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Abstract. A new family of one-step integration methods is presented herein. A free
parameter is used to control the numerical properties and it can be considered as an
indicator of numerical dissipation for the high-frequency modes. This family of methods
can have unconditional stability, explicit formulation, and desired numerical damping,
which implies that the low-frequency modes can be accurately integrated while the spurious
growth of high-frequency modes can be suppressed or even eliminated. In addition, a zero
damping ratio can be achieved. Since the unconditional stability and explicit formulation
are integrated for the proposed method family, it can drastically reduce the computational
e�orts when compared with the traditional integration methods.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Many dissipative integration methods have been pro-
posed for structural dynamics, such as the Houbolt
method [1], Newmark method [2], Wilson-� method [3],
HHT-� method [4], WBZ-� method [5], generalized-�
method [6], Bathe method [7], Zhou and Tamma meth-
ods [8-9], Rezaiee-Pajand and Alamatian method [10],
Gholampour and Ghassemieh method [11], and quartic
B-spline method [12]. All these integration methods
are implicit and, thus, they will involve an integration
procedure for each time step in conducting time inte-
gration. It is well recognized that the nonlinear itera-
tions for each time step will cost many computational
e�orts. On the other hand, if an integration method is
explicit [2,10,13,14], it has conditional stability; thus,
a very small time-step size may be required to satisfy
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the upper stability limit. Consequently, it will be
very promising if these dissipative integration methods
can be enhanced with an explicit formulation for
implementation. The structure-dependent integration
method was �rst developed by Chang in 2002 [15].
Some integration methods of this type were also
successfully developed by Chang [16-22] subsequently.
These structure-dependent integration methods can
simultaneously integrate the major advantages of the
implicit and explicit algorithms, i.e. the unconditional
stability of implicit algorithms and no nonlinear itera-
tions of explicit algorithms. However, they possess no
numerical dissipation.

It is valuable to propose an integration method
that possesses the desired numerical properties, which
are unconditional stability, second-order accuracy, ex-
plicit formulation, and favorable numerical dissipation.
Two family methods [20,23] have been developed for
this purpose. However, they are two-step methods and,
thus, a distinct starting procedure is generally needed
for practical applications. Both family methods are
expressed by the three parameters �, �, and  and
their numerical properties are dominated by these three
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parameters. In this work, a new family method is
proposed. This family method is a one-step method
and, thus, it is self-starting. In addition, its numerical
properties are controlled by a free parameter, p, which
can be considered as an indicator variable for numerical
dissipation. The numerical properties of this family
method are evaluated herein and some numerical ex-
amples are examined to con�rm the analytical results.

2. Proposed family method

In structural dynamics or earthquake engineering, the
equation of motion of the discrete model can be
expressed by a set of second-order ordinary di�erential
equations as:

m�u+ c _u+ ku = f; (1)

where m, c, k, and f are the mass, viscous damping
coe�cient, sti�ness, and external force, respectively;
and u, _u, and �u are the displacement, velocity, and
acceleration, respectively. This equation can be solved
by many available step-by-step integration methods.
A new family method is also proposed for solving
this equation of motion. In order to develop the
new family method, some basic assumptions are made
for this development. Since the structure-dependent
di�erence equation for displacement increment plays a
key role to integrate the unconditional stability and
explicit formulation, it is adopted. In addition, this
di�erence equation is assumed to be a function of data
of the previous step only since a one-step method is
supposed to be developed. On the other hand, an
asymptotic form of the equation of motion is assumed
since it has been applied to develop some dissipative
integration methods such as HHT-� method and WBZ-
� method. As a result, the proposed family method can
be expressed as:

2
p+ 1

mai+1 +
p� 1
p+ 1

mai + cvi+1 + ki+1di+1

= fi+1;

di+1 = di �B1
2
i di +B2(�t)vi +B3(�t)2ai;

vi+1 =vi +
3p� 1

2(p+ 1)
(�t)ai

� p� 3
2(p+ 1)

