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Abstract. Control charts act as the most important tool for monitoring of process
parameters. The assumption of independence that underpins the implementation of the
charts is violated when process observations are correlated. The e�ect of this issue can
lead to the malfunctioning of the usual control charts by causing a large number of false
alarms or slowing the detection ability of the chart in unstable situations. In this paper, we
investigated the performance of the Mixed EWMA-CUSUM and Mixed CUSUM-EWMA
charts for the e�cient monitoring of autocorrelated data. The charts are applied to
the residuals obtained from �tting an autoregressive (AR) model to the autocorrelated
observations. The performance of these charts is compared with the performances of
the residual Shewhart, EWMA, CUSUM, combined Shewhart-CUSUM, and combined
Shewhart-EWMA charts. Performance criteria such as Average Run Length (ARL) and
Extra Quadratic Loss (EQL) are used for the evaluation and comparison of the charts.
Illustrative examples are presented to demonstrate the application of the charts to serially
correlated observations.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Control charts are typically used to observe irregular-
ities that may occur in a production process so that
corrective remedies are taken to curb the variation in
order to produce products of good standards. Control
charts usually have two limits that separate common
from assignable causes of variation. Common causes
in process monitoring are uncontrollable and random
in nature; special causes, on the other hand, are
components of the unnatural variations that are due
to controllable factors such as operator error, worn
out machine part, etc. Ever since Walter Andrew
Shewhart [1] proposed the �rst control chart in the
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1920's for process monitoring, several charts have
been developed over the years. The cumulative sum
(CUSUM) and the Exponentially Weighted Moving
Average (EWMA) charts developed by Page [2] and
Roberts [3], respectively, are two of the most notable
charts that are used in quality control to monitor small
shifts in the process parameters.

The usual structures of control charts are based
on the assumptions that the data produced from the
process are independent and normally distributed [4].
The independence assumption is violated when ob-
servations from the process are serially correlated.
This violation can lead to the malfunctioning of the
control chart by causing a lot of false alarms or slowing
the detection capability of the chart when a process
is unstable [5,6]. Many processes in industrial and
manufacturing operations produce observations which
are serially correlated as a result of inertial elements
and the frequent rate of sampling of the process [4,5].
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Mason and Young [7] observed that most chemical
processes in manufacturing operations were usually
prone to producing highly correlated data, which
was due to deterioration of machine part. Similarly,
depletion of essential catalyst used in the process to
speed up the industrial operations and contamina-
tion of equipment with chemicals produce correlated
data [7]. A simple and less complicated way of
controlling autocorrelation is less frequently sampling
the process in order to break up the serial correlation
phenomenon in the sequence of observations. The
downside of this procedure is that it makes it hard to
detect changes in the process since less information is
available from the process. Therefore, in the presence
of serial correlation, the use of residual charts, modi�ed
charts [8,9], skip sampling strategy [10], etc. is the
elaborate remedial technique that is adopted to deal
with this phenomenon.

The concentration of this paper is on the use
of residual charts. In this approach, an appropriate
time series model is �tted to the correlated data. The
conventional charts are then applied to the residuals
of the model, which are expected to be uncorrelated.
This procedure makes it possible to transform existing
charts into residual control charts. The concept of
using time series models in control charts was ad-
vanced by Alwan and Roberts [11]. Other works such
as [5,6,8,12-21] and the references therein considered
serially correlated observations that could be modelled
with autoregressive integrated moving average models
(ARIMA) using residual control charts. A bene�t
of the residual chart is that it can be utilized in
any form of serially correlated observations, be it
stationary or otherwise [5,16]. However, a disadvantage
of the residual chart is that knowledge of time series
modelling is needed in order to �t an appropriate model
to the correlated observations. In Statistical Process
Control (SPC) applications, di�culties associated with
residual charts such as choosing an appropriate model
and estimating the parameters of the model make the
use of this charting technique challenging.

