
terial behavior of soil, which is non-linear with plastic
deformations and path dependent, in a more rational
manner. In this study, the finite-element method is
used to determine the foundation settlement.

3. Random field modeling of soil properties

The soil properties are spatial variables and vary from
one point in space to another. The spatial variability
of soil properties can be due to variations in min-
eralogical composition, conditions during deposition,
stress history, and physical and mechanical decompo-
sition processes [20,21]. This leads to the necessity
of representing the soil parameters as characterized
random fields. Spatial variability of soil properties
can be modeled using theory of random fields [22]. In
the theory of random fields, at any location within a
soil layer, the soil parameter is an uncertain quantity
or a random variable which is characterized by a
probability distribution and is correlated with the
random variables at adjacent locations [20].

The values of a soil parameter are correlated at
different points of a field. The spatial correlation of soil
parameter is considered by autocorrelation function.
The autocorrelation function of a given soil parameter
can be estimated from the measured data of the
parameter at different locations [23]. In this study,
for all uncertain parameters, a squared exponential 2-
D autocorrelation function is assumed with different
autocorrelation distances in the horizontal and vertical
directions as follows:

T _:L,/ !
p(X7XI) = exp _| | - |y Y | ’ (1)
I, I,
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where x and x’ are spatial coordinates, and I, and I,
are autocorrelation lengths in horizontal and vertical
directions, respectively. Small values of the autocor-
relation lengths imply a rapid fluctuation about the
soil parameter. However, high values imply a slowly
varying soil parameter. In the case of 2-D problems,
it is assumed that out-of-plane autocorrelation length
is infinite. If spatial variability of out-of-plane un-
certain parameter be considered, 3-dimensional finite-
element analysis should be done to consider its ef-
fects.

3.1. Discretization of random fields

The numerical methods, such as finite-element formu-
lation, have discrete nature; therefore, a continuous-
parameter random field must also be discretized into
random variables. This process is commonly known as
a discretization of a random field. There are several
methods to discretize a random field in the litera-
ture [24]. More efficient approaches for discretization
of random fields are series expansion methods.

The series expansion methods can be done by
three methods [24]: the K-L expansion, Orthogonal
Series Expansion (OSE), and the Expansion Optimal
Linear Estimation (EOLE) methods. K-L expansion is
able to use a few terms to capture the characteristic
of the strongly correlated random fields [25]. In this
study, the K-L. expansion is used. This method is
introduced briefly in the next subsection.

8.1.1. Karhunen-Loéve expansion

The K-L expansion of a random field is based on the
spectral decomposition of its autocorrelation function
p(x,x"). The set of deterministic functions, over which
any realization of field H(x,#) is expanded, is defined
by eigenvalue problem:

[ px )i i2 = i), 2)

where x and x’ denote the coordinates of two points in
space; @;(x) and A; are eigenfunctions and eigenvalues
of one-dimensional autocorrelation function p(x,x’),
respectively. The eigenmodes of the separable multi-
dimensional autocorrelation function are calculated
through multiplying them by the eigenmodes obtained
from Eq. (2). This integral can be solved analytically
or numerically [26,27]. In this study, the closed form
presented by Zhang and Lu [28] is used. The series
expansion of a random field H(x,8) is expressed as
follows:

H(x,0)=p+ Za@@i(x)f (6)

x€eN, (3)

where ;4 is mean and o is standard deviation of the
field; &;(0) is a vector of uncorrelated standard normal

variables, and 6 indicates the random nature of the
H(x,0). Practically, the series is approximated by a
finite number of terms:

M
) = p+ Zo\/xwi(X)i (9)

xeQ (4)

The value of M strongly depends on the desired
accuracy and on the autocorrelation function of the
random field [29]. Small values of the autocorrelation
lengths will lead to a significant increase in the number
of the K-L terms (M).

