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Abstract. In uid mechanics applications, transport occurs through the combination of
advection and di�usion. This paper presents a stochastic approach to describe uncertainty
and its propagation based on Advection-Di�usion Equation. To assess the uncertainty
in initial water depth, random initial condition is imposed on the framework of 1D open
cannel ow. Karhunen-Loeve Expansion is adopted to decompose the uncertain parameter
in terms of in�nite series containing a set of orthogonal Gaussian random variables.
Eigenstructures of covariance function associated with the random parameter, which play a
key role in computing coe�cients of the series, are extracted from Fredhulm's equation. The
ow depth is also represented as an in�nite series of its moments, obtained via polynomial
expansion decomposition in terms of the products of random variables. Coe�cients of
these series are obtained by a set of recursive equations derived from the ADE. Results
highlight the e�ect of various statistical properties of initial water depth. The mean value
and variance for the ow depth are compared with Monte Carlo Simulation as a reliable
stochastic approach. It is found that when higher-order approximations are used, KLE
results would be as accurate as the results of MCS, however, with much less computational
time and e�ort.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Given the heterogeneous nature of many uid ows and
di�culties associated with understanding this hetero-
geneity accurately, ow characteristics are often treated
as random functions, leading to governing equations
of stochastic types. Hence, it is no surprise that
statistical estimation of such stochastic processes has
received considerable attention as an active �eld in real-
world simulations. Although there has been continuous
e�ort to develop stochastic models in various �elds of
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uid ows, their application in open channel ows has
received less attention.

Advection-Di�usion Equation (ADE) arises usu-
ally in transport modeling �elds of applications and in
any disturbance analysis of surface water ows. In such
ows, �eld parameters are often inuenced by uncer-
tainty due to the lack of understanding of natural open
channel properties including roughness coe�cient, bed
slope, and initial or boundary conditions.

A conventional method to solve Partial Di�er-
ential Equations (PDEs) stochastically is Polynomial
Chaos Expansion (PCE). It was put forward by
Ghanem and Spanos [1], with application to trans-
port in heterogeneous media [2,3] and di�usion prob-
lems [4]. PCE is applied to model the uncertainty
propagation from the beginning of a waterhammer
with random system parameters and internal boundary
conditions [5]. This technique includes representing
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the random variables in terms of polynomial chaos
basis and deriving appropriate discretized equations
for the expansion coe�cients via Galerkin technique.
PCE allows for high-order approximation of random
variables and possesses fast convergence under certain
conditions. However, the deterministic coe�cients of
PCE are governed by a set of coupled equations, which
are di�cult to solve when the number of coe�cients
is large. PCE is based on the expansion of variables
by products of polynomial coe�cients and orthogonal
chaos bases. It is needed to treat a system of equations
numerically. PCE applications to stochastic shallow
water ows were reported by Ge et al. [6] and Liu [7].
A comprehensive review of PCE approach is presented
by Debusschere et al. [8].

Karhunen-Loeve Expansion (KLE) is a exible
approach to solve PDEs stochastically, leading to
high-order moments with relatively small computa-
tional e�orts. PCE [9,10], probabilistic collocation
method [11,12], and KLE [9,13,14] have been utilized
to illustrate random processes in porous media. This
method is applied to decompose the solution to Boussi-
nesq equations for the velocity, density, and pressure
�elds [15].

KLE approach has proved to be e�cient for un-
certainty analysis in groundwater hydraulics [9,13,16].
Contrary to PCE, the coe�cients associated with
KLE appear in uncoupled equations, from which the
required statistical moments can be extracted. How-
ever, this method has received little attention in open
channel applications.

A reliable tool usually used as a reference for
solving stochastic PDEs is Monte Carlo Simulation
(MCS), which consists of three steps; 1) generating
several realizations of the uncertain parameter based
on its distribution function, 2) solving the governing
equation by means of an appropriate deterministic
scheme for the generated parameter, and 3) taking
statistical moments on the entire realizations obtained
in previous steps. MCS is simple to implement;
however, it requires considerable computational e�ort
due to large number of realizations needed. Application
of MCS in open channel ow has been reported by
Gates and Alzahrani [17,18] for Colombia River in US.
The uncertainties in geometrical properties and bed
slope are investigated via their distribution functions
and, consequently, statistical moments are evaluated
for the ow �eld. A virtual sampling MCS is proposed
to address uncertainty quanti�cation in ood modeling
on a real test case for Tous dam break in Spain [19].
Dutykh et al. [20] adopted MCS to quantify the e�ect
of bottom roughness on maximum run-up height by
resorting to nonlinear shallow water equations. Multi-
level MCS is applied to uncertainty quanti�cation for
porous media ow [21].