(�t)ai+1; (2)

where di, vi, ai, and fi are the nodal displacement,
velocity, acceleration, and external force at the ith time
step, respectively; �t is step size and ki is the sti�ness
at the end of the ith time step. In addition, 
i =
!i(�t); and !i =

p
ki=m is the natural frequency of

the system at the end of the ith time step, ki. Notice
that cvi+1 + ki+1di+1 in the �rst line of Eq. (2) can
be rewritten as N(vi+1; di+1) for a general nonlinear
system [24]. The coe�cients B1 to B3 are:
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where:
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2

p+ 1
+

3� p
p+ 1

�
0 +
�

1
p+ 1

�2


2
0; (4)

where � is a viscous damping ratio; 
0 = !0(�t); and
!0 =

p
k0=m is the natural frequency of the system

determined from the initial sti�ness of k0. Notice that

i = 
0 and !i = !0 are found for i = 1; 2; 3; :::
for a linear elastic system. The development details
of this method are similar to those of the previously
published algorithms [17,18] and, thus, they will not
be elaborated on herein. In this derivation, the proof
of convergence must be conducted �rst. Hence, the
requirements of the order of accuracy and uncondi-
tional stability of the proposed family method are used
to determine the coe�cients B1 to B3 appropriately.
This work is very complicated. The order of accuracy
is determined from the local truncation error of the
proposed family method. On the other hand, the
procedure given by Lambert [25] and then invoking the
Routh-Hurwitz criterion can be applied to determine
the unconditional stability. Notice that p is the free
parameter to govern the numerical properties. It will
be shown later that p can be considered as the spectral
radius of the proposed family method in the limit

0 !1 for a linear elastic system.

For computational e�ciency, it is very important
to rewrite �
0 and 
2

0 in terms of the initial structural
properties and step size for a structure-dependent
integration method. Thus, based on the theory of
structural dynamics, the relations 
2

0 = (�t)2(k0=m)
and c0 = 2�!0m can be obtained as it is assumed that
viscous damping ratio, c0, is determined from the initial
structural properties. After substituting these relations
into Eqs. (3) and (4), they become:

B1 =
1
D

1
(p+ 1)2m;
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(5)

Notice that the coe�cients B1, B2, and B3 depend only
on the initial properties of the structure and step size.
Hence, they will remain invariant and, thus, there is
no need to re-compute these coe�cients during a whole
step-by-step integration procedure.

3. Recursive matrix form

Since the numerical properties of PFM can be derived
from the characteristic equation of its ampli�cation
matrix, it is needed to rewrite Eq. (2) in a recursive
matrix form. Thus, the use of PFM to obtain the free
vibration in a system with single degree of freedom can
be expressed in the following form:

Xi+1 = AXi = A(i+1)X0; (6)

where Xi+1 =
�
di+1; (�t)vi+1; (�t)2ai+1

�T is de�ned
and A is an ampli�cation matrix. Notice that the
vector X0 is in correspondence with the given initial
conditions d0 and v0. The initial acceleration can be
determined by a0 = (f0 � cv0 � kd0)=m. The explicit
expression of the ampli�cation matrix A for a linear
elastic system is found as shown in Box I, where B is
further de�ned as:

B =
2

p+ 1
+

3� p
p+ 1

�
0: (8)

Thus, the characteristic equation of the ampli�cation
matrix, A, can be obtained from jA � �Ij = 0 and is
found to be:

�3 �A1�2 +A2��A3 = 0; (9)

where � is an eigenvalue of the ampli�cation matrix A
and the coe�cients A1, A2, and A3 are found to be:

A1 = �2p+
3p+ 5

(p+ 1)D
+

2(2� p)
D

�
0;

A2 =� p+ 2 +
(�p2 + 2p� 5)
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0
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(p� 1)(p+ 2)

(p+ 1)2D

2

0;

A3 = � (p� 1)
(p+ 1)D

: (10)

Notice that the characteristic equation can be applied
to evaluate the numerical properties of PFM.

4. Convergence

The convergence of a computational method is implied
by the consistency and the stability based on the Lax
equivalence theorem [24]. In general, the consistency
is de�ned by a qualitative measure, such as the order
of accuracy, which can be directly determined from the
local truncation error. In general, an algorithm is said
to be convergent if it is both consistent and stable.

4.1. Consistency and local truncation error
A local truncation error is de�ned as the error com-
mitted in each time step by replacing the di�erential
equation with its corresponding di�erence equation
[26-28]. The approximating di�erence equation for
PFM can be obtained from Eq. (6) after eliminating
velocities and accelerations and is found to be:

di+1 �A1di +A2di�1 �A1di�2 = 0: (11)

Consequently, after replacing Eq. (1) by Eq. (11), the
local truncation error for PFM is:
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1

(�t)2

�
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�A3u(t� 2�t)
�
: (12)

In addition, if u(t) is assumed to be continuously
di�erentiable up to any required order, the terms of
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Box I
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u(t+�t), u(t��t), and u(t�2�t) can be expanded into
�nite Taylor series at t. As a result, after substituting
A1, A2, and A3 into the result of Eq. (11), the local
truncation error for PFM is found to be:

Ei+1 =� 
2
0!2

0
12(p+ 1)2D

��
4(p+ 1)(5p� 7)�2

� (p2 + 2p� 7)
�
ui + 4

�
2(p+ 1)(5p� 7)�2

� 3(p2 � 3)
�
ui
�

+O
�
(�t)3� ;

(13)

for a linear elastic system. This equation reveals
that PFM has the minimum order of accuracy of 2 if
Rayleigh damping is adopted and, thus, its consistency
is veri�ed for any values of p and any viscous damping
ratio �.