3.1.2. Cross correlated lognormal random fields
Typically, more than one random soil parameter, such
as Young’s modulus, Poisson’s ratio, the cohesion, and
the friction angle, is involved in geotechnical problems.
Among these, some soil parameters show the degree
of dependency on each other. In other words, these
parameters are cross correlated. Cross correlation
structure between each pair of simulated fields was
simply defined by a cross correlation coefficient [29,30].
Cross correlated Gaussian random field is expressed as
follows:

(x,0) = i + Z ‘71\/730] Xl,]

(for i = E,v), (5)

where ; ; is the correlated random vector whose kth
column, Yy, is given by [16]:

= b = | re € 1- L] ©

where & (i = E or v) is the independent standard
normal variables which correspond to the random
variables used to discretize the random fields using the
K-L expansion in Eq. (4), and R , is cross correlation
coefficient among E and v.

As the soil parameters are always positive, the
Gaussian random field is not applicable. In this study,
the variables are considered as lognormal random
fields. Cross correlated lognormal random fields can be
obtained by exponentiation of the approximate cross
correlated Gaussian random fields from Eq. (3) as
follows [11,16,29]:

(X 9) = exp (Nlnl + Z Ulnz\/>99j X’L,j )

(for or i = E,v), (7)

where p,; and oy, ; are the mean and standard devia-
tion of the Gaussian random variable In ¢, respectively:
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pini =Inp; — ol /2 and o1, = VIn(1 4+ (0:/1:)2).

4. Stochastic response surface method

The stochastic response surface method can be viewed
as a conceptual extension of the traditional Response
Surface Method (RSM) [15]. In this method, the com-
plex numerical model (or original numerical model) is
replaced by an analytical model called surrogate model
or meta-model. The Probability Density Function
(PDF) of system response can be computed easily by
applying MCS on the meta-model, which is less time-
consuming in comparison to original numerical model.
The major advantage of SRSM is that it allows the
existing deterministic numerical codes, such as a finite-
element analysis code, to be used as a black-box within
the method. The steps of SRSM can be written as
follows [11,13-15]:

1. Representation of the stochastic input parameters
in terms of independent Standard Random Vari-
ables (SRVs). In this study, this task is done using
K-L expansion (Eq. (4)).

2. An output of a model open to influence by any
number of model inputs. Hence, any general
functional representation of uncertainty in model
outputs should take into account uncertainties in
all inputs. For this purpose, the output parameter
must be represented as functions of the same set
of SRVs, used for representation of the stochastic
input parameters. This task is done using Hermit
polynomial chaos expansion as follows:

N
y(0) =aoTo + Y _ ai,T1(&,)

11=1

N
+ Z Z @iyir 12 (& (0), 6i,(0))

11=115=1

+ Z Z 2 Qiyigis '3 (fn (9),&2 (9)513('9))

i1=11i2=113=1

[e'e] i1 2 N
+ .+ Z Z Z Z Aiyiy..in
iv—=1

i1:1 iQ:l i3:1 K3

e (60164(0) 6, 0)). (®)

where y is model output; a;,, @iy, Qijiyy Giyigigs-
are the coeflicients to be estimated, in which N
is the number of SRVs used to represent stochas-
tic input parameters; & = (&,,&,,....&iy) 18 a
vector of independent standard normal variables,
and T'n(&,, &y, &) are the multi-dimensional
Hermit polynomials of degree p given by:

1T 8N 1¢T
. . — (—1)P Ef [ 55 13
Fp(£l17"'7£11\7) ( 1) € afllasze (9)

For notational simplicity, Eq. (7) is rewritten as
follows:

P-1
y(0) = 3 et (£(0)), (10)

where there is a correspondence between I'y
(&iy»&iny - &iy ) and ¥ (£(F)) and also between their
corresponding coefficients. P is the number of
unknown coefficients calculated by:

(N +p)!

P=—r

(11)

Eq. (9) is the polynomial chaos expansion [31]. This
equation is called surrogate model or meta-model.
In this study, the closed-form expressions for fourth
to sixth order Hermit polynomial chaos expansions
involving any number of random variables, formu-
lated by Li et al. [17], are used.

Estimation of the unknown coefficients in poly-
nomial chaos expansion. For this purpose, the
collocation point method [15] is used. The model
outputs are computed at a set of collocation points
and used to estimate the unknown coefficients.
Collocation points must be selected from all combi-
nations of roots of the polynomial of one degree
higher than the order of the polynomial chaos
expansion [15,32,33]. For the second-order chaos
polynomials, the roots of the third-order chaos
polynomials are 0 and +v/3. For N-dimensional
and p-order chaos polynomials (p + 1)V, combi-
nations of the roots exist which are always larger
than the number of the collocation points needed.
For example, for third-order and eight-dimensional
chaos polynomials, the number of available colloca-
tion points is (3 + 1)® = 65536 while 552! = 165
points are needed.

