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Abstract. Redundancy Allocation Problem (RAP) is one way to increase system
reliability. In most of the models developed so far for the RAP, system components
are considered to have a binary state consisting of \working perfect" or \completely
failed". However, to suit the real-world applications, this assumption has been relaxed
in this paper, such that components can have three states. Moreover, a Bi-Objective RAP
(BORAP) is modeled for a system with serial subsystems, in which non-repairable tri-state
components of each subsystem are con�gured in parallel and the subsystem works under
k-out-of-n policy. Furthermore, to enhance system reliability, technical and organizational
activities that can a�ect failure rates of the components, and hence can improve the system
performance are also taken into account. The aim is to �nd the optimum number of
redundant components in each subsystem, such that the system reliability is maximized
while the cost is minimized within some real-world constraints. In order to solve the
complicated NP-hard problem at hand, the multi-objective Strength Pareto Evolutionary
Algorithm (SPEA-II) is employed. As there is no benchmark available, the Non-dominated
Sorting Genetic Algorithm (NSGA-II) is used to validate the results obtained. Finally, the
performances of the algorithms are analyzed using 20 test problems.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Growing customer demands and increased production
rates to satisfy the demands have made reliability
engineers think of ways to enhance the reliability of
production systems in their designs. One way to
increase system reliability is the so-called redundancy
allocation optimization. The Redundancy Allocation
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Problem (RAP) is a complex combinational optimiza-
tion problem in which the goal is to determine the
optimal combination of the number of components of a
system in order to maximize its reliability under some
constraints. This problem has many applications in
industries such as electronic systems, power stations,
production systems, etc.

Based on the classical standpoint, system compo-
nents in reliability models are considered to operate in
two working conditions of \perfect" and \failed", based
on which many RAP models have been proposed in the
literature. Fy�e et al. [1] were the �rst to model the
RAP using an active strategy. The objective function
of their model maximized system reliability subject to
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weight and cost constraints. They employed dynamic
programming to solve the problem. Nakagawa and
Miyazaki [2] solved 33 problems based on Fy�e et al.'s
model [1]. In these problems, the upper limit on the
system weight was ranging from 159 to 191. They used
an exact method, called surrogate constraint, to solve
the problems, and showed that this approach would
perform better than the dynamic programming method
in problems with multiple constraints. Moreover,
Bul�n and Liu [3] utilized three methods to solve these
33 problems. Two of them were exact methods based
on branch and bound, and the third was a heuristic
approach.

Misra and Sharma [4] considered RAP for a series-
parallel con�guration with subsystems that work under
k-out-of-n policy. In their models, the redundancy
strategy was active, and similar components, each with
two sates, could be allocated to each subsystem. They
solved the problem using zero-one programming. Bai
et al. [5] developed a RAP model for a k-out-of-n
subsystem under the Common-Cause Failures (CCF).
Pham [6] proposed a RAP model for a system with only
one k-out-of-n subsystem under the active strategy.
The objective function of his proposed model was
to minimize the total cost of the system. She and
Pecht [7] derived a closed-form formula to calculate
the reliability of k-out-of-n subsystem with warm-
standby redundancy. Pham and Malon [8] presented
a model for the RAP of a k-out-of-n subsystem under
active strategy with similar multiple failure-state com-
ponents. Coit and Smith [9] proposed a new model with
a mix of components (RAPMC) and active strategy
for series-parallel systems with k-out-of-n subsystems.
Assuming that there would be uncertainty in com-
ponent reliability, Coit and Smith [10] investigated
the RAP of series-parallel systems with k-out-of-n
subsystems consisting of similar components under
active strategy. Moreover, Coit and Liu [11] proposed
a RAP model with CCF and k-out-of-n strategy, in
which both the active and standby strategies were used
simultaneously. In order to solve the problem, they
used a zero-one integer programming. Taking into
consideration the active and cold-standby strategies,
Coit [12] developed a new RAP model and solved it
using integer programming. Moreover, Tian et al. [13]
presented a joint redundancy-reliability optimization
method in order to solve series-parallel RAP. They
displayed that technical and organizational activities
are e�ective approaches to improve system reliability,
where failure and repair rates of components could be
improved by these activities.

