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Abstract. This paper deals with a generalized multi-time-step integration used for
structural dynamic analysis. The proposed method presents three kinds of implicit schemes
in which the accelerations and velocities of the previous steps are utilized to integrate the
equations of motion. This procedure employs three groups of weighted factors calculated by
minimizing the numerical errors of displacement and velocity in Taylor series expansion.
Moreover, a comprehensive study on mathematical stability of the proposed technique,
which is performed based on the ampli�cation matrices, proves that the new method is
more stable than existing schemes such as IHOA. For numerical veri�cation, a wide range
of dynamic systems, including linear and nonlinear, single and multi degrees of freedom,
damped and undamped, as well as forced and free vibrations from �nite-element and �nite-
di�erence methods, are analyzed. These numerical studies demonstrate that e�ciency and
accuracy of the proposed method are higher than those of other techniques.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Numerical time integrations are widely used for struc-
tural dynamic analysis, especially in nonlinear cases,
due to di�culties in formulating the closed-form solu-
tion to di�erential equations of motion, which could be
written in the following form:

M �D + C _D + f = P; (1)

D(t=0) = D0; _D(t=0) = _D0: (2)

Here, M, C, f , and P are mass matrix, damping
matrix, internal and external forces vectors, respec-
tively. Also, D is the nodal displacement vector while
superimposed dots denote di�erential with respect to
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time. Moreover, D0 and _D0 are initial conditions for
displacement and velocity vectors at t = 0, respectively.
Numerical methods calculate the structural responses,
i.e. displacement, velocity, and acceleration vectors, in
small time increments, called time steps. In other
words, systematic time integrations are performed
for each increment until the time duration, which is
divided into �nite increments, is completed. These
methods may have three main concerns, i.e. stability,
accuracy, and simplicity. Based on such criteria,
numerical integrations could be classi�ed into three
groups: implicit, explicit, and predictor-corrector pro-
cedures. Accuracy and stability of implicit integrations
are higher than both explicit and predictor-corrector
schemes. In each time step of these methods, dynamic
equation of motion (Eq. (1)) is converted to a static
system by deriving equivalent sti�ness matrix and
equivalent external force vector of structure, i.e.:

SEQD = PEQ; (3)
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where SEQ and PEQ are equivalent sti�ness matrix
and equivalent load vector of dynamic analysis, re-
spectively. Running a statically analysis in each time
step would be a di�cult and time-consuming proce-
dure. Newmark-� method, Wilson-� scheme, HHT-
� procedure [1], WBZ-� integration [2], generalized-
� method [3], Newmark multi-time-step approach [4],
third-order time step integration [5], the Newmark
complex time step [6], the time weighted function pro-
cedure [7], the generalized single step integration [8],
the N?rsett time integration [9], the composite time
integration [10], the higher order acceleration func-
tion [11], the implicit integration based on conserving
energy and momentum [12], the Green function ap-
proach [13,14], the precise integration methods [15], the
IHOA [16], and the implicit integration combined with
the �nite-element method [17] are some of the implicit
integrations.

On the other hand, explicit procedures, run
completely by vector operations, are the most simple
time integrations. However, it is necessary to choose
very small time steps for guaranteeing stability and
improving accuracy of explicit methods. Some of the
explicit integrations are the generalized weighted resid-
ual approach [18], SSpj method [19], �m algorithm [20],
Ho�-Taylor approach [21], etc.

The predictor-corrector methods try to assemble
accuracy and stability of implicit integrations with
the simplicity of explicit techniques, simultaneously.
In these procedures, prediction and correction stages
are performed by explicit and implicit integrations,
respectively. Such a procedure improves stability
of explicit integrations and leads to a more simple
integration in comparison with implicit techniques.
Zhai's scheme [22] includes the modi�ed PC tech-
nique [23] and the PC � m integration [24] which
are some examples of the predictor-corrector meth-
ods.

It should be noted that by changing weighted
factors, many of the previous implicit integrations
have the ability to use as an explicit or predictor-
corrector scheme [16,25,26]. For example, the im-
plicit higher-order accuracy integration method (called
IHOA) presents the PC �m integration [24]. There-
fore, stability and accuracy of each predictor-corrector
integration directly depend on the speci�cations of
implicit method used. As a result, proposing an
implicit method with higher stability and accuracy
is a necessary condition for formulating an improved
predictor-corrector method. For this purpose, the
generalized implicit higher-order time integration is
proposed here. Accuracy and stability analyses are
performed based on Taylor series expansion and ampli-
�cation matrices, respectively. Finally, some linear and
nonlinear numerical dynamic analyses are performed to
verify the ability of the proposed integration.