Selection of the appropriate collocation points
from the large number of potential candidates is
a practical question. There are some criteria for
the selection of collocation point in the litera-
ture [13,15,18,32]. Selected points must capture
regions of high probability. The points, which are
closer to the origin of the multivariate normal space,
are preferred. It is desirable to achieve a symmetric
distribution of collocation points with respect to
the origin because the Probability Density Function
(PDF) is symmetric with respect to the origin.

When n sets of collocation points are se-
lected, the corresponding model outputs y =
[Y1,Y2, .-, Yn]? at each set of collocation points can
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Figure 1. Flowchart of SRSM.

be obtained. The unknown coefficients can be
computed using the following equation:

C=(z"2)'Z2%y (12)

where C = [c1,¢2,...,cp] is a vector of unknown
coefficients, and Z (Hermit polynomial matrix) is a
space-independent matrix of dimension NV x P and
is given as follows:

Vo(&)  ¥i(&)  ¥3(8) Vp_1 (&)
Ve(&)  ¥i(&)  ¥3(8) Vp_1 (&)
7 . . . :
: : : : (13)
Vo (€) vV (&) ¥y (€) vy 1 (&)

It should be mentioned that the number of collo-
cation points selected should ensure that ZT.Z is
invertible. Flowchart of the SRSM is presented in
Figure 1.

5. Random finite-element method

The RFEM is one of the most accurate, yet time
expensive, methods to analyze reliability of finite-
element models. In this method, a random field of soil

properties is generated and then mapped onto a finite-
element mesh [7]. The steps of this method using K-L
expansion are as follows:

1. Representing the statistical properties of stochastic
input variables, such as mean, standard deviation,
autocorrelation function, and distribution type;
Generating random field using K-L expansion;

3. Performing finite-element analysis using generated
random field to compute system response;

4. Repeating steps 2 and 3 many times using MCS to
obtain the histogram of system response;

5. Computing the statistical properties of system
response such as mean, standard deviation, and
probability of failure (Py).

The flowchart of this method is shown in Figure 2.

6. Computer program

In this study, for reliability analysis of foundation
settlement, two finite-element programs were coded by
MATLAB based on SRSM, RFEM. These programs
are capable of considering the uncertainties of soil

Parameters of
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Expressing stochastic input
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using K-L expansion
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Realization
of stochastic inputs

Selecting appropriate number of
€—| K-L terms and sufficient number
of Monte Carlo simulations (n)

)

Distribution of
output

Calculation of
probability of failure

~

Figure 2. Flowchart of RFEM.
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parameters. The major capabilities of these programs
are as follows:

1. Considering elastic-perfectly plastic behavior of the
soil material with Mohr-Coulomb yield criterion;

2. Selecting appropriate collocation points automati-
cally (SRSM program);

3. Generating random field by K-L expansion consid-
ering cross correlation between stochastic parame-
ters;

4. Computing chaos polynomials for any number of
random variables based on closed-form expressions
(SRSM program).

7. Verification of the developed programs

To verify the accuracy of the developed programs, a
deterministic analysis was done using mean values of
soil parameters, given in Table 1. The obtained result,
including the foundation pressure-settlement curve, is
compared with the prediction result of finite-element
software, PLAXIS. For this purpose, soil mass with
13 m width and the depth of 7 m is discretized into
52 four-node rectangular elements in the horizontal
direction by 5 elements in vertical direction, as shown
in Figure 3. The nodes on the bottom boundary are
fixed and both lateral boundaries are assumed roller.
A strip footing with a width of B = 3.0 m is located
on a ¢ — ¢ soil layer. A uniform footing pressure equal
to 150 kPa is applied onto the top of soil layer.

The ultimate settlements at the center of footing

Table 1. Arbitrary selected soil parameters for modelling.