Since the time Chern [14] proved that RAP
belongs to the class of NP-hard problems, several
heuristics and metaheuristics have been proposed in
the literature to solve various RAPs. Ida et al. [15] and
Yokota et al. [16] were the �rst to present a simple Ge-

netic Algorithm (GA) to solve RAP for series-parallel
system with multiple failure-state components. In
order to generate and select feasible solutions, Coit and
Smith [17] introduced a performance penalty function
to encourage algorithm to search the boundaries be-
tween feasible and near-feasible regions. Furthermore,
Coit [18] solved the problems in [1] under the cold-
standby redundancy strategy. Tavakkoli-Moghaddam
et al. [19] developed a GA to solve the problems solved
in [12]. An important characteristic of their GA was the
type of chromosome and the crossover and mutation
operators. Safaei et al. [20] studied the performance
of a Particle Swarm Optimization (PSO) algorithm,
named Annealing-based PSO (APSO), to solve RAP
with multiple component choices. Moreover, Chambari
et al. [21] solved the problems in [12] using an e�cient
Simulated Annealing (SA) and compared the results
with the ones obtained in [19]. Teimouri et al. [22] pre-
sented an e�cient Memory-Based Electromagnetism-
like Mechanism (MBEM) to solve the RAP. They
used a memory matrix in the local search procedure
to separate positive variations from negative ones in
order to �nd better solutions. Recently, Pourkarim
Guilani et al. [23] have worked on a RAP with in-
creasing failure rates of system components under the
Weibull distribution. They employed a simulation-
based optimization approach to estimate the system
reliability function and utilized a GA to solve their
problem.

While the aforementioned studies considered sys-
tem components to work in the two states of \working
perfect" or \completely failed", to suit real-world
applications, this assumption will be relaxed in this
paper, such that the components can perform at any
performance rate between 0% and 100%, each with
a certain probability. To name a few works in this
regard, Levitin et al. [24] o�ered a model to determine
optimal versions of components and their redundancy
in multi-state series-parallel systems. Besides, while
Ramirez-Marquez and Coit [25] utilized a heuristic
method to solve a multi-state RAP, Tian and Zuo [26]
proposed a new solution method based on physical
programming. Note that the number of possible states
in a system with multi-state components increases
rapidly when the number of subsystems becomes larger,
and hence computational complexity gets high so
that system reliability determination of Multi-State
Systems (MSS) is extremely hard using mathematical
relations. In this situation, the Universal Generating
Function (UGF), �rst proposed by Ushakov [27], is
usually used. Levitin and Lisnianski [28] employed the
UGF and proposed a method to solve a multi-state
system reliability optimization problem. The technique
presented in their paper combines a UGF method used
for fast reliability evaluation of MSS and a GA used
as an optimization engine. Lisnianski and Levitin [29]



P. Pourkarim Guilani et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 1585{1602 1587

studied UGF applications in reliability evaluation of
some MSSs with series, parallel, and series-parallel
subsystems. One di�culty in the application of the
UGF method to calculate reliability and availability
of MSSs is the CPU time, required when the number
of components in the system increases. To cope with
this problem, Li and Zuo [30] presented another useful
method, called recursive algorithm, which evaluates
reliability and availability of MSSs in short CPU
time. Besides, Pourkarim Guilani et al. [31] presented
another e�cient method in order to calculate the
reliability of non-reparable thri-state systems using
a Markov model. They demonstrated that with an
appropriate de�nition of the states, the reliability of
thri-state systems can be calculated in even shorter
CPU time compared to the recursive algorithms; thus,
it can be utilized to evaluate the reliability of large-
scale problems. Furthermore, Pourkarim Guilani et
al. [32] provided a RAP model to optimize reliability
of series-parallel systems with thri-state components
based on [31]. In order to validate the results obtained
by a GA solution method, they proposed an exact
enumeration method.