2. The Generalized Implicit Higher Order
Accuracy (G-IHOA) integration

Numerical time integrations, called step-by-step meth-
ods, are utilized for solving Eq. (1), which is a time
di�erential equation. From a mathematical point of
view, the main concern may be creating continuity
between displacement's higher-order time derivatives
(third order, fourth order, etc.). The reason for
this subject is that the �rst and second orders of
displacement's time derivatives only exist in dynamic
equilibrium equation (Eq. (1)). In other words, there
is no relationship for controlling and checking higher-
order time derivatives continuity. This subject has a
considerable e�ect on stability and accuracy of numer-
ical integrations so that researchers can try to improve
this defect in two manners: utilizing higher-order time
derivatives of a single previous increment [27] and
proposing multi-time step schemes [28]. The �rst
approach could be used in single step time integrations;
however, it has some di�culties, especially in the
beginning of the process when higher-order derivatives
should be estimated [19,20]. The multi-time-step
integrations, which use information of several previous
time increments to integrate the current step, are
another way for satisfying the continuity of higher-
order time derivatives [16,22,24,28]. In spite of more
requirement memory, multi-time-step integrations are
more accurate and e�cient than single-step methods.
Here, a new multi-time-step integration, called Gen-
eralized Implicit Higher Order Accuracy, i.e. G-IHOA
method, is presented based on the idea of multi-time-
step integrations. The fundamental relationships of G-
IHOA are proposed as follows:

Dn+1 =Dn + �t
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where �0, �0, 
0, and �i; �i; 
i, i = 1; 2; :::;m � 1,
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are weighted factors which control the stability and
accuracy of the proposed G-IHOA method. Here, m is
an integration's order and superscript n means values
at the nth time step (time tn). Also, �t is time
step of numerical dynamic analysis. In this method,
displacement of the current time step is proposed as
a function of velocities and accelerations of several
previous increments (Eq. (4)). Moreover, accelerations
of the previous steps are used to formulate the current
velocity (Eq. (5)). In a special case, if �0 = �1 =
�2 = ::: = �m�1 = 0 , the above relationships
present IHOA integration [16]. Another interesting
version of G-IHOA is obtained when �0 = �1 =
�2 = ::: = �m�1 = 0. This version of G-IHOA is
called N-IHOA [29]. In N-IHOA method, displacement
and velocity of the current time step are assumed
functions of the velocities and accelerations of several
previous time steps, respectively [29]. As a result,
Eqs. (4) and (5) could present three kinds of implicit
time integration methods, i.e. IHOA, N-IHOA, and G-
IHOA. It should be noted that current paper deals
with speci�cations of G-IHOA, proposed here. All
formulations are performed based on the generalized
integration (G-IHOA), i.e. Eqs. (4) and (5). Then,
results could be summarized for IHOA and N-IHOA
by removing the corresponding sentences.

Assume that the integration procedure is at n +
1st step (the current increment). By substituting
Eq. (5) into Eq. (4), acceleration of the current step
is obtained:
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1
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Utilizing Eq. (6) in Eq. (5) gives:
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If Eqs. (6) and (7) are substituted into the dynamic
equilibrium equation (Eq. (1) with superscript n +
1), the equivalent sti�ness matrix and the equivalent
load vector of the proposed G-IHOA integration are
formulated as follows:

Sn+1
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1
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(8b)

By substituting both the equivalent sti�ness matrix
and the equivalent force vector (Eqs. (8a) and (8b)) into
Eq. (3) and solving a system of simultaneous equations,
displacement vector of the current time step (time
tn+1) is obtained. Then, acceleration and velocity
vectors of the n + 1th time step (current time step)
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could be calculated from Eqs. (6) and (7), respectively.
This procedure is iterated for next time steps until
required analysis time is completed.

If m > 1, the required data of the previous
increments is not available at the �rst time step (n =
1). To overcome this di�culty, the �rst increment could
be started by m = 1. At the end of this stage, two
equilibrium points (n and n � 1) will be available so
that the second time step of G-IHOA integration is
performed by m = 2. At this time, three dynamic
equilibrium points of the previous steps (n, n� 1, and
n � 2) exist and the next increment could be started
by m = 3. Brie
y, the integration's order increases one
unit by running each step from the starting increment
until it reaches the selected rank. In this technique,
the personal judgment does not have any e�ect on
the integration and the procedure could be performed
automatically.

It should be noted that the equivalent sti�ness
matrix and the equivalent force vector of N-IHOA
can be obtained by removing the corresponding sen-
tences' occurrences of parameters �0; �1; �2; :::�m�1
from Eqs. (8a) and (8b), respectively [29]:
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(9b)

Similar formulation has been performed for IHOA
method [16].

3. Accuracy analysis

Each numerical time integration deals with two con-
cerns: stability and accuracy. In this way, the most
common strategy suggests that the integration's pa-

rameters are calculated for the highest possible accu-
racy, and stability condition is controlled by limiting
time step size of dynamic analysis. On this base,
the weighted factors of G-IHOA are calculated for
maximum numerical accuracy. For accuracy order m,
there are 3 � m free parameters in displacement and
velocity relationships (Eqs. (4) and (5)). First, error
functions of displacement and velocity could be de�ned
as follows:

Rn+1
D = Dn+1 �Dn+1

Exact; (10)

Rn+1
V = _Dn+1 � _Dn+1

Exact; (11)

where Rn+1
D and Rn+1

V are displacement and velocity
residuals (errors) at time tn+1, respectively. Based
on Taylor series expansion, the exact solutions of
displacement (Dn+1