Over the years, great emphasis has been put on
the studies of the Shewhart, CUSUM, and EWMA
charts for location monitoring in the presence of serial
correlation. Harris and Ross [6] examined the e�ect
of correlation on the performance of the EWMA and
CUSUM charts. They noted that errors might be
generated if the correlation behavior of the data was
not accounted for in the charts. Alwan and Roberts [11]
developed the Shewhart residual chart for monitoring
of the correlated data. Wardel et al. [14] considered
serial correlation that could be �tted with ARMA (1,
1) by comparing the performance of the Shewhart
and EWMA charts with that of the common-cause
and special-cause control charts. Karaoglan and Bay-
han [16] focused their work on autocorrelation that

could be �tted with a trend AR (1) and AR (1) process
models using Shewhart, CUSUM, and EWMA residual
charts. Following their previous work, they studied the
performance of these charts for trend AR (1) model
using vegetable oil data from industry [17]. They
noted that for small to moderate shifts, the EWMA
and CUSUM residual charts performed better than
the Shewhart type charts for a moderate and strong
positively correlated process. Lu and Reynolds [19,20]
investigated the performance of the CUSUM and
EWMA residual charts in the respective works using
an AR (1) model plus a random error term. Lin [22]
considered autocorrelation that could be modelled with
AR (1) and IMA (1, 1) models by applying the forecast
errors from these models to the Shewhart, CUSUM,
EWMA, combined Shewhart-CUSUM (CSCUSUM),
and combined Shewhart-EWMA (CSEWMA) charts.
The combined charts retained the positive strengths
of the Shewhart and EWMA or CUSUM charts with
respect to small and large process shifts. Zhang [23]
proposed the EWMA chart for stationary process
(EWMAST) and compared the performance of this
chart with that of the modi�ed and residual She-
whart charts for AR (1), ARMA(1,1), and AR (2)
process models. Subsequently, Zhang [5] compared
the EWMAST and modi�ed Shewhart charts with
the Shewhart, CUSUM, and EWMA residual charts
for an AR (1) process model. He noted that the
EWMAST chart performed relatively better for small
to medium mean shifts when the process was autocor-
related.

Recently, Abbas et al. [24] and Zaman et al. [25]
proposed the Mixed EWMA-CUSUM (MEC) and
Mixed CUSUM-EWMA (MCE) charts, respectively,
for monitoring processes for which the observations
were independent and normally distributed. However,
these charts malfunction in the presence of serial
correlation by producing frequent false alarms. In this
paper, we present the MEC and MCE residual charts
for monitoring observations that can be modelled with
an autoregressive process. Comparisons among the
charts are conducted for di�erent autocorrelation and
mean shift levels using individual observations.

The rest of the paper is structured as follows;
Section 2 describes the structures of various residual
charts for monitoring an autocorrelated process; the
performance evaluation and comparison of the charts
are briey presented in Section 3; illustrative examples
to demonstrate how the charts operate are presented
in Section 4; and, �nally, conclusions are summarized
in Section 5.

2. Residual charts for AR (1) processes

Serial correlation describes the relationship that exists
between a variable and its past values at di�erent time
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lags. In the residual chart, an appropriate time series
model is �tted to the data. Subsequently, the control
charts are applied to the residuals (et) of the model
which are expected to be randomly distributed. We
will restrict this work to control chart structures for
serially correlated observations that can be modelled
with an autoregressive AR (1) model. Several works
on serial correlation in control charts have used this
model (e.g. [5,18,26]). The general AR (1) model is
represented as:

Xt � � = �1(Xt�1 � �) + "t; (1)

where Xt is the observed time series at time (t), "t
is the white noise term, � is the mean, and �1 is
the autocorrelation coe�cient. "t is assumed to be
independently and normally distributed with mean 0
and variance �2

" (i.e. "t � N(0; �2
")). To allow for the

process mean shift, we include a time varying mean to
Eq. (1) following [26]. This yields:

Xt = �t + �1(Xt�1 � �t�1) + "t: (2)

Theoretically, in order to model assignable causes in the
charts, a mean shift of magnitude (�) is put into Eq. (2)
such that � shifts to � + �. The resulting sequence of
residuals [26] is obtained by:

et = Xt � cXt; (3a)8<:et = "t + � t = 1

et = "t + (1� �1)� t > 1
(3b)

where cXt = �(1 � �1) + �1Xt�1 with the assumption
that the coe�cient estimates are absolutely accurate.cXt is the predicted value of Xt. Therefore, et are used
instead of the original observations (Xt) in the control
charts.

2.1. Control charts for residuals
In this section, control chart structures for the She-
whart, CUSUM, EWMA, CSCUSUM, CSEWMA,
MEC, and MCE residual charts are briey discussed
for the correlated process.