RAP, with multiple objectives, due to its real-
world applications, has recently received much at-
tention in the literature. In Multi-Objective RAP
(MORAP), in addition to reliability optimization, some
other objective functions, such as cost and weight
minimizations, are involved. In this regard, Cham-
bari et al. [33] presented a bi-objective model for
RAP in series-parallel systems under some assump-
tions such as repairable, cold standby, and active
strategy. They solved the problem using both Non-
dominated Sorting GA (NSGA-II) and Multi-Objective
Particle Swarm Optimization (MOPSO) algorithms.
Khalili Damghani and Amiri [34] solved a binary-state
MORAP using an epsilon-constraint programming,
multi-start partial bound numeration algorithm, and
Data Envelopment Analysis (DEA). Safari [35] pre-
sented a MORAP for a series-parallel system by con-
sidering non-repairable components and independent
failures. He solved the problem using NSGA-II. Khalili
Damghani et al. [36] presented a Decision Support
System (DSS) to solve MORAPs, where a reduced-
dimension multiple objective optimization problem was
used.

In this paper, we intend to present a bi-objective
model to optimize reliability and cost of series-parallel
system with k-out-of-n subsystems. The important
assumption in this research is that the components
of the subsystems can have three performance rates.
The reason for investigating thri-state systems is their
wide applicabilities to real-world system reliability
problems. Although thri-state systems belong to the
larger class of multi-state systems, many real-world
systems, especially mechanical systems, work with

components with three states: fully-working, semi-
working, and failed [31]. In addition, the impact
of technical and organizational activities on system
reliability is considered. Due to NP-hardness of the
problem, the multi-objective Strength Pareto Evolu-
tionary Algorithm (SPEA-II) is employed to solve it.
Besides, as there is no benchmark available in the
literature, a NSGA-II algorithm is used to validate the
results obtained. A summary of the literature review
is provides in Table 1.

The organization of the rest of the paper is as
follows. The problem is de�ned in Section 2. In
Section 3, the parameters, variables, and model of
the problem are presented. Solution methods are
described in Section 4. Numerical examples are given
in Section 5 to not only demonstrate the applicability
of the proposed methodology, but also to validate the
results obtained using SPEA-II. Finally, in the last
section, we will present conclusion and directions for
future research.

2. Problem de�nition

Consider a system consisting of s sub-systems in series.
A sub-system has ni components in parallel. It is
assumed that each component has three states of
fully-working (100% performance), semi-working (50%
performance), and not working or failed (0% perfor-
mance) [31]. The system structure is demonstrated in
Figure 1. Moreover, as the subsystems are con�gured
in series, failure of a subsystem causes the system to
fail. The components are non-repairable with Constant
Failure Rates (CFR). The components of ith sub-
system, i = 1; 2; � � � ; s, have three di�erent failure rates
as follows:
�i1 Moving from 100% to 50% working;
�i2 Moving from 100% to 0% working;
�i3 Moving from 50% to 0% working.

Similar to Pourkarim Guilani et al. [31], the notation
(w;m) is used to represent a subsystem with w fully-
working and m semi-working components. Then, the
number of states associated with a (w;m) subsystem
with performance point of k, k = 0; 1; 2; � � � ; 2ni �

Figure 1. The system structure.
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Table 1. A summary of relevant literature.