Parameter Value
Young’s modulus E (MPa) 30
Poisson’s ratio v 0.3
Cohesion ¢ (kPa) 20
Friction angle ¢ (deg.) 25
Dilation angle a (deg.) 0
Unit weight v (kN/m?) 0
Pressure
g
<
A
13 m

Figure 3. Finite element model of soil mass.
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Figure 4. The foundation pressure-settlement curves
obtained using developed program and PLAXIS.

(Sc) due to the applied pressure using the developed
program and PLAXIS were obtained as 0.0198 m and
0.0193 m, respectively. The results show that the devel-
oped program can predict settlement with reasonable
accuracy. The foundation pressure-settlement curves
obtained using the developed program and PLAXIS are
shown in Figure 4. This figure shows that the results
are close to each other, and the developed program
successfully predicted the foundation settlement.

8. Illustrative example

To compare the proposed methods in reliability analy-
sis of foundation settlement with others, an illustrative
example with arbitrary data is presented. In this
example, the elastic-perfectly plastic Mohr-Coulomb
yield criterion is adopted to represent the stress-strain
behavior of the soil. The mean of soil parameters is
selected as in Table 1, and the geometry of problem is
considered as in Figure 3. The values of soil parameters
are selected arbitrarily.

Only soil elastic properties E and v are considered
as uncertain parameters [6,7,27,34] and modeled as
cross correlated lognormal random fields. There is no
sufficient information about coefficient of variation of
Poisson’s ratio. Some authors have suggested that the
variability of this parameter can be neglected, while
others proposed a very limited range of variability [11].
In this research, Coefficient Of Variation (COV) of v
is selected equal to 0.05 as Youssef Abdel Massih [35]
and COV of E is selected equal to 0.3. A value of 0.5
is used for Rp , [35].

The K-L expansion is employed to discretize
random field. The type of autocorrelation functions
of uncertain parameters can be different from each
other, but in this example, it is assumed that both
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Figure 5. Figenvalues of 2-D autocorrelation function.

stochastic parameters have the same autocorrelation
function as in Eq. (1). It should be emphasized here
that the autocorrelation function and autocorrelation
length are generally site-specific and often challenging
due to insufficient site data and high cost of site
investigations [11]. Random field is calculated at the
centroid of each element. The first 14 eigenvalues
of 2D autocorrelation function, where values of [, =
20 m and [, = 1 m are considered for horizontal
and vertical autocorrelation lengths, respectively, are
shown in Figure 5. In this example, in all cases, 6
terms of K-L expansion are considered first.

Analyzed by SRSM, polynomials chaos of order 2
is adopted. As nonlinearity of problem is increased, the
greater order of polynomials chaos must be selected.
Figenvalues and eigenfunctions of autocorrelation func-
tion are computed, and the first 6 terms of K-L
expansion (the first 6 Eigenvalues and eigenfunctions
of autocorrelation function) of each spatial random
variable (E and v) are considered. Number of unknown
coefficient, which must be evaluated, is 91; therefore,
91 collocation points are needed. 106 collocation points
are selected, greater than the number of the needed
collocation points for the robust estimation of unknown
coefficients. After computing the unknown coefficients,
MCS with 100,000 sampling is applied to meta-model
(Eq. (9)). The histogram and fitted PDF of center of
foundation settlement (Sc) determined using SRSM are
shown in Figure 6.

In stochastic analysis, using RFEM, eigenvalues
and eigenfunctions of autocorrelation function are com-
puted first, and like SRSM, the first 6 terms of K-
L expansion are considered. The random field has
been generated 10,000 times, and the results are used
in original finite-element model to determine the Sc.

150 ¢

125 -

100 -

75 -

PDF

50 -

25 -

0: ! -
0.0120 0.0170 0.0220 0.0270 0.0320

Sc(m)

Figure 6. The histogram and PDF of Sc obtained using
SRSM.

150 +
125 |
100 -

75 -

PDF

50 -

0 L —
0.0270 0.0320

0.0120  0.0170

0.0220
Sc (m)

Figure 7. The histogram and PDF of Sc obtained using
RFEM.

The histogram and fitted PDF of the Sc determined
using RFEM are shown in Figure 7. For comparing
the determined PDF and Cumulative Distribution
Function (CDF) by two methods, they are plotted in
one figure. Figures 8 and 9 show the determined PDF
and CDF of two methods, respectively. These figures
show that the results of two methods are close to each
other; however, the computational time of the SRSM
is considerably less than RFEM.