Exact) and velocity ( _Dn+1
Exact) are also

achieved:
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Here, Dkn shows the kth displacement's derivative at
the nth time increment. For using Eqs. (4) and (5)
in Eqs. (10) and (11), it is necessary to formulate
velocities and accelerations of several previous time
steps (n � 1, n � 2, etc.) as functions of the higher-
order derivatives of displacement at the nth increment.
For this propose, the inverse expansions of velocities
and accelerations give [16]:

_Dn�i =
1X
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(�1)k�tk

k!
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i = 1; 2; :::;m;
(14)
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k!
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i = 1; 2; :::;m:
(15)

A similar relationship could be written for the jth order
of displacement's derivative of some previous time steps
(n� ith):

Djn�i =
1X
k=0

(�1)k�tk

k!
Dj�kn�i+1

;

i = 1; 2; :::m j = 1; 2; :::;1: (16)

If Eqs. (14) to (16) are iterated successively, the
previous time steps' velocities and accelerations are
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formulated in terms of displacement�s derivatives at
time tn. For example, displacement and velocity
functions for the �rst, second, and third accuracy
orders of the G-IHOA (m = 1, 2 and 3) are obtained
as follows:
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From the mathematical point of view, the weighted
factors should be determined so that a good number

of derivatives/coe�cients are equalized to their corre-
sponding values in Taylor series expansion (Eqs. (12)
and (13)). It is clear that lower derivatives come before
higher ones. By running this approach for displacement
and velocity sentences, two linear systems of equations
are obtained for each accuracy order such as m:
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In these equations, (ZD)2m�2m and (ZV )m�m are
constant matrices, constructed based on derivatives
coe�cients of displacement and velocity relationships
in G-IHOA (e.g. Eqs. (17)-(22)). These matrices are
presented for the integration's orders 1, 2, and 3 in the
Appendix. By solving linear systems of Eqs. (23) and
(24), the optimum weighted factors of the proposed G-
IHOA integration are obtained. These linear systems
have been solved for accuracy orders between 0 and 6,
and the optimum values of weighted factors �, �, and

 are inserted in Tables 1, 2 and 3, respectively.

On the other hand, N-IHOA, which is a special
case of G-IHOA, could be obtained if �0 = �1 = �2 =
::: = �m�1 = 0 [29]. Here, Eq. (24) does not vary
because it does not depend on parameters �. However,
Eq. (23) reduces to the following system [29]:

Zm�m

8>>><>>>:
�0
�1
...

�m�1

9>>>=>>>; =

8>>>>><>>>>>:
1
2!

1
3!
...
1

(m+1)!

9>>>>>=>>>>>; : (25)

It should be noted that right sides of Eqs. (24) and
(25) are the same. Moreover, Zm�m is an m � m
matrix which is obtained by removing the correspond-
ing elements of parameters �0; �1; �2; :::; �m�1 from
(ZD)2m�2m. Applying this procedure to the given
sample matrices in the Appendix proves that:

Zm�m = (ZV )m�m: (26)

Therefore, Eqs. (24) and (25) are the same. As a result,
for N-IHOA integration, �0 = 
0 and �i = 
i i =
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Table 1. The optimum weighted factors of parameter � in G-IHOA integration.

m �0 �1 �2 �3 �4 �5

1 0.000000000
2 0.233333333 0.233333333
3 0.342559524 0.224107143 0.059226190
4 0.361454659 0.163492063 0.090281452 0.005799897
5 0.351354703 0.228075564 0.135189027 �0:03968894 �0:00700802
6 0.33598339 0.236380165 0.482802794 �0:11317112 �0:12107196 �0:00844023

Table 2. The optimum weighted factors of parameter � in G-IHOA integration.

m �0 �1 �2 �3 �4 �5

1 0.166666667
2 0.008333333 0.075000000
3 �0:032242060 0.171726190 0.015575397
4 �0:037792110 0.184821429 0.038150353 0.001184965
5 �0:035317520 0.222507566 �0:006281820 �0:026658010 �0:001631330
6 �0:031878690 0.422198960 �0:039551020 �0:218032110 �0:052557590 �0:001775370

Table 3. The optimum weighted factors of parameter 
 in G-IHOA and N-IHOA integrations.

m 
 
1 
2 
3 
4 
5

1 0.500000000
2 0.416666667 �0:083333333
3 0.375000000 �0:208333333 0.041666667
4 0.348611111 �0:366666667 0.147222222 �0:026388889
5 0.329861111 �0:554166667 0.334722222 �0:120138889 0.018750000
6 0.315591931 �0:768204365 0.62010582 �0:334176587 0.104365079 �0:014269180

1; 2; :::;m� 1, i.e. there is only one set of independent
weighted factors in N-IHOA integration [29]. The
weighted factors of N-IHOA method are inserted in
Table 3 [29].