2.1.1. Shewhart residual control chart
The Shewhart chart [1] is e�cient for monitoring large
shifts in the process mean. In the presence of serial
correlation, the Shewhart residual chart [11,18] is used
to handle the correlation. In this chart, et in Eq. (3b)
is used as the plotting statistic. A process is said to be
out-of-control in the chart when the plotting statistic
(et) falls outside the following control limits:

UCL = �+ Ls�e and LCL = �� Ls�e; (4)

where Ls is a control chart multiplier, which is used to

adjust the in-control run length of the chart. � and �e
represent the in-control mean and standard deviation
of the residuals from an AR (1) process, respectively.

2.1.2. CUSUM residual control chart
The CUSUM chart [2] is best noted for detecting small
changes in the mean of the process. However, in the
presence of serial correlation, this chart is transformed
into the CUSUM residual chart to account for the
correlation which a�ects the process [6,18,19]. The
two sided CUSUM statistics in the residual chart are
de�ned as:8<:C+

t = max
�
0; et � ��K + C+

t�1
�

C�t = max
�
0; �� et �K + C�t�1

� (5)

We de�ne K = k�e and H = h�e, where K and H
denote the reference and the decision interval values,
respectively. k = 0:5 is a widely used �gure because
it makes the CUSUM chart very sensitive to small
and medium shifts [4]. The chart is considered to be
in an out-of-control state when either of the CUSUM
statistics exceeds H, i.e. when:

C+
t > H or C�t > H: (6)

2.1.3. EWMA residual control chart
The EWMA chart [3] was developed for monitoring
small shifts in the process. When observations from
the process are serially correlated, the EWMA residual
chart is used [6,18,20]. For the EWMA residual chart,
the statistic (Wt) is de�ned as:

Wt = �et + (1� �)Wt�1; (7)

where � is the smoothing parameter (0 < � � 1). Small
values of � are desirable for the detection of small shifts
and vice versa. The variance of Wt statistic is given as:

Var (Wt) = �2
Wt

= lim
t!1�

2
e

�
�

2� �
��

1� (1� �)2t�
= �2

e

�
�

2� �
�
: (8)

An out-of-control signal is generated if Wt falls outside
the following control limits:

UCL = �+ LE�e

s�
�

2� �
�

and

LCL = �� LE�e
s�

�
2� �

�
; (9)

where LE is the control constant in the chart.
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2.1.4. CSCUSUM residual control chart
The CSCUSUM chart [27] combines the schemes of
the CUSUM and Shewhart control charts. Therefore,
it is very sensitive for monitoring small and large
mean shifts. In the presence of serial correlation, the
CSCUSUM residual chart was proposed by Lin [22]. A
process is said to be out-of-control when the current
observation (et) falls outside the Shewhart limits or
any of the CUSUM statistics exceeds the value of H,
i.e. when:8>>><>>>:

et > UCL = �+ Ls�e or

et < LCL = �� Ls�e or

C+
t > H or C�t > H

(10)

2.1.5. CSEWMA residual control chart
The CSEWMA chart [28] operates by combining the
Shewhart and EWMA schemes. This combined chart
is also very sensitive to small and large shifts in
the process mean. The CSEWMA residual chart is
used for location monitoring when the observations are
correlated [22]. This residual chart is considered out-
of-control when the EWMA statistic (Wt) falls outside
the EWMA limits or the current observation (et) falls
outside the Shewhart limits, i.e. when:8>>>>>>>>><>>>>>>>>>:

et > UCL = �+ Ls�e or

et < LCL = �� Ls�e or

Wt > UCL = �+ LE�e
r�

�
2��

�
or

Wt < LCL = �� LE�e
r�

�
2��

�
(11)

2.1.6. MEC residual control chart
The MEC chart [24] integrates the EWMA statistic
(Wt) into the CUSUM statistic. This chart is e�ective
for detecting small shifts in the process. In this study,
we present the MEC residual chart for monitoring
serially correlated observations. This residual chart is
represented as:8<:MEC+

t = max
�
0;Wt � ��Kt + MEC+

t�1
�

MEC�t = max
�
0; ��Wt �Kt + MEC�t�1

� (12)

We de�ne Kt = k��W and Ht = h��W , where Kt and
Ht denote the reference and decision interval values,
respectively. This chart is said to be out-of-control
when either of the MEC statistics exceeds the value
of Ht, i.e. when:

MCE+
t > Ht or MEC�t > Ht: (13)