In the present work, KLE approach is applied to

1-D Advection-Di�usion equation considering uncer-
tainty in the initial condition for a synthetic case in
open channel ow. Consequently, ow �eld parameter
has appeared as a random variable, too. Validity of the
proposed model has been ensured through comparing
it with MCS results for various spatial variability and
correlation lengths.

2. ADE governing equation

On the Advection Di�usion equation method for wa-
ter wave propagation, transport occurs through the
combination of advection and di�usion. ADE is de-
rived mostly from the incorporation of advection into
di�usion equation, and could be utilized in di�erent
geometries and conditions. The derivation of the ADE
relies on the principle of superposition: Advection and
di�usion can be added together if they are linearly in-
dependent; the only way they can be dependent is when
one process feeds back into the other. One-dimensional
ADE could be written for an incompressible uid as:

@H
@t

+ U
@H
@x
�D@2H

@x2 = 0; (1)

in which H(x; t) is ow depth, U is ow velocity
(or advective velocity), and D is di�usive coe�cient
(or di�usivity), subject to the initial and boundary
conditions given by:

H(x; 0) = h0 + asech2

"s
3a
4h3

0

�
x� L

2

�#
; x 2 D;

(2)

H(0; t) = H(L; t) = h0; t > 0; (3)

where L is channel length, H(x; 0) or h(x) is initial
water depth (treated hereafter as a random variable),
h0 is undisturbed uniform water depth, a is initial wave
height, and D is spatial domain in x direction. The
initial condition corresponds to a �rst-order solitary
wave propagating in the positive x-direction [22]. The
random nature of h(x) converts deterministic equations
(Eqs. (1)-(3)) into stochastic ones, the solution to
which is sought in the form of statistical moments.
The length of the channel is assumed su�ciently
large compared to the characteristic length of solitary
wave [23]. This justi�es the validity of Eq. (3), implying
that the boundary values remain una�ected by the
initial wave form.

3. KLE stochastic representation of ADE

In KLE approach, initial water depth, h(x), is consid-
ered a random variable due to many factors including
the uncertainty inherent in measurements. It may
be decomposed to the mean term, < h >, and the
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uctuation term, h0. KLE expresses h0(x) in terms of
eigenstructure for covariance function, Ch(x1; x2), of
the random �eld as follows [1]:

h0(x; !) =
1X
n=1

�n(!)
p
�nfn(x); (4)

where x and ! are indices of real and probability
spaces, respectively; �n(!) is an orthogonal Gaussian
random variable with zero mean; and �n and fn(x) are
eigenvalue and eigenfunction associated with the given
covariance function, respectively. With a covariance
function for the exponential distribution as:

Ch(x1; x2)�2
hexp

�
�jx1 � x2j

�

�
; (5)

the eigenstructures are obtained analytically from
Fredholm's equation [13] as:

�n =
2��2

h
�2w2

n
;

fn(x) =
[�wn cos(wnx) + sin(wnx)]p

0:5L(�2w2
n + 1) + �

; (6)

where �2
h and � are variance and correlation length of

the random variable h(x; !), respectively. It is worth
mentioning that a similar problem has been treated by
Zhang and Lu [13] when modeling groundwater ow in
a random porous medium. In the above expression, wn
refers to positive roots of the characteristic equation:

(�2w2 � 1) sin(wL) = 2�w cos(wL):

For notational convenience, the function
p
�nfn(x) is

replaced with f�n(x) hereafter.