4.2. Stability
The stability analysis of PFM is very di�cult by using
an algebraic method. This is because it has three non-
zero eigenvalues due to A3 6= 0. Alternatively, the
stability conditions will �rst be considered for the two
especial cases of 
0 ! 0 and 
0 ! 1 and, then,
a general value of 
0 is studied. After �nding the
coe�cients A1; A2; and A3 for the case of 
0 ! 0,
Eq. (9) becomes:

(�� 1)2
�
�+

p� 1
2

�
= 0: (14)

This equation reveals that PFM has two principal roots
of �1;2 = 1 in addition to a spurious root of �3 = �(p�
1)=2. Apparently, these eigenvalues are independent of
�. To satisfy the stability condition, the value of �3
must be in the interval of �1 � �3 � 1. As a result,
�1 � p � 3 is obtained. Similarly, in the limit of

0 !1, Eq. (9) is reduced to:

�(�+ p)2 = 0; (15)

where two principal roots are �1;2 = �p and the
spurious root is �3 = 0. This implies that �1 < p � 1
must be met for any viscous damping (p cannot be �1
because p = �1 leads some factor to be in�nity).

After obtaining the range of �1 < p � 1 for PFM
to have unconditional stability in the limiting cases of

0 ! 0 and 
0 ! 1, it is needed to further con�rm
that if the same range is applicable to a general value of

0. This can be evaluated by using the Routh-Hurwitz
criterion, which gives necessary and su�cient condition
for the roots of Eq. (9) to lie within or on the circle of

j�j = 1 if the following inequalities are satis�ed:

1�A1 +A2 �A3 � 0; 3�A1 �A2 + 3A3 � 0;

3 +A1 �A2 � 3A3 � 0; 1 +A1 +A2 +A3 � 0;

1�A2 +A3(A1 �A3) � 0: (16)

After substituting Eq. (10) into Eq. (16), it is found
that all the �ve inequalities will be met if �1 < p � 1
holds; this proves the stability of PFM. This stable
property in conjunction with the previous proof of
consistency implies the convergence of PFM.

5. Numerical properties

It is generally recognized that the spectral radius,
relative period error, numerical damping, and over-
shooting are the numerical properties of PFM, which
will be further investigated herein. The techniques
for evaluating these numerical properties can be found
in the references [26,28,29] and, thus, will not be
elaborated on here.

5.1. Spectral radius
The variations of spectral radii with �t=T0, where T0 =
2�=!0, are shown in Figure 1 for p = 1:0; 0:5; 0;�0:5,
and �0:99. The spectral radius is the maximum
absolute eigenvalue of the ampli�cation matrix. For a
small value of �t=T0, the spectral radius is almost equal
to 1.0 for each curve; while, for a larger value of �t=T0,
it decreases gradually and tends to a certain value.
Notice that it is always equal to 1.0 for p = 1. This
means that PFM can have zero damping for p = 1. At
�rst glance, it seems that the value of p can be chosen
to be either in the range of �1 < p � 0 or 0 � p � 1
since both ranges can provide appropriate numerical
damping. However, it is worth noting that the curve
for p = �0:5 shows an abrupt change of slope at the
point (0.24, 0.62) as shown in Figure 1. This point
might be a bifurcation point, where complex conjugate
roots bifurcate into real roots.

Figure 1. Variations of spectral radius with �t=T0 for
PFM.



S.-Y. Chang et al./Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2307{2319 2311

Figure 2. Principal roots of PFM with p = �0:5.

In order to clarify the di�erence between the
ranges of �1 < p � 0 and 0 � p � 1 with respect to
period distortion, the eigenvalues of PFM for the case
of p = �0:5 are calculated and plotted in Figure 2.
It is evident that the imaginary part of each principal
root will become zero after the value of �t=T0 grows
greater than around 0.67, as marked by a solid circle in
the �gure. This con�rms that the complex conjugate
roots bifurcate into real roots at this bifurcation point.
In general, the two real roots imply that the obtained
response is in an exponential decay form and there is
no bounded oscillatory response, which is generally pre-
ferred for an integration method. Further calculations
reveal that a bifurcation point is generally found in
the range of �1 < p < 0, which is of no interest for
practical applications. Accordingly, the following study
will focus on the range of 0 � p � 1 for PFM.