By assuming the threshold value of footing center
settlement equal to 0.025 m and the required time of
two methods, the probability of system failure (Py)
is given in Table 2. It can be seen that the results
of SRSM are close to those of RFEM; however, the
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Figure 8. The PDF's of Sc obtained using SRSM and
RFEM.
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Figure 9. The CDFs of Sc obtained using SRSM and
RFEM.

consumed time in RFEM is at most 50 times longer
than that of SRSM.

In this study, the effect of autocorrelation length
on PDF of system is investigated. For this purpose, the
SRSM with less computational time is used. The PDFs
of system response for different values of autocorrela-
tion length and homogenous soil layer (I, = 00,1, = )
are shown in Figure 10.

This figure shows that as the autocorrelation

Table 2. Comparison of results of SRSM and RFEM.

Method nSe Osc P; (%) Time (hour)
SRSM 0.0213  0.0029 10.29 6.80
RFEM 0.0212 0.0029 10.04 360.5

140

sty
omogeneous ||

Iy
l(l,'
—
H

120

e

80

|

i

o
j/

PDF

40

TN

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045
Sc (m)

Figure 10. The PDFs of Sc for different values of
autocorrelation lengths obtained by SRSM.
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& /
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I~
10
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7

COV of £

Figure 11. P; for various COVs of E by assuming the
threshold value of Sc equal to 0.025 m.

lengths increase, the system response dispersion in-
creases too and the case of homogenous soil has
maximum dispersion. In this analysis, COVs of v and
FE are selected equal to 0.05 and 0.30, respectively.

The COV and Py of Sc for different values of
autocorrelation lengths are presented in Table 3. From
this table, it can be seen that in this example, both Py
and COV increase with an increase in autocorrelation
lengths, and Py and COV show the largest values for
homogenous soil.

Figures 11 and 12 summarize the variations of the
probability of failure with the coeflicient of variation of
E for both cases of ignoring and considering spatial
variation of stochastic parameters. These figures show
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Table 3. Py and COV of Sc for different values of autocorrelation lengths.

Parameter lo=20m, lo=25m, Il;=30m, Homogenous
ly=1m ly,=2m ly,=3m
Py (%) 10.29 16.18 19.07 24.7
(6100Y% 0.1345 0.1747 0.1986 0.2837
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—a&— Homogeneous
—&— [,=20,l,=1
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70

65
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-
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Figure 12. Py for various COVs of E by assuming the
threshold value of Sc equal to 0.02 m.

the results of two values of threshold footing center set-
tlement: 0.025 m (Figure 11) and 0.020 m (Figure 12).

This figure shows that the probability of failure
increases with increasing COV of E. Figure 11 shows
that for COVs of E smaller than 0.7, the predicted
Py of homogenous soil is greater than when spatial
variability is considered, whereas Figure 12 does not
show these results. Based on these figures, it can be
concluded that to have a correct result in stochastic
analysis, it is necessary to consider the spatial variabil-
ity of soil properties.

9. Conclusions

In this study, the reliability analysis of foundation
settlement by SRSM and RFEM was presented. For
this purpose, two finite-element programs were coded
by MATLAB based on two methods. The elastic soil
properties were considered as spatial random variables
and modeled as cross correlated log normal random
field. The results of two methods were compared
with each other, and it is observed that the results
of two methods are close to each other. In the
presented example, to reach the same result, in RFEM,
the deterministic numerical model must be run 104
times, while SRSM model must be run 106 times.
It is concluded that the SRSM is more time efficient

compared with RFEM, because in SRSM, MCS is
applied onto meta-model, whereas in RFEM, the MCS
is applied onto the original numerical model, which
is more time-consuming compared with meta-model.
The effect of autocorrelation length was investigated
by SRSM. It was shown that in stochastic analysis, to
have a correct result, it is necessary to consider the
spatial variability of soil properties.

The approximate real soil behavior, which in-
cludes hardening or softening, has not been considered
in this research. The authors suggest the following fu-
ture studies for further improvements on and extension
to the topic:

e Three-dimension analysis of foundation settlement
by SRSM.

e Stochastic analysis of differential settlement.

e Stochastic analysis of settlement problems with
seismic or dynamic loading.
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