4. Moment equations in KLE

As mentioned, h(x) is considered as a random variable
and other terms as deterministic ones. KLE, as a per-
turbative expansion technique, expands the dependent
variable H(x; t) by the following series:

H(x; t) = H(0) +H(1) +H(2) + ::: (7)

Substituting the above expansion and h(x) =< h >
+h0 in Eqs. (1)-(3) and considering only the zero-order
terms, the governing equation and related conditions
will take the form:
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H(0)(0; t) = H(0)(L; t) = h0; t > 0; (10)

in which �a is mean value of a. The above equation
may be solved for H(0) in a deterministic manner
(Appendix A). Similarly, one may obtain the following
expression for any higher order term (m) [13]:

U
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H(m)(x; 0) = 0; x 2 D; (12)

H(m)(0; t) = H(m)(L; t) = 0: (13)

Various components of Eq. (7) can now be expanded
by suitable polynomial expansions in terms of the
orthogonal Gaussian random variable � as illustrated
in Table 1. where H(1)

i , H(2)
ij , and H(3)

ijk (for i; j; k =
1; 2; :::) are deterministic coe�cients obtained from
the associated governing equation, numerically. Note
that the above governing equations are derived via
substituting the expansions of h0(x) and H(m)(x; t)
with m = 1; 2; 3 in Eqs. (11)-(13) and simplifying the
resulting expressions in view of orthogonality of the
random variable, �. The equations listed in Table 1 are
treated recursively in a numerical manner (Appendix).

Table 1. Expansions for H(1), H(2), and H(3) in terms of the orthogonal Gaussian random variable �, and the governing
equation for any term.
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Table 2. Statistical moments of the ow depth.

Flow depth H(x; t) �P3
i=0 H

(i)(x; t)

Mean value hH(x; t)i �P3
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Index
P
Pijk(:) is found by a substitution manner, i.e.:X
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rf�i :rH(2)
jk =rf�i :rH(2)

jk +rf�j :rH(2)
ik

+rf�k :rH(2)
ij :

For the trivial solutions to exist, H(3)(x; t) should be
expanded in terms of �n and �i�j�k simultaneously [13].
Manipulating the third-order approximation of H(x; t)
(Eq. (7)) mathematically, one may compute higher
moments of the ow depth as shown in Table 2. It
is important to note that the same approach is chosen
to solve the governing equation of H(0) to H(3)

ijk because
of the diversity in homogeneity property. Despite the
existence of analytical solution to Eqs. (8)-(10) (i.e.,
convolution integral), QUICKEST approach (as a �nite
di�erence method expressed in Appendix) is utilized
to treat all the governing equations to have the same
solution process.

5. Hypothetical test problem

KLE approach is applied to a hypothetical channel
(Figure 1) to compute higher-order ow depth mo-
ments, and veri�ed by comparing its results with those
of MCS. A hypothetical channel of length L = 100 m
is considered with a �rst-order solitary wave with
maximum height of a within normal distribution and
mean value of �a = 0:05 m centered at x = L=2.
Moreover, the water depth is kept constant at h0 = 1 m
over the channel ends, advective velocity U = 2:5 m/s,
and di�usion coe�cient D = 1 m2/s. Schematic
of the initial condition over the channel and wave
propagation sketch at di�erent times are shown in
Figure 1. E�ects of di�erent correlation lengths, �h,
and various degrees of spatial variability, �2

h, on ow
depth variance, �2

H , have been investigated. MCS is
examined for about 1000 realizations and the moments

Figure 1. (a) Schematic of the initial condition. (b)
Wave propagation sketch at di�erent times.

of ow depth are computed for di�erent correlation
lengths and variances of the input random variable.

6. Results and discussion

A su�cient number of terms to be incorporated in
H(x; t) and, subsequently, in expansions of H(m) are
investigated. Furthermore, e�ects of correlation length
and spatial variability of random variable h(x) on vari-
ance of the random function �2

H have been discussed.
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6.1. Number of terms to be incorporated in
H(x:t)

KLE approach is applied to compute mean ow depth
pro�le at di�erent times, and compared with MCS
ones as shown in Figure 2. Incorporation of the �rst
two terms in Eq. (7) leads the results to a good
agreement with the results of MCS (Figure 2(a)).
Incorporating two more terms, i.e., H(2) and H(3),
only slightly improves H(x; t) (Figure 2(b) and (c)).
Indeed, numerical values of subsequent terms decrease
by one order of magnitude. For example, H(1)(x; t)
(with a certain number of terms considered in its
expansion as illustrated in the next section) takes
the value of 0.01 m; however, the value of 0.001 m
is obtained in estimation of H(2)(x; t) with su�cient

Figure 2. Comparison of mean ow depth pro�les
computed by KLE method (incorporating 2, 3, and 4
terms) and those derived by MCS (for 1000 realizations)
at (a) t = 5 s, (b) t = 10 s, and (c) t = 15 s.

number of terms considered in its expansion. Moreover,
H(3)(x; t) is obtained at the order of 0.0001 m, i.e.
two orders of magnitude smaller than H(1)(x; t). One
may conclude that the more the number of terms
incorporated in H(x; t), the more accurate the results
would be; however, incorporation of four terms (H(0) to
H(3)) is deemed su�cient to expand H(x; t), because
of the size of the disturbance, 0.05 m, caused by the
solitary wave.