5.2. Relative period error
Figure 3 illustrates the relative period error of ( �T0 �
T0)=T0 against �t=T0 for p = 1:0; 0:75, 0.75, and
0.0. In addition, the results for the HHT-� method
and WBZ-� method are also plotted in this �gure
for comparison. In general, the relative period error

Figure 3. Variations of relative period error with �t=T0

for PFM.

increases with increase in �t=T0 for each curve. It
is interesting to note that the curve of PFM with
p = 1 almost coincides with that of HHT and WBZ
as � = 0. This phenomenon is likely to be found for
PFM with p = 0:75, HHT with � = � 1

6 , and WBZ with
� = �0:143. Although the curve of PFM with p = 0
seems to overlap with that of WBZ with � = �0:333,
both methods show more period distortion than that
of HHT with � = � 1

3 . However, the di�erence in
period distortion among the three family methods is
not very signi�cant for a small value of �t=T0, say
�t=T0 � 0:05.

It is found that a large value of p will lead to a
small relative period error for a given value of �t=T0.
It has been considered as a good rule of thumb for
choosing �t=T0 � 0:05 to yield a reliable response [27].
This criterion indicates that the range of 0:5 � p � 1
might be of great interest for practical applications,
since PFM with a p value in the range of 0 � p � 0:5
seems to result in too much period distortion.

5.3. Numerical damping
The numerical damping ratio can be applied to evaluate
the numerical dissipation of a time integration method
Figure 4. shows the variation of numerical damping
ratio versus �t=T0 for PFM with p = 1, 0.75, and
0.0. For each curve, the numerical damping ratio is
very small for a small value of �t=T0 and, then, it
increases gradually; �nally, it becomes constant. In
this �gure, it is also found that the numerical damping
ratio is controlled by the p value only, where p = 0
gives the highest numerical damping ratio and p = 1
leads to zero damping. In general, a large value of p
value will result in a small numerical damping ratio
for a given value of �t=T0. This �gure also implies
that PFM with a p value in the range of 0 � p � 0:5
may lead to very large numerical dissipation for low
frequency modes since PFM with p = 0 has a numerical
damping ratio of 2% for �t=T0 = 0:05.

For comparison, the results for HHT and WBZ
are also plotted in Figure 4. In general, zero damping

Figure 4. Variations of numerical damping ratio with
�t=T0 for di�erent values of p.
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is achieved for PFM with p = 1, HHT with � = 0,
and WBZ with � = 0. It is also found that the curves
for PFM with p = 0:75 and 0.50 almost overlap with
those for WBZ with � = �0:143 and � = �0:333,
respectively. Notice that PFM with p = 0:5 and WBZ
with � = �0:333 will result in the maximum numerical
damping ratios, which are generally larger than those
of HHT with � = � 1

3 .
In Figure 1, it is found that in the limit of 
0 !1

(or �t=T0 ! 1), the spectral radius is convergent on
the p value. In fact, the spectral radii for p = 1:0, 0.5,
and 0.0 are found to be 1.0, 0.5, and 0.0, respectively,
in the limit of 
0 ! 1. On the other hand, Figure 4
reveals that a large p value leads to a small numerical
damping ratio. Consequently, the free parameter,
p, might be considered as an indicator variable of
numerical dissipation for high-frequency modes. As a
result, a value of p close to 1 implies a small numerical
damping for high-frequency modes while a value of
p close to 0 indicates a large numerical damping for
high-frequency modes. In summary, a small p value
will lead to a large numerical damping ratio while it
accompanies a large relative period error.

5.4. Overshooting
In order to evaluate the tendency of an integration
method to overshoot the exact solutions in the early
response [30,31], the free vibration response of a linear
elastic single-degree-of-freedom model problem is often
considered. In general, it can be expressed as:

�u(t) + !2u(t) = 0; (17)

with initial conditions u(0) = d0 and _u(0) = v0. Since
PFM is a converged method, there is no overshoot
as 
0 ! 0. In general, 
0 ! 1 can provide an
indication of the overshooting behavior of the high-
frequency mode in a system where the values of �t=T0
are large for the high-frequency mode. As a result, the
following equations can be obtained for the limiting
condition of 
0 !1:

di+1 � �pdi;

vi+1 � �1
4

(p� 1)2
2
0

�
di
�t

�
+
�

1
2

(p� 1)2 � 1
�
vi:
(18)

The �rst line of this equation reveals that there is no
overshooting in displacement for any member of PFM
while it has a tendency to overshoot quadratic 
0 in
the velocity equation due to the initial displacement
term as indicated by the second line of this equation
(U0-V1). Interestingly, the overshooting velocity dis-
appears and becomes U0-V0 for p = 1.