Authors State Solving method Objective

Fy�e et al. (1968) [1] Binary Dynamic programming Single
Nakagawa & Miyazaki (1981) [2] Binary Surrogate constraint Single

Bul�n & Liu (1985) [3] Binary
Branch and bound &
a heuristic approach

Single

Ushakov (1986) [27] Multi-state Universal generating function |
Misra & Sharma (1991) [4] Binary Zero-one programming Single
Pham (1992) [6] Binary Mathematical and statistical relations Single
She & Pecht (1992) [7] Binary Mathematical and statistical relations Single
Chern (1992) [14] Binary Mathematical and statistical relations Single
Pham & Malon (1994) [8] tri-state Mathematical and statistical relations Single
Ida et al. (1994) [15] Binary Genetic algorithm Single
Coit & Smith (1995) [9] Binary Genetic algorithm Single
Yokota et al. (1995) [16] Binary Genetic algorithm Single
Coit & Smith (1996a) [10] Binary Genetic algorithm Single
Coit & Smith (1996b) [17] Binary Genetic algorithm Single

Levitin et al. (1998) [24] Multi-state
Genetic algorithm &
universal generating function

Single

Coit & Liu (2000) [11] Binary Zero-one integer programming Single
Coit (2001) [18] Binary Integer programming Single

Levitin & Lisnianski (2001) [28] Multi-state
Genetic algorithm &
universal generating function

Single

Coit (2003) [12] Binary Integer programming Single
Lisnianski & Levitin (2003) [29] Multi-state Universal generating function |
Ramirez-Marquez & Coit (2004) [25] Multi-state Heuristic method Single
Tian & Zuo (2006) [26] Multi-state Physical programming Single
Tavakkoli-Moghaddam et al. (2008) [19] Binary Genetic algorithm Single
Li & Zuo (2008) [30] Multi-state Recursive algorithm |
Tian et al. (2009) [13] Multi-state Genetic algorithm Single
Safaei et al. (2012) [20] Binary Particle swarm optimization Single
Chambari et al. (2012) [33] Binary NSGA-II & MOPSO Multiple

Khalili Damghani & Amiri (2012) [34] Binary
Epsilon-constraint programming &
multi-start partial bound
numeration algorithm & DEA

Multiple

Safari (2012) [35] Binary NSGA-II Multiple
Chambari et al. (2013) [21] Binary Simulated annealing Single
Pourkarim Guilani et al. (2014a) [31] Tri-state Markov method |
Pourkarim Guilani et al. (2014b) [32] Tri-state GA & enumeration algorithm Single

Khalili Damghani et al. (2014) [36] Binary
Epsilon-constraint programming
& topsis & DEA

Multiple

Teimouri et al. (2016) [22] Binary
Memory-based electromagnetism-like
mechanism

Single

Pourkarim Guilani et al. (2016) [23] Binary Genetic algorithm
Random search Single

Current paper Tri-state NSGA-II & SPEA-II Multiple
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Figure 2. State space diagram of a subsystem [31].

1; 2ni, is obtained by:

2w +m = k; k = 0; 1; 2; � � � ; 2ni � 1; 2ni;

w +m � ni: (1)

Besides Pourkarim Guilani et al. [31] showed that
based on the state space diagram of a subsystem
f(w;m);w;m � nig denoted by f(w;m);w;m � nig
shown in Figure 2, the set of di�erential equation
(Eq. (2)) is obtained and solved using the matrix model
in order to calculate the probability of the states.8>>>>>>>>>>><>>>>>>>>>>>:

P 0(ni;0)(t) + (ni�i1 + ni�i2)P(ni;0)(t) = 0;
w = ni; m = 0;

P 0(w;m)(t) + (w�i1 + w�i2 +m�i3)P(w;m)(t)
= (w + 1)�i1P(w+1;m�1)(t)
+ (w + 1)�i2P(w+1;m)(t)
+ (m+ 1)�i3P(w;m+1)(t)

;

w;m < n

(2)

Then, the reliability of sub-system i is:

Ri(t) =
X

(w;m)2R[W;m]�(0;0)

P(w;m)(t): (3)