The above discussion shows that if accuracy order
must be m, numbers of independent weighted factors
in the proposed G-IHOA, N-IHOA [29], and IHOA
[16] are 3 � m, m and 2 � m, respectively. Here, N-
IHOA integration has the least number of weighted
factors, which should be calculated and saved. These
subject cases' e�ects produce that N-IHOA method
needs less programming, memory and computational
e�orts compared with G-IHOA and IHOA schemes.

On the other hand, to compare the proposed G-
IHOA scheme with other multi-time-step integrations,
such as N-IHOA and IHOA, mathematical accuracy
order is de�ned as the �rst non-zero derivative's order
in residuals of displacement and velocity, i.e. Rn+1

D ,
and Rn+1

V . For integration's orderm, the mathematical
accuracy order of displacement in G-IHOA, N-IHOA,
and IHOA will be �t2m+2, �tm+2, and �tm+3, re-
spectively. On the other hand, all three integrations
present the velocity with the same accuracy order, i.e.
�tm+2. It is clear that displacement's accuracy of G-
IHOA is higher than both N-IHOA and IHOA methods
if m > 1. As a result, the proposed G-IHOA is more
accurate than N-IHOA and IHOA. When m = 1, G-
IHOA, N-IHOA, and IHOA have the same accuracy.

It should be noted that optimum weighted factors
of G-IHOA are unique for each accuracy order, and
they are not dependent on the problem speci�cation.

4. Stability conditions

The stability of IHOA method has been previously
studied based on the Routh-Hurwitz criterion [16].
This approach has a signi�cant limitation, i.e. it is
not able to verify the e�ect of structural damping
on stability. In other words, stability of IHOA has
been only obtained for undamped vibrations [16]. For
solving this defect, method of ampli�cation matrices
is utilized for studying the stability conditions of G-
IHOA, N-IHOA, and IHOA integrations [29]. It should
be noted that the most common approach to verifying
stability of step-by-step time integrations is performed
by constructing the ampli�cation matrix [30-32], de-
�ned for free vibration of a single degree of freedom
system:�

d
�t _d

�n+1

= A2�2

�
d

�t _d

�n
: (27)

Here, A2�2 is ampli�cation matrix. The numerical
integration will be stable if the highest spectral radius
of the ampli�cation matrix is less than 1:
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j�maxj < 1; (28)

where �max is the highest eigenvalue of A. For multi-
time-step integrations such as G-IHOA, N-IHOA, and
IHOA methods, Eq. (27) could be written as follows
[29]:�

d
�t _d

�n+1

=A0
�

d
�t _d

�n
+ A1

�
d

�t _d

�n�1

+ A2
�

d
�t _d

�n�2

+ :::

+ Am�1
�

d
�t _d

�n�(m�1)

: (29)

Because of using m previous time step to integrate the
current increment, there are m ampli�cation matrices
in G-IHOA, i.e. Aj j = 0; 1; 2; :::;m � 1. In other
words, each previous step (n; n�1:::n�j) has a speci�c
ampli�cation matrix. Therefore, G-IHOA is stable if
all eigenvalues of these ampli�cation matrices satisfy
condition (28), i.e.:

j�jmaxj < 1 j = 0; 1; 2; :::;m� 1; (30)

where �jmax is the highest eigenvalue of Aj . To produce
ampli�cation matrices of G-IHOA, accelerations should
be removed from Eqs. (4) and (5), and they are replaced
by displacements and velocities using the dynamic
equilibrium equation of free vibration of a single degree
of freedom system [29]:

�dn+1 = �!2dn+1 � 2�� _dn+1; (31)

where � is viscous damping ratio of structure [33].
By substituting Eq. (31) into Eqs. (4) and (5), the
ampli�cation matrices of G-IHOA are obtained as
follows:

A0
2�2 =h1

�
(1 + 2
0�
)

�
1�

�
1
2
� �0

�
m�1X
i=0

�i
�


2
�

+ (2�0�
� �0)
�

1� 
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�
m�1X
i=0


i
�


2 � (1 + �0
2)
�

1� 
0
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m�1X
i=0


i
�


2 � 
0
�

1�
�

1
2
� �0
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�i
�


2
�


2(1 + 2
0�
)
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(1� �0

�
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1
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��
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i)��
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2
�

2�2
; (32)

Aj
2�2 =h1

�
�(1 + 2
0�
)�i
2 + (2�0�
� �0)
i
2

� (1 + �0
2)
i
2 � 
0�i
4(1 + 2
0�
)(�i

� 2�i�
) + 2
i�
(2�0�
� �0)� 2
i�
(1

+ �0
2)� 
0(�i � 2�i�
)
2
�

2�2

j = 1; 2; :::;m� 1;

where 
 is natural frequency, i.e. 
 = !�t. In
addition, parameter h1 is de�ned as follows:

h1 =
1

1 + 2
0�
 + (�0 + �0
0)
2 : (33)

It should be noted that for studying the stability of
G-IHOA integration, the weighted factors, i.e. �, �,
and 
 in the above matrices are used from Tables 1,
2, and 3. Moreover, the N-IHOA has only one set
of independent weighted factors, and they are utilized
from Table 3 [29]. Running similar procedure for IHOA
leads to the following ampli�cation matrices:

A0
2�2 =h2
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�
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2
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� (
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2
�
� (1 + �0
2)
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(1�
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1� 2(
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�i)�

�

�2�0�

�

1� 2(1�
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; (34)

Aj
2�2 = h2

��(1 + 2�0�
)�j
2 + 2�0�j�
3

�0�j
4 � (1 + �0
2)�j
2

�2(1 + 2�0�
)�j�
 + 4�0�j�2
2

2�0�j�
3 � 2(1 + �0
2)�j�


�
2�2

j = 1; 2; :::;m� 1

where parameter h2 is de�ned as follows:

h2 =
1

1 + 2�0�
 + �0
2 : (35)

In these relationships, � and � are weighted factors
of IHOA, and these values are employed from the
reference paper [16].

Finally, Figures 1 to 4 show the maximum spectral
radii of G-IHOA, N-IHOA, and IHOA integrations
for di�erent accuracy orders and various damping
ratios which are calculated from the corresponding
ampli�cation matrices. From Figure 1, it is concluded
that in undamped vibrations, all accuracy orders of
N-IHOA and IHOA are unstable except m = 1. In
this case, the �rst order of N-IHOA is unconditionally
stable; however, the �rst order of IHOA is stable only
for 
 � 3:464. On the other hand, all orders of G-
IHOA are conditionally stable so that they can provide
wide range of stability for undamped vibrations. As a
result, the proposed G-IHOA creates suitable stability
bounds for dynamic analysis of common structures,
which have low damping (� ! 0:0, i.e. under-damped
systems). Moreover, stability conditions of accuracy
orders 2, 3, 4 and 5 of the proposed G-IHOA integration
are approximately the same for � < 0:2 (under-damped
structures). This subject helps to utilize higher orders
of the proposed integration which have higher accuracy
without any concern about the numerical instability.

By increasing damping ratio, the stability bounds
of G-IHOA decrease; however, the stability domain of

Figure 1. The maximum spectral radii of (a) G-IHOA,
(b) N-IHOA, and (c) IHOA methods for � = 0:0.

N-IHOA increases so that the most suitable stability
condition for a system with critical damping (� = 1:0)
is provided by N-IHOA integration (Figure 3). As
a result, G-IHOA and N-IHOA methods will be the
most stable and e�cient approaches for low and high
damping models, respectively.

For better clari�cation of the above conclusions,
the critical time steps of G-IHOA, N-IHOA, and IHOA
methods are inserted in Table 4 for di�erent damping
ratios. It is clear that the proposed G-IHOA method
always provides suitable domain for stability; however,
IHOA and N-IHOA are unstable for some conditions.

Like the IHOA method, in G-IHOA and N-IHOA
formulation, the time step is assumed constant. If time
step is variable, weighted factors should be recomputed
which is a complicated and time-consuming procedure.
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Figure 2. The maximum spectral radii of (a) G-IHOA,
(b) N-IHOA, and (c) IHOA methods for � = 0:05.

Using weighted factors of Tables 1 to 3 in the case of
variable time steps causes some instability which may
have minor e�ect on the overall response.

5. Numerical examples and discussion

In the previous sections, it was proved mathematically
that the proposed G-IHOA integration is more accurate
and stable compared with both N-IHOA and IHOA
methods. Now, these conclusions should be veri�ed
numerically. Here, G-IHOA algorithm is utilized for
analyzing some dynamic systems. For this purpose, a
computer program using Fortran Power Station soft-
ware (version 4) has been written by the author. Some
benchmark problems, with available exact solutions,
are solved to verify the validity of computer's program
and numerical method. Then, a wide range of dynamic
systems, such as linear and nonlinear, single and multi

Figure 3. The maximum spectral radii of (a) G-IHOA,
(b) N-IHOA, and (c) IHOA methods for � = 1:0.

degree of freedom, damped and un-damped, free, and
forced from �nite element and �nite di�erence, are
used to compare the proposed integrations with other
existing methods. For this purpose, results of G-IHOA
(GI) are compared with those of some well-known
methods such as the Newmark Linear Acceleration
approach (LA), the Wilson-� (WT), the trapezoidal
method (CA), the N-IHOA scheme (NI), and the IHOA
technique (IH).

It should be noted that in nonlinear dynamic
analyses, system of Eq. (3) will be nonlinear. Here,
kinetic Dynamic Relaxation (DR) method is employed
to solve nonlinear system of Eq. (3) in each time
step [34]. Simplicity, vector operators, and higher
e�ciency in nonlinear systems are other advantages
of DR method [34,35]. As described in the recent
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Figure 4. The maximum spectral radii of (a) G-IHOA,
(b) N-IHOA, and (c) IHOA methods for � = 1:1.

papers, this method has been successfully combined
with implicit time integrations so that it can cause a
considerable reduction in numerical errors [34,36].