2.1.7. MCE residual control chart
The MCE chart [25] is formulated by incorporating
the CUSUM statistics into the EWMA statistic. It
retains the good characteristics of both CUSUM and
EWMA charts and eliminates the inability of both
charts to detect large shifts when used in isolation.
This chart is noted to perform relatively better than
the Shewhart chart for large shifts. To eliminate the
usual problems associated with control chart utilization
in the presence of serial correlation, this MCE chart is
transformed into the MCE residual chart to improve
process performance. The proposed transformed chart
is de�ned as:8<:MCE+

t = �C+
t + (1� �)MCE+

t�1

MCE�t = �C�t + (1� �)MCE�t�1

(14)

where C+
t and C�t represent the CUSUM statistics

given in Eq. (5). The starting values of the MCE
statistics in Eq. (14) are set equal to the grand mean
of C+

t and C�t , respectively. That is:

MCE+
0 = MCE�0 = �c:

The mean and variance of the MCE statistics are
time varying and are obtained through a simulated
procedure. They are represented as:

mean(MCE+
t ) = mean(MCE�t ) = �MCE; (15)

Var (MCE+
t ) = Var(MCE�t ) = �2

MCEt : (16)

However, as t ! 1, the target mean of the CUSUM
statistics becomes equal to the target mean of the
MCE statistics. That is, �MCE = �C . An out-of-
control signal is generated if either MCE+

t or MCE�t
falls outside the control limit, i.e. when:

MCE+
t > UCLt = �MCEt + LM�MCEt or

MCE�t > UCLt = �MCEt + LM�MCEt ; (17)

where LM is the control constant in the chart.

3. Performance evaluation and comparison of
the charts

The performance evaluation and comparison of all the
residual charts discussed in Section 2 will be done using
the Average Run Length (ARL) and Extra Quadratic
Loss (EQL) performance criteria. ARL is the mean
number of samples that must be plotted before a point
signals an out-of-control condition [5]. For an in-
control process, ARL is denoted by ARL0 and this
quanti�es the false alarm rate. An out-of-control state
is represented as ARL1 and a chart with the smallest
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ARL1 value is considered very sensitive to process shifts
in comparison with its counterparts at a �xed ARL0
value [29]. EQL is the weighted mean ARL over a
range of the process shifts (�min < � < �max) using
the square of the shift (�2) as the weight [30]. The
EQL is represented numerically as:

EQL =
1

�max � �min

Z �max

�min

�2ARL(�)d�: (18)

The approximate value of EQL will be determined nu-
merically by using the Trapezium rule. The Trapezium
rule is a method that is used to calculate the area under
a curve by dividing it into series of strips with equal
width. Therefore, the estimated value represents the
approximate value of the integral. A control chart with
the smallest EQL value has better performance ability
than its counterparts over an entire shift range. The
ARL and EQL performance measures [29,30] are regu-
larly used in process evaluation and comparison of dif-
ferent control charts. To determine these performance
criteria, we consider � = 0; 0:5; 1; 1:5; 2; 2:5; 3; 3:5; 4 as
the values of the mean shift and:

� = 0;�0:25;�0:50;�0:75;�0:90;

asthe values of the autocorrelation coe�cient. We
categorize the mean shift by small (� < 1), medium
(1 � � < 3), and large (� � 3).

For each level of mean shift and autocorrelation
coe�cient considered, 10000 simulations are done to
obtain the ARL values. All the design parameters in
the charts are adjusted in order to have in-control ARL
of 370. We use (Ls = 3), (k = 0:5; h = 4:77), (LE =
2:86; � = 0:2), (Ls = 3:5; k = 0:5; h = 4:914), (Ls =
3:5; LE = 2:91; � = 0:2), (k = 0:5; h = 21:28; � = 0:2),
and (k = 0:5; � = 0:2; LM = 4:18) design parame-
ters in the Shewhart, CUSUM, EWMA, CSCUSUM,
CSEWMA, MEC, and MCE charts, respectively. The
speci�c value of Ls = 3:5 is used in the combined
charts because Lucas and Saccucci [27,28] recommend
a value greater than the Shewhart limit of 3 (i.e., 3.5
or 4) since a larger value has a smaller e�ect on the in-
control ARL. The ARL and EQL values for the residual
charts are displayed in Tables 1 and 2 for an AR (1)
process with � � 0 and � < 0, respectively. In this
work, we have replicated the ARL results of the EWMA
and CUSUM charts from the work of [5] to ensure the
validity of the simulation procedures used. Figures 1
and 2 present graphical comparison of the charts for
di�erent autocorrelation and mean shift levels.

Figure 1. ARL curves for di�erent residual charts for positively correlated processes.
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Table 1. ARLs and EQLs for di�erent residual charts at di�erent levels of � when ARL0 = 370 and � � 0.