Based on k-out-of-n design, a subsystem works
if at least k out of its n parallel components is fully
working. However, this de�nition cannot be used for
subsystems with tri-state components. Here, based
on the point system de�ned earlier, we assume that
each subsystem works successfully if and only if its
assigned point is at least ki, (0 < ki < 2ni). Besides,

as mentioned previously, the points assigned to fully-
working and semi-working components are considered
2 and 1, respectively. As a result, the point the
subsystem (w;m) receives is 2w + m. In this case,
the reliability of subsystem i with tri-state components
that works under ki-out-of-ni will be:

Ri(t) =
X

(w;m)2R[W;m]�8[2w+m<ki]

P(w;m)(t): (4)

In the next subsection, a numerical example is given to
illustrate the proposal.

2.1. A numerical example
Let a sub-system have three identical tri-state compo-
nents. Then, its number of states is obtained by:

2w +m = k; k = 0; 1; 2; � � � ; 6;
w +m � 3: (5)

Eq. (5) can be decomposed into seven equations as
follows:

k = 6)
�

2w +m = 6
w +m � 3

�
) (w;m) = f(3; 0)g;

k = 5)
�

2w +m = 5
w +m � 3

�
) (w;m) = f(2; 1)g;

k = 4)
�

2w +m = 4
w +m � 3

�
) (w;m) = f(2; 0); (1; 2)g;

k = 3)
�

2w +m = 3
w +m � 3

�
) (w;m) = f(0; 3); (1; 1)g;
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Figure 3. State space diagram of the example [31].

Table 2. Matrix representation of the example based on space state diagram.

n = 3 (3,0) (2,1) (2,0) (1,2) (1,1) (0,3) (1,0) (0,2) (0,1) (0,0)
(3,0) 0 3�1 3�2 0 0 0 0 0 0 0
(2,1) 0 0 �3 2�1 2�2 0 0 0 0 0
(2,0) 0 0 0 0 2�1 0 2�2 0 0 0
(1,2) 0 0 0 0 2�3 �1 0 �2 0 0
(1,1) 0 0 0 0 0 0 �3 �1 �2 0
(0,3) 0 0 0 0 0 0 0 3�3 0 0
(1,0) 0 0 0 0 0 0 0 0 �1 �2

(0,2) 0 0 0 0 0 0 0 0 2�3 0
(0,1) 0 0 0 0 0 0 0 0 0 �3

(0,0) 0 0 0 0 0 0 0 0 0 0

k = 2)
�

2w +m = 2
w +m � 3

�
) (w;m) = f(1; 0); (0; 2)g;

k = 1)
�

2w +m = 1
w +m � 3

�
) (w;m) = f(0; 1)g;

k = 0)
�

2w +m = 0
w +m � 3

�
) (w;m) = f(0; 0)g: (6)

Therefore, all of the possible states of this subsystem
are:

R(w;m) = f(0; 0); (0; 1); (0; 2); (0; 3); (1; 0); (1; 1);

(1; 2); (2; 0); (2; 1); (3; 0)g: (7)

Moreover, in 1-out-of-n case, the subsystem continues
working in all states except (0; 0), whereas in k-out-of-
n case with k = 3, the subsystem continues working in
all of the following states:

R(w;m)k-out-of-n=f(0; 3);(1; 1);(1; 2);(2; 0);(2; 1);(3; 0)g:
(8)

The state space diagram of this subsystem is shown in
Figure 3 with a matrix model given in Table 2.