In order to con�rm the analytical prediction of
the overshooting behavior of PFM, the free vibration

Figure 5. Comparison of overshooting responses.

response of a single-degree-of-freedom system is calcu-
lated by using a relatively large time step. In fact, it
is computed by using PFM with p = 1, 0.5, and 0 and
AAM with a time step corresponding to �t=T0 = 10 for
the initial conditions of d0 = 1 and v0 = 0. Numerical
results are shown in Figure 5, where the velocity term
is normalized by the natural frequency of system in
order to have the same unit as that of displacement.
The horizontal axis measures time in a number of time
steps. It is manifested in the top plot of Figure 5 that
all the three curves for PFM exhibit no overshoot in
displacement. In addition, the curve for PFM with p =
1 coincides with that of AAM. A signi�cant overshoot
in velocity is found in the bottom plot of this �gure for
p = 0:5 and 0 although it is almost annihilated in the
�rst few time steps. Again, the two curves for PFM
with p = 1 and AAM overlap. This implies that PFM
with p = 1 has the same overshooting behaviors as
those of AAM for a linear elastic system. As a result,
these numerical results are in good agreement with the
analytical results.

6. Implementation details

For the applications of PFM to solve a multiple-degree-
of-freedom system, the implementation of PFM is
presented next. The general formulation for PFM can
be written as:�

2
p+ 1

�
Mai+1 +

�
p� 1
p+ 1

�
Mai + C0vi+1

+ Ki+1di+1 = fi+1;

di+1=
�
I�B1(M�1Ki)(�t)2

�
di+(�t)B2vi+(�t)2B3ai;

vi+1 = vi + (�t)
�

3p� 1
2(p+ 1)

ai +
3� p

2(p+ 1)
ai+1

�
; (19)

where M is a mass matrix, C0 is a constant damping



S.-Y. Chang et al./Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2307{2319 2313

matrix and is assumed to be determined from the initial
structural properties, and Ki is the sti�ness matrix
at the end of the ith time step; di, vi, ai, and fi
are the nodal vectors of the displacement, velocity,
acceleration, and external force, respectively; and I is
an identity matrix with the size of n � n, where n is
the total number of degrees of freedom of the system.
The coe�cient matrices of B1 to B3 and D are found
to be:

B1 =
1

(p+ 1)2 D�1M;

B2 = D�1
�

2
p+ 1

M� (p2 � 2p� 1)
2(p+ 1)2 (�t)C0

�
;

B3 = D�1
�

2
(p+ 1)2 M� (p� 1)2

4(p+ 1)2 (�t)C0

�
;

D=
2

p+ 1
M+

3� p
2(p+ 1)

(�t)C0+
1

(p+ 1)2 (�t)2K0;
(20)

where K0 is the initial sti�ness matrix of the system.
It is generally di�erent from the sti�ness matrix, Ki,
in Eq. (19) for a nonlinear system. It is important to
note that the coe�cient matrices B1 to B3 must be
determined from the initial structural properties of M,
C0, and K0 as well as the step size before performing
the time integration.

At the start of the (i + 1)-th time step, the
displacement vector can be computed by using the
second line of Eq. (19). It is numerically equivalent
to the outcome of following equation:

D(di+1 � di) = � 1
(p+ 1)2 (�t)2ri

+
�

2
p+ 1

M� (p2 � 2p� 1)
2(p+ 1)2 (�t)C0

�
(�t)vi

+
�

p
(p+ 1)2 M� (p� 1)2

4(p+ 1)2 (�t)C0

�
(�t)2ai:

(21)

After obtaining the current displacement vector, the
assumed force-displacement relations can be applied to
determine the corresponding restoring force vector. In
general, ri+1 = Kdi+1 is used to represent the restoring
force vector. Subsequently, the velocity vector, vi+1,
can be calculated by substitution of the third line of
Eq. (19) into the �rst line of this equation. As a result,
the resultant equation is numerically equivalent to the
outcome of the following equation:��

2
p+ 1

�
M +

�
3� p

2(p+ 1)

�
(�t)C0

�
vi+1

=
�

3� p
2(p+ 1)