� � CSCUSUM CSEWMA MEC CUSUM EWMA Shewhart MCE

0

0 372.21 374.95 374.32 370.95 371.47 370.43 369.12
0.5 36.53 37.64 29.17 34.90 35.71 155.59 29.37
1 10.13 10.14 13.92 9.96 9.86 43.64 7.77

1.5 5.54 5.30 9.76 5.49 5.23 15.10 3.82
2 3.77 3.53 7.81 3.84 3.57 6.40 2.35

2.5 2.79 2.62 6.61 3.00 2.78 3.20 1.66
3 2.15 2.03 5.79 2.48 2.31 2.00 1.32

3.5 1.69 1.63 5.20 2.15 2.02 1.46 1.14
4 1.35 1.33 4.74 1.96 1.81 1.20 1.06

EQL 14.38 13.86 33.70 16.19 15.28 25.95 9.73

0.25

0 371.64 372.25 367.61 368.92 371.29 368.76 367.36
0.5 63.69 65.16 41.84 62.02 62.66 212.95 51.40
1 16.17 16.88 17.96 15.88 16.25 79.67 12.51

1.5 8.00 7.91 12.10 7.86 7.72 31.46 5.46
2 5.06 4.83 9.42 5.09 4.88 13.56 3.02

2.5 3.54 3.33 7.81 3.76 3.51 6.41 1.92
3 2.56 2.42 6.77 2.95 2.73 3.25 1.42

3.5 1.94 1.82 6.01 2.44 2.26 1.86 1.16
4 1.47 1.43 5.43 2.10 1.92 1.33 1.06

EQL 18.86 18.32 40.02 20.78 19.81 45.09 12.14

0.5

0 370.64 370.03 371.50 370.57 373.04 373.14 369.30
0.5 124.86 126.04 72.30 122.09 118.65 281.82 104.28
1 35.74 36.55 27.92 34.39 35.26 155.52 26.92

1.5 15.21 15.70 17.27 14.96 15.37 75.76 10.46
2 8.58 8.62 12.74 8.51 8.69 36.62 4.96

2.5 5.40 5.31 10.23 5.68 5.64 18.26 2.71
3 3.60 3.50 8.67 4.15 4.00 8.23 1.67

3.5 2.43 2.35 7.54 3.18 3.02 3.89 1.25
4 1.74 1.67 6.70 2.55 2.34 2.03 1.07

EQL 30.67 30.58 52.96 33.10 32.65 99.38 19.02

0.75

0 372.81 367.22 371.71 369.14 374.74 368.99 369.62
0.5 254.53 256.65 176.23 248.91 246.11 340.48 233.68
1 124.03 127.94 72.39 120.40 118.97 278.85 98.04

1.5 60.05 61.16 39.14 58.70 58.76 202.28 40.40
2 31.23 33.20 25.84 30.71 32.61 128.75 17.28

2.5 16.99 18.45 18.95 18.35 19.52 79.20 7.47
3 9.49 10.14 14.87 10.95 12.14 41.60 3.51

3.5 5.35 5.69 12.26 7.21 7.72 19.32 1.86
4 2.99 3.14 10.37 5.00 5.14 8.04 1.25

EQL 91.10 95.49 99.16 97.39 101.25 313.06 53.44

0.9

0 367.95 372.95 368.22 368.32 370.32 368.61 374.28
0.5 348.31 349.73 321.05 341.38 338.49 361.48 328.62
1 282.32 284.35 208.82 284.59 281.10 346.13 244.32

1.5 214.37 219.47 137.76 210.75 209.98 309.44 159.49
2 151.76 151.34 91.01 153.31 156.03 259.59 89.19

2.5 99.73 103.94 63.93 106.71 110.09 198.20 44.72
3 59.61 60.54 46.76 75.20 76.47 129.35 19.09

3.5 32.09 34.93 35.31 48.20 51.32 69.58 7.35
4 15.90 16.76 26.92 31.33 32.20 31.84 2.75

EQL 392.37 403.42 303.93 455.28 465.61 710.13 200.68
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Table 2. ARLs and EQLs for di�erent residual charts at di�erent levels of � when ARL0 = 370 and � < 0.