2.2. Technical and organizational activities
Technical and organizational activities involve sup-
portive actions such as system monitoring, using
speci�c maintenance programs, changing maintenance
programs, etc. These activities are e�ective tools to
improve failure and repair rates of the components that
result in system reliability improvement. In general,
activities that are performed at the component level are
called technical and those performed at the subsystem
level are organizational. Both of these activities try
to improve availability of the system by inuencing
transition rates in di�erential equations. The di�erence
between these two types of activities is that technical
activities have impact only on special components of
a subsystem and their cost depends on the number of
a�ected components, whereas organizational activities
a�ect the whole components of subsystems and their
cost is independent of the number of components.
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Let � be the e�ect of technical activities on a
component and tkh be a binary variable that takes 1
if the activity is performed, and zero otherwise. Then,
Eq. (9) shows how a technical activity inuences failure
rate (�) of a component:

�0 = �� tkh:�:�: (9)

In Eq. (9), the failure rate of a component is reduced
from � to �0 in order to enhance system reliabil-
ity. Similar approach is taken to model the e�ect
of organizational activities. In this paper, both of
the above activities are considered to improve system
reliability. Interested readers are referred to [13] for
more details.

3. Mathematical formulation

In order to present the mathematical model of the
problem at hand, the notations are �rst introduced.

3.1. Nomenclature
The notations used to model the problem are de�ned
as:
i Index of a subsystem, i = 1; 2; : : : ; s
s Number of sub-systems
ni Number of components in subsystem i,

ni = 1; 2; � � � ; nmax

R System reliability
Ri(t) Reliability of ith subsystem at time t
ci Cost of a redundant component in

subsystem i
�i Interconnection cost coe�cient for a

component in ith subsystem
ki Minimum requirement point of ith

subsystem to work
K The vector of minimum requirement

points [k1; k2; � � � ; ks]
ckhhi Variable cost of hth technical activity

on a component of ith subsystem
h = 1; 2; � � � ;Hi

ckohi Constant cost of hth technical activity
on a component of ith subsystem

Hi Number of available technical activities
on components of ith subsystem

ckfi Cost of fth organizational activity on
ith subsystem, f = 1; 2; � � � ; Fi

Fi Number of available organizational
activities on ith subsystem

�ij jth type of failure rate for the
components of ith subsystem

�0ij Updated failure rate based on technical
and organizational activities

tkhhi A binary variable equals 1 if technical
activity type h is performed on a
component of ith subsystem; zero
otherwise

tkfi : A binary variable equals 1 if
organizational activity type f is
performed on ith subsystem; zero
otherwise

�hij The e�ect of technical activity type
h on jth type of failure rate for the
components of ith sub-system

�fij The e�ect of organizational activity
type h on jth type of failure rate for
the components of ith sub-system

3.2. The model
The bi-objective optimization model of the redundancy
allocation problem at hand is:

max : R =
sY
i=1

Ri(t); (10)

min : C =
sX
i=1

(
nici + eni(�i)

+
HiX
h=1

([ckhhi:ni + ckohi]:tkhhi)

+
FiX
f=1

(ckfi � tkfi)
)
; (11)

s.t.:

�0ij = �ij � tkhhi:�ij :�hij ; 8 i; j; h; (12)

�0ij = �ij � tkfi:�ij :�fij ; 8 i; f; j; (13)

K 2 [k1; k2; � � � ; ks]; (14)

ni � nmax; 8 i; (15)

ni � 0; 8 i; (16)

tkhhi = 0; 1; 8 h; i; (17)

tkfi = 0; 1; 8 f; i: (18)

Eq. (10) is the �rst objective function of the problem
to maximize the system reliability. It is obtained by
multiplication of the reliability of the serial subsystems
(the relation between Ri(t) and ni was explained in
Section 2). Eq. (11) represents the second objective
function to minimize the total cost including the cost
to purchase the components, the interconnection cost
modeled by an exponential distribution [37], the cost
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of technical activities, and the cost of organizational
activities. Eqs. (12) and (13) are constraints on
technical and organizational activities, respectively.
Relation (14) shows the number of minimum require-
ment points for a subsystem to be in a working
condition. These values are predetermined due to the
need of each subsystem. Constraint (15) puts an upper
bound on the number of components of the subsystems;
Constraint (16) is a sign constraint; Eqs. (17) and (18)
de�ne the binary variables used for either performing
technical and organizational activities or not.