5.1. The linear single degree of freedom system
The �rst example deals with vibrations of a single de-
gree of freedom system excited by a harmonic load [33]:

�d+ 2� _d+ 4�2d = 100 sin(2��);

d(0) = 0:0 _d(0) = 0:0: (36)

The exact solution is calculated by elementary struc-
tural dynamics theories [33]. This system is analyzed
in two cases, i.e. undamped (� = 0:0) and damped
(� = 0:2) conditions. Because the natural period of
this vibration is 1.0 s, the analysis is performed by
time step of 0.2 s. Figures 5 to 7 show the numerical

Figure 5. The response of the undamped SDOF system
with the �rst order integrations.

Figure 6. The response of the undamped SDOF system
with the third order integrations.

Figure 7. The response of the undamped SDOF system
with the �fth order integrations.

responses of undamped analysis achieved by various
accuracy orders. In addition, the results of damped
system are plotted in Figures 8 and 9. These �gures
clearly demonstrate that by the same integration's
order, accuracy of the proposed G-IHOA integration is
higher than those of both N-IHOA and IHOA methods.
This higher accuracy could be seen in both damped and
undamped conditions. Therefore, G-IHOA has suitable
e�ciency in both damped and undamped dynamic
systems.

5.2. The elasto-plastic oscillator
The governing equation of a nonlinear vibration with
elasto-plastic behavior is considered as follows [37]:
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Table 4. The critical time steps for IHOA, N-IHOA, and G-IHOA integrations.

Critical time step
Damping ratio (�) Integration method m = 1 m = 2 m = 3 m =4 m = 5 m = 6

0.00 IHOA 3.464 0.000 0.000 0.000 0.000 0.000
N-IHOA 1 0.000 0.000 0.000 0.000 0.000
G-IHOA 3.464 2.322 2.323 2.402 2.268 1.699

0.05 IHOA 3.464 0.866 0.552 0.442 0.385 0.349
N-IHOA 1 0.399 0.239 0.182 0.151 0.131
G-IHOA 3.464 2.288 2.267 2.324 2.183 1.863

0.10 IHOA 3.464 1.733 1.105 0.885 0.771 0.699
N-IHOA 1 0.799 0.479 0.364 0.302 0.262
G-IHOA 3.464 2.255 2.213 2.249 2.103 1.836

0.20 IHOA 3.464 3.177 2.210 1.771 1.542 1.399
N-IHOA 1 1.599 0.959 0.729 0.605 0.525
G-IHOA 3.464 2.191 2.109 2.106 1.952 1.704

1.00 IHOA 3.464 2.274 1.784 1.504 1.319 0.879
N-IHOA 1 1 1 3.645 3.025 2.209
G-IHOA 3.464 1.744 1.456 1.293 1.134 0.987

1.10 IHOA 3.464 2.186 1.682 1.404 1.223 0.824
N-IHOA 1 1 3.080 2.339 1.941 1.417
G-IHOA 3.464 1.696 1.395 1.225 1.069 0.930

Figure 8. The response of the damped SDOF system
with the �rst order integrations.

Figure 9. The response of the damped SDOF system
with the �fth order integrations.

�d+ f(d) = 0;

d(0) = 0:0 _d(0) = 25: (37)

Here, the internal force, i.e. f(d), is an elastic-plastic
function of displacement:

f(d) =

8><>:100d jdj � 2:0
200 d > 2:0
�200 d < �2:0

(38)

Since the period of the vibration is 0.6729 s, the
numerical analyses are run with time step as 0.06729 s.
Figure 10, which shows the response of this nonlin-
ear dynamic system, clearly demonstrates that GI
method is more accurate than common approaches.
In addition, by increasing the order of GI integration,
the result's accuracy increases. On the other hand,
Figures 11 and 12, which compare G-IHOA method
with IHOA and N-IHOA integrations, show that by the
same integration's order, G-IHOA method has more
accuracy than both N-IHOA and IHOA techniques.

5.3. Two-bar pendulum
Figure 13 shows the pendulum formed by two bars
hinged at each three ends. This system could be
modeled by two truss elements, which have large
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Figure 10. The response of the elasto-plastic system with
time step of 0.06729 s.

Figure 11. The response of the elasto-plastic system with
the �rst order integrations.

Figure 12. The response of the elasto-plastic system with
the �fth order integrations.

de
ection nonlinearity, modeled by the total Lagrange
�nite-element method [38]. Moreover, the mass matrix
is consistent, [39] and the axial rigidity (AE) and
material density per element length (�A) are 104 N
and 6.57 kg/m, respectively. An initial velocity as 7.72
m/s at its free end excites this system. For numerical
analysis, a time step of 0.05 s is used. This high time
step causes numerical instability in all of integrations
except LA, IH1, GI1, GI2, and GI5. Figure 14 shows
the vertical vibrations of the free end of the pendulum
using time step 0.05 s, obtained by the stable methods
(LA, IH1, GI1, GI2, and GI5). This example shows
that G-IHOA integration provides more stable and
accurate conditions for nonlinear structural dynamics

Figure 13. The two-bar elastic pendulum.