6.2. Number of terms in expansion of H(m)

Number of terms considered in expansion of H(m)

has a direct e�ect on the accuracy of results in KLE
approach. Figure 3 depicts magnitudes of H(m)

i1;i2;:::;im
for m = 1; 2; 3 on the center of domain at t = 5 s.
The advantage of KLE largely depends on the number
of terms required to approximate the m-order term
H(m). On the other hand, the magnitude of H(m)

Figure 3. Values of H(m)
i1;i2;:::;im on the center of domain

at t = 5 s for (a) H(1)
i , (b) H(2)

i , and (c) H(3)
ijk.
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should statistically decrease for increasing values of the
indices i1; i2; :::; im. This condition is satis�ed for H(1),
although it seems that convergence is not achieved
(cf. Figure 3(a) regarding the plot of H(1) for �xed
t = 5 s) when H(2) and H(3) show a non-decreasing
behavior (cf. Figure 3(b) and (c) regarding the same
time instant). In this computation, 100, 20, and 10
terms are found su�cient when evaluating H(1)

i , H2
ij ,

and H3
ijk, respectively (Figure 3(a) to (c)), meaning

that index i in H(1)
i operates up to 100, each index in

H(2)
ij operates up to 20, and so on. Number of times,

Sm, necessary to solve governing equations for H(1) to
H(3) is obtained from Sm = n(n+1):::(n+m�1)

m! , where
n is the number of deterministic coe�cients in any
expansion procedure. When N = 15, as an example,
it is required to solve governing equations 120 and 680
times to compute H(2) and H(3), respectively; much
less than the few thousand times usually needed for
MCS.

6.3. Dependency of ow depth variance (�2
H)

on input correlation length (�h)
Possible e�ects of input correlation length � on ow
depth variance, as one of the most important properties
of the random function H(x; t), are investigated. For
this purpose, KLE approach is utilized to calculate the
variance for di�erent correlation lengths at t = 5 s,
which is later compared to MCS results (Figure 4(a)
to (c)). As shown in �gures, 1st and 2nd-order KLE
yields almost identical results both revealing a fair
agreement with MCS and overestimating the peak
point by 12%. Similar �ndings achieved for di�erent
correlation lengths suggest that ow depth variance is
independent from input correlation length. This may
be attributed to the fact that the roots of characteristic
equation appear to be sensitive to correlation length.

6.4. E�ects of input variance (�2
h) on ow

depth variance (�2
H)

Figure 5 compares ow depth variances from 1st and
2nd-order KLE approaches with those from MCS for
di�erent input water depth variances of 0.0025, 0.0064,
and 0.0121 m2 and correlation length of 4 at t =
5 s. As shown, for �2

h = 0:0025 m2, ow depth
variances computed by 1st and 2nd-order KLE are
close to the results of MCS with the 1st order mainly
overestimating MCS with a maximum error of 9%
(Figure 5(a)). As the variance increases, 1st-order KLE
results overestimate MCS again with a maximum error
of 9%; however, 2nd-order KLE underestimates MCS
with a maximum error of 23% (Figure 5(b)). Finally,
for �2

h = 0:0121 m2, ow depth variances calculated
by the 1st-order KLE remain unchanged (with errors
similar to those in the previous cases), but high errors
of up to 52% are observed for the underestimating 2nd-

Figure 4. Comparison of ow depth variances computed
by (�rst and second-order) KLE and MCS for: (a)
�h = 1 m, (b) �h = 4 m, and (c) �h = 10 m (�2

h = 0:01 m2

for all the cases).

order KLE (Figure 5(c)). It may be concluded that as
the input variance, �2

h, increases, 1st-order KLE results
remain overestimated and unchanged; however, 2nd-
order KLE results increasingly underestimate MCS
results. It is concluded that for higher input variances,
unlike our expectations, ow depth variance will not
improve considerably by incorporation of higher order.