� � CSCUSUM CSEWMA MEC CUSUM EWMA Shewhart MCE

-0.25

0 373.31 367.77 370.16 372.57 372.84 372.30 367.55
0.5 23.23 24.80 22.61 22.86 23.68 113.18 19.59
1 7.43 7.19 11.61 7.26 7.03 25.59 5.64

1.5 4.39 4.10 8.43 4.41 4.10 8.20 3.04
2 3.12 2.91 6.85 3.24 2.99 3.75 2.05

2.5 2.40 2.27 5.86 2.62 2.43 2.26 1.55
3 1.90 1.83 5.19 2.24 2.10 1.66 1.28

3.5 1.55 1.53 4.67 2.03 1.93 1.33 1.14
4 1.32 1.31 4.23 1.91 1.78 1.16 1.05

EQL 12.15 11.77 29.76 14.07 13.26 17.75 8.65

-0.5

0 369.21 369.00 371.40 367.71 373.22 373.03 367.08
0.5 16.81 17.62 18.59 16.42 16.79 81.54 13.98
1 5.95 5.68 10.11 5.88 5.57 15.52 4.51

1.5 3.70 3.43 7.52 3.74 3.48 5.11 2.65
2 2.71 2.56 6.17 2.87 2.64 2.68 1.90

2.5 2.13 2.06 5.33 2.38 2.22 1.89 1.50
3 1.77 1.74 4.76 2.09 2.01 1.53 1.27

3.5 1.51 1.51 4.24 1.98 1.91 1.31 1.14
4 1.31 1.31 3.99 1.90 1.78 1.16 1.06

EQL 10.94 10.70 27.06 12.88 12.21 13.63 8.10

-0.75

0 369.81 369.20 370.10 369.45 371.61 371.21 369.53
0.5 13.04 13.25 16.24 12.74 12.70 59.70 10.72
1 5.04 4.73 9.11 5.02 4.68 10.19 3.87

1.5 3.21 3.03 6.87 3.34 3.08 3.60 2.38
2 2.41 2.30 5.69 2.62 2.41 2.21 1.80

2.5 1.97 1.92 4.95 2.21 2.10 1.76 1.48
3 1.71 1.70 4.38 2.03 1.97 1.51 1.27

3.5 1.51 1.50 4.02 1.96 1.90 1.31 1.13
4 1.32 1.31 3.83 1.90 1.78 1.16 1.05

EQL 10.24 10.03 25.19 12.19 11.60 11.50 7.76

-0.9

0 370.84 369.50 370.02 372.47 372.14 368.76 370.62
0.5 11.30 11.53 15.00 11.16 11.17 50.01 9.43
1 4.57 4.34 8.62 4.60 4.32 8.17 3.55

1.5 3.00 2.84 6.54 3.16 2.91 3.11 2.29
2 2.28 2.20 5.44 2.51 2.32 2.06 1.75

2.5 1.91 1.89 4.76 2.15 2.05 1.73 1.47
3 1.69 1.69 4.19 2.00 1.97 1.51 1.27

3.5 1.50 1.50 3.96 1.96 1.90 1.31 1.14
4 1.31 1.31 3.66 1.90 1.78 1.16 1.05

EQL 9.92 9.78 24.25 11.90 11.37 10.70 7.63

3.1. ARL criterion
3.1.1. Positively correlated observations
For positively correlated processes (� > 0), the MEC
residual chart, followed by the MCE residual charts,
outperforms the other charts for small shifts in the
process mean. Please note that the CUSUM, EWMA,
CSCUSUM, and CSEWMA residual charts perform
the same and almost quite well for small shifts. The
Shewhart residual chart is the worst performing chart
for small shifts.

Again, the MCE performs better than the other
charts with respect to medium shifts (1 � � < 3). It is
worth pointing out that when � = 0:75 and � = 0:90,
the MEC residual chart also performs creditably well
for medium shifts, especially between 1 � � < 2. The
performances of the CUSUM, EWMA, CSCUSUM,
and CSEWMA residual charts are almost the same for
medium shifts but inferior to the MCE residual chart.

With large shifts in the mean of positively corre-
lated processes, the MCE performs exceptionally well
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Figure 2. ARL curves for di�erent residual charts for negatively correlated processes.

and better than the other charts. Generally, the
CSCUSUM and CSEWMA residual charts also per-
form better than the EWMA, CUSUM, and Shewhart
residual charts. For highly correlated processes (i.e.,
� � 0:75), the performance of the Shewhart residual
chart is the worst for large shifts.