Figure 14. The vertical vibration of the free end of the
pendulum with time step of 0.05 s.

in comparison with IHOA and N-IHOA. Another
important point is the unique e�ciency of GI5
method, which presents the exact solution by a high
time step of 0.05 s. If this system is analyzed using a
time step of 0.1 s, numerical errors grow dramatically,
such that no integration methods could not come close
to the answer, i.e. instability occurs in all numerical
schemes. It should be noted that by reducing time
step to 0.025 s, the proposed method with orders 1-5
(GI1, 2...5) would be stable; however, the integrations,
such as IH2, NI2, and NI3, are still unstable.

5.4. Truss 
oor
Figure 15 shows a section of a 
oor covered by 2-D
steel truss. Dynamic analysis of this truss under the
impact, which is caused by the failure of the above

oor, is the main goal of this example. For this
purpose, the external forces, statically applied to the
top node of truss, model the dead loads of the 
oor
such as concrete slab and ceilings. Using these loads
and running a static analysis, the deformed truss con-
�guration is obtained (initial conditions for dynamic
analysis). Now, the truss is subjected to an impact
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Figure 15. The truss 
oor.

Figure 16. The vertical exact vibration of the upper
central node of the truss 
oor.

that simulates the crashing of the above 
oor, i.e. the
initial velocities of the upper seat nodes are assumed 10
m/s. Therefore, the analytical model is the undamped
free vibration of the deformed truss under the initial
velocities, which are calculated by the numerical time
integrations. In these analyses, consistent mass matrix
is constructed based on the truss element mass ma-
trix [39]. Moreover, nonlinear elastic large de
ection
assumptions are used to construct the truss sti�ness
matrix [38]. For considering the e�ect of additional
masses (
oors, slabs, ceiling, etc.), the mass density
of each element is assumed two times the density of
steel, i.e. 15600 kg/m3. Moreover, the modulus of
elasticity of steel is 2:0e10 N/m2, respectively. The
exact vertical vibration of the central upper node is
plotted in Figure 16, using small time step, i.e. 1:0e�6
s, in a higher order time integration [10]. Since the
lowest truss period is 0.00236 s, time step of dynamic
analysis is selected 0.00075 s. Using this time step
causes numerical instability for all integrations except
CA, LA, IH1, NI1, GI1, and GI5. Figure 17 shows
vertical response of the upper central node, obtained
from stable methods between times 1.9 s and 2.0 s.
Like the previous example, the proposed GI5 is more
accurate than other methods.

5.5. The frame building under the base
excitation

The concrete building frame of Figure 18 [40] is excited
by the El Centro base acceleration. This structure has
elastic large de
ection nonlinearity, which is modeled
by the co-rotational �nite-element method [38]. The
cross-section and the moment of area of beams and

Figure 17. The vertical vibration of the upper central
node of the truss 
oor with time step of 0.00075 s between
1.9-2.0 s.

Figure 18. The portal frame under the base excitation.

columns are 0.40 m2, 0.03333 m4, 0.64 m2, and
0.03413 m4, respectively. In order to construct the
consistent mass matrix of each beam and column of
frame [39], the mass density of concrete is assumed 2500
kg/m3. This structure is analyzed when the damping
factor of the �rst, second, and third vibration modes
are 10%, 5%, and 3%, respectively [33]. Figure 19
shows the quasi-exact response of the horizontal dis-
placement of the top of the frame. As the lowest time
period is 0.003313 s, the time step of numerical analysis
is selected as 0.001 s. Using this time step causes CA,
LA, IH1, NI1, GI1, and GI5 integrations to present
the quasi-exact vibration (Figure 19). Therefore, the
�fth order of the proposed integration (GI5) is more
accurate than IH5 and NI5 methods. Consequently, in
the same order and time step, G-IHOA is more accurate
than IHOA and N-IHOA. It should be noted that by
reducing time step to 0.0008 s, some other methods,
such as IH4, IH5, and GI4, also present the exact
solution.
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Figure 19. The horizontal exact vibration of the top of
the portal frame.

5.6. Euler beam
Here, Euler beam's theory is utilized for dynamic
analysis of a simply supported beam, which has the
following governing equation of motion [4]:

�A
@2d
@t2

+
@2

@x2

�
E1

@2d
@x2

�
= p(x;t): (39)

The boundary conditions of simply supported Euler
beam give:

d(0;t) = 0; EI
@2D
@x2 jx=0 = 0;

d(L;t) = 0; EI
@2D
@x2 jx=L = 0: (40)

This structure is analyzed under the external harmonic
load applied to the mid-span of the beam with zero
initial conditions as follows:

p(0:5L;t) = 88:968 sin(30:0t)N: (41)

The length of beam, the material density, the modulus
of elasticity, the cross-section, and the moment of area
are 0.508 m, 2768 kg/m3, 6:897� 1010 N/m2, 6:4516�
10�4 m2, and 3:4686 � 10�8 m4, respectively. There
are di�erent methods for modelling and formulating the
dynamic equilibrium equations. The Finite-di�erence
technique is one of these methods which could directly
use for dynamic modelling of systems. Studying the
e�ciency of time integrations in problems modeled
by �nite-di�erence approach is the main goal of this
section. Therefore, the �nite-di�erences approach is
utilized to obtain the dynamic equilibrium equations
of the Euler beam. By using one-dimensional mesh
and central �nite di�erences method, the dynamic