�
(�t)(fi+1 � ri+1)

+
�

2
p+ 1

�
Mvi

+
�

5p� 3
2(p+ 1)

�
(�t)Mai: (22)

Finally, the acceleration vector, ai+1, can be directly
obtained from the equations of motion and is numeri-
cally equivalent to:�

2
p+ 1

�
Mai+1 =fi+1 �

�
p� 1
p+ 1

�
Mai

�C0vi+1 � ri+1: (23)

A direct elimination method is often applied to solve
Eqs. (21) to (23). However, there is no need to apply
a direct elimination method to solve Eq. (23) if M is
a diagonal matrix. Similarly, Eq. (22) will involve no
direct elimination methods if M is a diagonal matrix
in addition to a zero damping matrix.

It is generally recognized that a direct elimination
method is made up of a triangulation and a substitution
for each time step and a triangulation will consume the
most time in each time step. Since the coe�cient ma-
trices on the left-hand side of Eqs. (21) to (23) remain
invariant during time integration, the triangulation of
these coe�cient matrices needs to be performed only
once. On the other hand, this implementation involves
no nonlinear iterations for each time step. Hence, it is
anticipated to be computationally very e�cient when
compared to a traditional implicit integration method.
Notice that the proposed family method may still have
an explicit formulation if the external force vector is a
function of displacement. This is because the external
force vector can be determined after obtaining the
displacement vector by using Eq. (21). However, it
seems that an explicit formulation cannot be achieved
in the case the internal force vector is a nonlinear
function of velocity and/or displacement, since Eq. (22)
cannot be used to determine the velocity vector due to
the presence of the unknown restoring force vector.

7. Numerical examples

Analytical investigations reveal that PFM can have
favorable numerical properties, such as unconditional
stability, second-order accuracy, and desired numerical
dissipation. Consequently, it is of great interest to
examine its actual performance in the step-by-step
solution of a dynamic problem. Hence, some numerical
examples are particularly selected and solved for this
purpose. In the following calculations, PFM with p = 1
and 0.5 will be applied to perform the step-by-step
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integration. For brevity, PFM with p = 1 is referred
to as PFM1 and PFM with p = 0:5 is referred to as
PFM2. Notice that PFM1 has no numerical dissipa-
tion while PFM2 has favorable numerical dissipation.
For comparison, both the Newmark Explicit Method
(NEM) and AAM are also applied to solve the same
problems.

7.1. Example 1: Seismic responses to 6-story
building

The initial structural properties of a 6-story shear-
beam type building are simulated by a 6-degree-of-
freedom system with its masses and initial sti�ness as
follows:

m1 = m2 = 103 kg; m3 = m4 = 105 kg;

m5 = m6 = 108 kg; k0�i = 1010 N/m;

i = 1 � 6: (24)

The sti�ness of each story is nonlinear behavior, which
is assumed to be a function of the story drift. The
sti�ness for each story can be written in the form of:

kj�i = k0�i
�
1 + qi (jui � ui�1j)1=5

�
; i = 1 � 5;

(25)

where kj�i is the instantaneous sti�ness for the ith
story at the end of the jth time step and k0�i is the
initial sti�ness for the ith story at the start of motion;
jui � ui�1j is the story drift for the ith story and qi is
a given constant coe�cient corresponding to the story
drift. It is very straightforward to simulate a nonlinear
system by simply specifying appropriate qi values. In
fact, a nonlinear elastic system is simulated by choosing
q1 = �1:0 and q2 = q3 = ::: = q6 = �0:5. As a result,
the mass matrix, M, and sti�ness matrix, K, of the
system can be expressed by Eqs. (26) and (27) as shown
in Box II.

All the initial natural frequencies and the 1st and
6th modal shapes of the building are calculated based

on the initial properties and shown in the following:

!1 = 6:1758;

!2 = 16:176;

!3 = 194:21;

!4 = 510:22;

!5 = 1973:3;

!6 = 5119:4 (rad/sec))

�1 =

26666664
0:617
0:999
1:000
1:000
1:000
1:000

37777775 ; �6 =

26666664
0
0
0

0:006
�1:621
1:000

37777775 : (28)

To con�rm that PFM can be used to reliably calculate
the response to a very complex earthquake load and
that PFM has favorable numerical dissipation, the
seismic response to a ground acceleration record with
a di�erent initial condition is also calculated for the
building by AAM, PFM1, and PFM2. The building is
excited by the ground acceleration record of CHY028
at its base, where the peak ground acceleration is scaled
to 0.5 g for this study. This record was provided
from the 1999 Chi-Chi earthquake in central Taiwan.
Meanwhile, in order to illustrate the e�ectiveness of
numerical damping, a high-frequency modal error is
intentionally introduced into the calculated system
through a given initial displacement, which consists of
the 6th mode only.