7. Conclusions

In this study, KLE approach was applied to solve
stochastic ADE solution in a hypothetical channel
considering uncertainties in the initial condition. Ran-
dom variable, h(x), was decomposed to in�nite series
based on eigenstructures of its covariance function.
The latter was obtained applying Fredholm's solution
to 1D exponential covariance function analytically.
Then, ow depth H(x; t) was expanded to series of
H(m), each of which was further expanded to in�nite
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Figure 5. Comparison of ow depth variances computed
by 1st and 2nd-order KLE with MCS, when (a)
�2
h = 0:0025 m2, (b) �2

h = 0:0064 m2, and (c)
�2
h = 0:0121 m2 (�h = 4 m for all the cases).

series based on random variable �. Coe�cients of the
last expansions were deterministically obtained from
numerical solutions to the governing equation. A
recursive method was utilized by KLE approach which,
unlike PCE approach, did not require any coupling
procedure to derive ow depth moments.

KLE approach was adopted to calculate mean
ow depth pro�le at di�erent times and compared
with MCS results. It was concluded that the more
the number of terms incorporated in H(x; t), the more
accurate the results would be; however, incorporation
of four terms (H(0) to H(3)) was deemed su�cient
for the size of disturbance (0.05 m) considered in
this study. It was also found that 100, 20, and 10

terms were su�cient for computing H(1)
i , H(2)

ij , and
H(3)
ijk, respectively, resulting in much smaller number

of times required to solve the governing equations
than the few thousand times usually needed for MCS.
Flow depth variance was found to be independent from
input correlation length. Flow depth variance did not
signi�cantly improve when higher input variances were
considered.
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Appendix

Numerical approach
i) Homogenous form. Homogeneous form of the

governing equation (Table 1) was solved to obtain
H(0)(x; t). Accordingly, QUICKEST (Quadratic
Upstream Interpolation for Convective Kinematics
with Estimated Streaming Terms) scheme, as the
most frequently applied �nite di�erence approach
to solve ADE, was chosen [24-26]. QUICKEST
utilizes up to the 3rd order of approximation and
implements explicit centered di�erences as:

Hj+1
i =Hj

i +
�
Cd(1� Ca)� Ca

6

�
C2
a � 3Ca

+ 2
��
Hj
i+1 �

�
Cd(2� 3Ca)

� Ca
2

(C2
a � 2Ca � 1)

�
+
�
Cd(1� 3Ca)

� Ca
2

(C2
a � Ca � 2)

�
Hj
i�1 +

�
Cd:Ca

+
Ca
6

(C2
a � 1)

�
Hj
i�2; (A.1)

in which Hj
i is ow depth at the ith �t (spatial

step) and jth �t (time step), and Ca and Cd are
advective and di�usive Courant numbers, respec-
tively:

Ca =
U:�t
�x

; Cd =
D:�t
�x2 : (A.2)

Regions of stability for QUICKEST scheme may be
written as [24]:8>><>>:

Cd � (3�2Ca)(1�C2
a)

6(1�2Ca) if Ca < 1
2

and Cd � 0
Cd � (3�2Ca)(C2

a�1)
6(2Ca�1) if Ca > 1

2

(A.3)

ii) Non-homogeneous form. The simplest form of
ADE with a source term f may be written as [26]:

@H
@t

+ U
@H
@x
�D@2H

@x2 � f = 0: (A.4)
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A splitting technique is applied to decompose
Eq. (A.4) in the form:

@H
@t

+ F (1) + F (2) = 0; (A.5)

where:

F (1) = U
@H
@x
�D@2H

@x2 and F (2) = �f: (A.6)

At any time step, �t, Eq. (A.5) is solved in two stages.
In the �rst stage:

@H(1)

@t
+ U

@H(1)

@x
�D@2H(1)

@x2 = 0;

H(1)(x; t) = H(x; t): (A.7)

The QUICKEST scheme solves the homogeneous form
of ADE as outlined earlier. The source term is taken
into account via the second stage:

@H(2)

@t
= f; H(2)(x; t) = H(1)(x; t+ �t); (A.8)

subject to the results already obtained in the �rst stage
as the initial condition. Finally, results of the second
stage are considered as the values for new time steps
H(x; t+ �t) � H(2)(x; t+ �t).
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