3.1.2. Negatively correlated observations.
When a process is negatively autocorrelated (� <
0), all the charts (MCE, MEC, EWMA, CUSUM,
CSCUSUM, and CSEWMA) except the Shewhart
residual chart perform creditably well for small shifts in
the process. However, the MEC residual chart mostly
performs well for � � 0:5.

Furthermore, the MCE residual chart performs
better than the other charts for medium shifts in
the process mean. The performances of the EWMA,
CUSUM, CSCUSUM, and CSEWMA residual charts
are almost the same for medium shifts but inferior
to the MCE residual chart. The Shewhart residual
chart does perform quite well like both CSCUSUM
and CSEWMA residual charts with 2 < � < 3. The
MEC chart is the worst performing chart for this shift
category.

For large shifts, the MCE and MEC residual
charts are the best and worst residual charts for
negatively correlated processes, respectively. However,
the Shewhart, CSCUSUM, and CSEWMA residual
charts perform equally well for large shifts as expected.

3.2. EQL criterion
Lastly, with in-control ARL �xed at 370 in all the
competing charts, it is observed that the MCE residual
chart, followed by the CSCUSUM and CSEWMA
residual charts, consistently has the smallest EQL
values for both positive and negative autocorrelated
processes. This indicates that the MCE residual chart
has the best performance ability over the shift range
with respect to the correlated process. It is clear that
for positively and negatively correlated processes, the
Shewhart and MEC residual charts are respectively the
worst performing charts.

4. Illustrative examples

In this section, we consider both the simulated and real-
life data sets for the illustration of the control charts
when a sustained shift is introduced in the process
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mean of the AR (1) observations. In the illustrations,
we use the initial-state ARL as the performance mea-
sure for the comparison of the charts.

Example 1: Simulated data. We simulated 100
observations of an AR (1) model with � = 0:5.
The residuals of this model were standardized. At
observation 83, a persistent shift of magnitude 1�e
was introduced in the observations. The �rst 82
observations represent the in-control state of the pro-
cess. Based on these residuals, we constructed di�erent
charts as described in Section 2. Various parameters
in the residual charts were chosen such that the in-
control ARL = 370. The graphical displays of the
charts are presented in Figure 3. We have omitted the
graphical displays for the CSCUSUM and CSEWMA
residual charts, because their outputs are similar to the
outputs of the CUSUM and EWMA residual charts,

Table 3. Out-of-control points for the di�erent residual
charts based on the data in Example 1.

Charts Out-of-control points
Shewhart 0
EWMA 87, 88, 89
CUSUM 88, 89
MEC 93, 94, 95, 96, 97, 98
MCE 89, 90, 91, 92, 93, 94, 95

respectively. Table 3 displays various charts with their
corresponding out-of-control points. Due to the limits
of space, we have provided 35 of the 100 values of each
charting statistic computed in Table 4.

It is clear from Table 3 that after the 82nd
observation, the MCE, MEC, EWMA, CUSUM, and
Shewhart residual charts detected 7, 6, 3, 2, and 0 out-
of-control points, respectively. The MCE and MEC

Figure 3. Residual charts for simulated data in Example 1.
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Table 4. The values of the charting statistics (35 out of 100 observations).