The three integration methods of AAM, PFM1,
and PFM2 are used to compute the seismic responses
with a time step of �t = 0:01 sec. The numerical
results for the top story responses are plotted in
Figure 6. The result obtained from AAM subject to
CHY028 without the high-frequency modal error is
considered as a reference solution for comparison. On

M = diag(mi); i = 1; 6 (26)

K =

26666664
kj�1 + k � j � 2 �kj�2�kj�2 kj�2 + kj�3 �kj�3�kj�3 kj�3 + kj�4 �kj�4�kj�4 kj�4 + kj�5 �kj�5�kj�5 kj�5 + kj�6 �kj�6�kj�6 kj�6

37777775 (27)

Box II
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Figure 6. Displacement responses at the top of building.

the other hand, all the three integration methods are
employed to compute the seismic responses to CHY028
with the high-frequency modal error. Figure 6(a) and

(b) show that the results obtained from AAM and
PFM1 are contaminated or even destroyed by the high-
frequency modal error, while the result obtained from
PFM2 in Figure 6(c) almost overlaps with the reference
solution. It can be said that the time step of �t =
0:01 sec is small enough to obtain accurate solutions
for AAM and PFM2. Moreover, PFM2 has the
favorable numerical dissipation and, thus, it can �lter
out the high-frequency responses within about 0.1 sec
for nonlinear systems, while both AAM and PFM1 do
not have any numerical dissipation. Interestingly, the
results, as shown in Figure 6(a) and (b), indicate that
the response achieved from AAM is less contaminated
than that from PFM1. This example also indicates that
PFM can have unconditional stability since the value of

0 = !(�t) for the 6th mode is as large as 51.19. For
comparison, it should be mentioned that the condition
of stability for Newmark explicit method is 
0 � 2 for
an undamped system [26].

7.2. Example 2: Reinforced concrete frame
subjected to a sinusoidal load

A model of reinforced concrete frame with all of its
dimensions, sections, and material properties is created
and shown in Figure 7. The model consists of four
nodes, of which the bottom two nodes are �xed, two
column elements, and a beam element. The sections of

Figure 7. The reinforced concrete frame.
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beam and column are broken down into �bers where
uniaxial materials are de�ned independently, which
are shown in the �gure. Concrete is de�ned as the
uniaxial concrete material object with tensile strength
and linear tension softening [32] while steel is de�ned
as a material with isotropic strain hardening [33]. The
4 cm thick cover layer is considered as an uncon�ned
concrete with lower strength than the con�ned concrete
strength inside the bar area of elements. The properties
of materials are described as follows:

Con�ned concrete:

fc = �286 kg/cm2; "c0 = 0:0019;

fpcU = �57:2 kg/cm2; "U = �0:0095;

� = 0:1; ft = 40:4 kg/cm2;

Etsf = 15400 kg/cm2: (29)

Uncon�ned concrete:

fc = �220 kg/cm2; "c0 = �0:003;

fpcU = �44 kg/cm2; "U = �0:01;

� = 0:1; ft = 30:8 kg/cm2;

Etsf = 15400 kg/cm2: (30)

Steel:

fy = 3600 kg/cm2;

E = 2� 106 kg/cm2;

Ep = 0:05�E: (31)

A reinforced concrete frame is loaded by a sinusoidal
function, P , at its top in the x-direction under a
constant weight, w, along the vertical direction. The
constant weight is 200 kN and the applied load pattern
in z-direction is P = 200 sin(�t) kN. The initial
natural frequency of the �rst mode is found to be
2.886 rad/sec only based on the linear elastic sti�ness
matrix, whereas this is up to 9:1� 105 rad/sec for the
last mode. A time step of �t � 2:2� 10�6 sec must be
used to carry out the time integration for using NEM so
that the upper stability limit can be met. Hence, AAM
is used to replace NEM for calculating the reference
solution with a time step of �t = 0:01 sec. PFM1 with
the same time step of �t = 0:01 sec is also applied to
compute the responses.