Figure 20. The exact vibration of the central
displacement of Euler beam.

equilibrium equation for the ith node of mesh is as
follows:

�A
@2di
@t2

+ EI
di+2 � 4di+1 + 6di � 4di�1 + di�2

(�x)4

= p(xi;t): (42)

Here, �x is the distance between mesh nodes, assumed
constant. Here, a mesh with eleven nodes (�x =
0:0508 m) is considered. All boundary conditions
are also expressed by the central �nite di�erences
method. As a result, a linear system of dynamic
equations is obtained. At this stage, numerical time
integrations are used to calculate the time response
of beam. Figure 20 shows the quasi-exact vibration
of the central displacement of beam, achieved by very
small time step, i.e. 5e-6 s. The minimum period of the
beam is 0.00223 s. In this example, the highest time
step for obtaining the exact vibration of the beam is
determined. Results, inserted in Table 5, show that
for the same integration's order, the proposed G-IHOA
method is more accurate than IHOA and N-IHOA. For
example, the maximum time steps of GI5, IH5, and NI5
for converging to the quasi-exact vibration are 0.0007,
0.0005, and 0.00045 s, respectively. In other words, G-
IHOA could present the exact vibrations by larger time
step that reduces the computational time. This subject
could also be clearly recognized for other accuracy
orders (Table 5). Moreover, this example shows that
the proposed time integration could be successfully
used for dynamic analysis of systems modeled by �nite
di�erences method.

6. Conclusion

The generalized implicit multi-time-step integration

Table 5. The highest possible time step for obtaining the exact vibration of the Euler beam.

Integration
method

CA, LA,
IH1, GI1

NI1,
GI5

IH5 NI5 IH4, NI4,
GI4

GI3 IH3 NI3,
GI2

IH2,
NI2

�tmax (s) 0.00075 0.00070 0.00050 0.00045 0.00040 0.00025 0.00020 0.00015 0.00010
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was proposed here for the numerical dynamic analysis.
This formulation led to two new kinds of integrations
called the G-IHOA and the N-IHOA. Based on using
the accelerations and velocities of some previous steps,
the G-IHOA has three groups of integration's parame-
ters and the N-IHOA has only one set of independent
weighted factors. The numerical values of these param-
eters were calculated from the minimization of the dis-
placement and velocity's residuals in the Taylor series.
This procedure proved that the displacement accuracy
order of the proposed G-IHOA (�t2m+2) is higher than
those of IHOA (�tm+3) and N-IHOA (�tm+2). In ad-
dition, the mathematical stability analysis, performed
based on the ampli�cation matrices, demonstrated that
the G-IHOA method always provides suitable stability
domain so that it is not unstable in any condition. For
undamped vibrations, the higher orders of both IHOA
and N-IHOA (m > 1) will be unstable; however, the
higher orders of the G-IHOA integration are stable.
Moreover, the stability analysis clari�ed that another
proposed integration (N-IHOA) is more suitable for
high damping system. On the other hand, a wide range
of numerical studies (single/multi degrees of freedom,
damped/un-damped, free/forced vibrations from �nite
element/�nite di�erence) demonstrate that by the
same accuracy order and time step, the accuracy of the
proposed G-IHOA method is higher than those of other
existing techniques like the IHOA integration. This
subject can be clearly concluded from all examples.
Therefore, the e�ciency and accuracy of the G-IHOA
do not depend on the structural speci�cations such as
number of degrees of freedom, type of loading, struc-
tural behavior (linear/nonlinear, damped/undamped),
etc. Unique numerical accuracy and suitable e�ciency
and stability of the �fth order of the proposed G-IHOA
method, i.e. GI5, is another important point, outlined
by these examples.
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Appendix

Matrices [ZD] and [ZV ] for the integration's orders 1,
2, and 3:

[ZD] =
�

1 0
0:5 1

�
[ZV ] = [1] m = 1; (A.1)

[ZD] =

2664 1 �1 0 0
0:5 0:5 1 �1

0:1667 �0:1667 0:5 0:5
0:0417 0:0417 0:1667 �0:1667

3775 ;
[ZV ] =

�
1 �1

0:5 0:5

�
m = 2; (A.2)
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[ZD] =

26666664
1 �1 �2

0:5 0:5 2
0:1667 �0:1667 �1:3333
0:0417 0:0417 0:6667
0:0083 �0:0083 �0:2667
0:0014 0:0014 0:0889

0 0 0
1 �1 �2

0:5 0:5 2
0:1667 �0:1667 �1:3333
0:0417 0:0417 0:6667
0:0083 �0:0083 �0:2667

37777775 ;

[ZV ] =

24 1 �1 �2
0:5 0:5 2

0:1667 �0:1667 �1:3333

35 m = 2:
(A.3)
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