Observation Shewhart EWMA CUSUM MEC MCE
et Wt C+

t C�t MEC+
t MEC�t MCE+

t MCE�t
1 0.00 0.02 0.00 0.00 0.00 0.00 0.40 0.40
2 0.36 0.09 0.00 0.00 0.00 0.00 0.32 0.32
3 0.41 0.15 0.00 0.00 0.00 0.00 0.26 0.26
4 0.09 0.14 0.00 0.00 0.00 0.00 0.21 0.21
5 -0.66 -0.02 0.00 0.19 0.00 0.00 0.17 0.20
6 1.96 0.38 1.45 0.00 0.19 0.00 0.42 0.16
7 0.51 0.40 1.45 0.00 0.42 0.00 0.63 0.13
8 -2.24 -0.12 0.00 1.77 0.11 0.00 0.50 0.46
9 0.75 0.05 0.24 0.55 0.00 0.00 0.45 0.48
10 -0.56 -0.07 0.00 0.64 0.00 0.00 0.36 0.51
11 -1.22 -0.30 0.00 1.40 0.00 0.16 0.29 0.69
12 -0.27 -0.30 0.00 1.21 0.00 0.32 0.23 0.79
13 -1.18 -0.47 0.00 1.91 0.00 0.65 0.18 1.02
14 -0.84 -0.55 0.00 2.29 0.00 1.06 0.15 1.27
15 -0.73 -0.58 0.00 2.55 0.00 1.50 0.12 1.53
16 -1.91 -0.85 0.00 3.99 0.00 2.20 0.09 2.02
17 0.91 -0.50 0.40 2.61 0.00 2.56 0.16 2.14
18 0.14 -0.37 0.02 2.01 0.00 2.79 0.13 2.11
19 -1.30 -0.56 0.00 2.84 0.00 3.21 0.10 2.26
20 1.37 -0.17 0.86 1.01 0.00 3.24 0.25 2.01
21 0.44 -0.05 0.78 0.10 0.00 3.14 0.36 1.63
22 -0.37 -0.11 0.00 0.00 0.00 3.12 0.29 1.30
23 0.96 0.10 0.45 0.00 0.00 2.87 0.32 1.04
24 0.94 0.27 0.88 0.00 0.08 2.46 0.43 0.83
25 0.88 0.39 1.24 0.00 0.29 1.93 0.59 0.67
26 0.73 0.46 1.46 0.00 0.56 1.33 0.77 0.53
27 0.58 0.48 1.52 0.00 0.86 0.71 0.92 0.43
28 -0.11 0.36 0.90 0.00 1.03 0.21 0.91 0.34
29 -0.38 0.22 0.00 0.00 1.06 0.00 0.73 0.27
30 -0.46 0.08 0.00 0.00 0.96 0.00 0.58 0.22
31 -0.81 -0.10 0.00 0.34 0.67 0.00 0.47 0.24
32 -0.26 -0.13 0.00 0.14 0.36 0.00 0.37 0.22
33 -1.44 -0.39 0.00 1.11 0.00 0.25 0.30 0.40
34 2.39 0.16 1.88 0.00 0.00 0.00 0.62 0.32
35 1.31 0.39 2.67 0.00 0.21 0.00 1.03 0.26

residual charts were slow in detecting the initial two
out-of-control signals as compared to the CUSUM and
EWMA residual charts; but, in all, they detected the
most signals. According to this example, the MCE
residual chart was the best performing chart, followed
by the MEC and the EWMA residual charts. The
observations in this example are consistent with the
�ndings in Section 4.

Example 2: Real-life data. In this example, we

use a real-life dataset to demonstrate how the charts
perform. In the production of a certain equipment,
several tests of insulation resistance are carried out
on a material which was selected for use. In an
Insulation Resistance (IR) test, Direct Current (DC)
voltage is passed through the dielectric material. An
IR tester, which is connected to the material, records
the IR measurements. The data [1] consists of 204
observations of resistance (in megohms) taken on sam-
ples of the material. An AR (1) process model with
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Figure 4. Residual charts for real-life data in Example 2.

� = 0:55 provided a perfect �t to the data. The
residuals obtained from the model were standardized.
At observation 151, a step shift of 2:5�e was introduced
into the observations. Figure 4 displays the outputs
of the MEC and MCE residual charts, respectively.
After the 150th observation, the MCE and MEC charts
signalled 51 and 46 out-of-control points, respectively.
This shows the superiority of the MCE residual chart to
the MEC residual chart with respect to medium shifts.
The �ndings in this example are also consistent with
the results in Section 4.

5. Conclusions

Many situations arise in manufacturing and industrial
operations when the observations become correlated.
In this paper, we investigated and compared the
performances of the MEC and MCE residual charts
with those of the existing Shewhart, CUSUM, EWMA,
CSCUSUM, and CSEWMA residual charts. The
comparisons indicated that for the AR (1) process, the
MEC residual chart is good for detecting small mean
shifts of positively correlated processes. Further, the
MEC residual chart is not sensitive to the detection of
medium and large shifts as compared to other charts.
Also, the comparisons revealed that the MCE residual
chart performed better for small and medium shifts
than the CUSUM, EWMA, and the combined residual
charts did whilst, for large mean shifts, the MCE
residual chart performed better than the Shewhart and
the other residual charts did for the AR (1) process. We
emphasize that the performances of the residual charts
depend on the process model, correlation levels, and
the magnitude of the shift.

These charts can be applied in processes involved

in the chemical industry, smelting, and re�nery oper-
ations, which are known to produce correlated data
for monitor quality characteristics. Future research
can concentrate on the optimization designs of the
MEC and MCE charts for correlated processes and
the application of theses charts to serially correlated
multivariate data can be studied. Further, the steady-
state run length behavior of these charts can also be
investigated.
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