The displacement responses at Node 2 of the
frame along the x-direction are plotted in the top plot
of Figure 8(a). The hysteretic loops of the outermost
steel bar layer and concrete at the �xed end of column
are recorded and shown in the bottom of Figure 8(b)
and (c). In general, both AAM and PFM1 integration
methods can provide reliable solutions to the very

Figure 8. Responses to sinusoidal load and corresponding hysteretic loops of materials.
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complex nonlinear problem as shown in Figure 7.
The bottom plot reveals that the material experiences
a nonlinear behavior during the vibration for both
concrete and steel. It is clearly indicated by this
example that PFM can have unconditional stability
since the highest frequency mode is as large as 9:1�105

rad/sec. In addition, the capability of using PFM
to solve a highly nonlinear system is veri�ed since it
can result in a reliable solution without involving any
iteration procedure in each time step.

7.3. Example 3: Computational e�ciency
In order to study the computational e�ciency of PFM,
an n-degree-of-freedom spring mass system, as shown
in Figure 9(a), is considered, where mi = 1 kg and ki =
108

�
1� 10

pjui � ui�1j
�

(N/m) for i = 1; 2; 3; :::; n
are taken. Notice that ui is the displacement corre-
sponding to the ith spring mass (or the ith degree of
freedom). The responses to the 500-DOF (n = 500),
1000-DOF (n = 1000), and 2000-DOF (n = 2000)
systems are computed by using NEM, AAM, and
PFM2. These spring-mass systems are excited by the
combinations of sine loads as shown in Figure 9(a). It is
found that the lowest natural frequency of the 500-DOF
system is 31.38 rad/sec before it deforms, while it is
15.70 rad/sec and 7.85 rad/sec for 1000-DOF and 2000-
DOF systems, respectively. On the other hand, the
three systems have the same highest natural frequency
equal to 20000.0 rad/sec. A time step of �t = 0:0001
sec is chosen to follow the stability conditions for NEM,
while the time step of �t = 0:005 sec is selected
for AAM and PFM2 based on accuracy consideration.
The running codes are written in Fortran®, and the
execution platform is a personal computer with Intel®
CoreTM i5 CPU M460 @ 2.53 GHz with installed
memory of (RAM) 4.00 GB.

The displacement response time histories of the
three systems are calculated and shown in Figure 9(b).
The numerical solution obtained from NEM with a very
small time step is considered as the reference solution.
In general, PFM2 can have reliable solutions with com-
parable accuracy to AAM. The CPU time consumed by
each of the aforementioned methods in the analysis is
recorded and summarized in Table 1. It is interesting
to note that the CPU time consumed by PFM2 is about
10% to 20% of that consumed by NEM, and only about
2% to 3% of that consumed by AAM. This is because

Figure 9. The spring-mass systems and their responses.

PFM2 can have the unconditional stability and, thus,
there is no constraint on selecting an appropriate step
size based on stability consideration. Notice that a
very small step size is adopted for NEM since it is
only conditionally stable. On the other hand, PFM2
can have an explicit formulation and, thus, it involves
no nonlinear iteration for each time step and can save
many computational e�orts. Apparently, an iteration
procedure, which is very time consuming for a matrix
of a large order, is needed in each time step for AAM
since AAM is an implicit method although it possesses
the unconditional stability.

8. Conclusions

A new family of explicit time integration methods
is proposed herein. The numerical properties of the

Table 1. Comparison of CPU times.

N-DOF CPU(NEM)

(1)
CPU(AAM)

(2)
CPU(PFM2)

(3)
(3)/(1) (3)/(2)

500 478.48 1532.67 45.32 0.095 0.030
1000 1588.48 13567.28 302.66 0.191 0.022
2000 2058.10 21429.36 442.50 0.215 0.021
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proposed family method are controlled by a free pa-
rameter, p. This family method is a one-step method
and, thus, it is a self-starting integration method.
In addition, it has unconditional stability, second-
order accuracy, explicit formulation, and favorable
numerical dissipation. The value of p ranges from 0
to 1. As the p value is close to 1, it leads to low
numerical damping for high-frequency modes and a
zero numerical damping ratio can be achieved for p = 1.
On the other hand, as the p value is close to 0, it
results in high numerical damping for high-frequency
modes and, thus, the spurious participation of high-
frequency modes can be suppressed or eliminated while
the low-frequency modes can be accurately integrated.
This free parameter, p, can be considered as an indi-
cator variable of numerical damping for high-frequency
modes. In addition, the range of 0:5 � p � 1 is highly
recommended for practical application since the range
of 0 < p < 0:5 may result in too much period distortion
and numerical dissipation for the low-frequency modes.
The computational e�ciency of this family method is
evident from the numerical experiments when com-
pared to the conventional integration methods. This
is mainly because it can integrate the unconditional
stability with explicit formulation.
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