In the next section, a multi-objective Strength
Pareto Evolutionary Algorithm (SPEA-II) is employed
to solve the problem.

4. Solving methods

As mentioned, as RAP is classi�ed as an NP-hard
problem, exact methods are not suitable to solve it,
especially for problems with relatively large sizes. The
problem investigated here consists of two objectives:
one being related to RAP and the other to the sys-
tem cost. Thus, a population-based multi-objective
evolutionary algorithm, called SPEA-II, is developed
in this paper for a Pareto solution. Besides, as
there is no benchmark available in the literature, an-
other commonly used population-based multi-objective
meta-heuristic, called NSGA-II, is utilized to validate
the results obtained. Both algorithms are population-
based that share similar structures. The chromosome
of both algorithms is (1� s) vector n that contains the
number of components used in di�erent subsystems.
This chromosome is shown in Figure 4. Besides, the
answering structure that contains technical and orga-
nizational activities is s � (H + F ) matrix containing
binary elements shown in Figure 5.

Figure 4. The chromosome structure of the algorithms.

Figure 5. The answering structure of technical and
organizational activities.

For instance, consider a system with three serial
subsystems, four technical activities, and one organi-
zational activity. Then, the answering structure of
technical and organizational activities used in both
algorithms is a (3 � 5) matrix in which the �rst four
columns represent technical activities, and the last
column shows the organizational activity. The rows
correspond to subsystems. In this case, if an answer is
obtained as:240 0 0 0 0

0 0 0 0 0
0 1 0 0 0

35 ;
then it means that, due to high cost, only the second
technical activity on the third subsystem is performed.

4.1. Strength Pareto Evolutionary
Algorithm II (SPEA-II)

SPEA-II, proposed by Zitzler [38], is an improved
version of SPEA that can obtain orderly-distributed
Pareto solution by truncating and controlling the
archive set. SPEA-II [39], regarded as a successful
multi-objective evolutionary algorithm, possesses few
con�guration parameters, rapid converging speed, good
robustness, and orderly-distributed solution sets. It
has been applied to multiple domains of multi-objective
planning in both industrial and academic �elds. Wei et
al. [40] used SPEA-II in the �eld of quality performance
conceptual design, where through the Pareto optimal
set based on the fuzzy set theory, e�ective references
were obtained. However, SPEA-II has a disadvantage
of localized solution sets. At the same time, SPEA-
II's application to distributed generations, coordina-
tion, and optimization has seldom been explored in
a distribution network [41]. To avoid identical �tness
values for individuals dominated by the same archive
members, both dominating and dominated solutions
are taken into account for each individual in SPEA-
II. In other words, each individual i in archive Pt and
population Pt is �rst assigned a strength value S(j),
shown in Eq. (19), to represent the number of solutions
it dominates [39]:

S(j) =
���j ��j 2 Pt + Pt ^ i � j 	�� : (19)

Then, based on S(j) values, raw �tness Raw(i) of an
individual i is calculated as follows:

Raw(i) =
X

j2Pt+Pt;j�i
S(j): (20)

Although the raw �tness assignment provides a sort
of niching mechanism based on the concept of Pareto
dominance, it may fail when most individuals do not
dominate each other. Therefore, additional density
information is incorporated to discriminate between
individuals having identical raw �tness values. The
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density estimation technique used in SPEA-II is an
adaptation of kth nearest neighbor method, where the
density at any point is a (decreasing) function of the
distance to kth nearest data point. Here, we simply
take the inverse of the distance to kth nearest neighbor
as the density estimate. To be more speci�c, for each
individual i, the distances (in the objective space) to all
individuals j in archive and population are calculated
and stored in a list. After sorting the list in an
increasing order, the kth element gives the distance
sought, denoted by �ki . As a common setting, we
use k equaling the square root of the sample size as
k =

p
N +N , where N is the population size and N

is the archive size. Then, density D(i) corresponding
to i is de�ned by [42]:

D(i) = 1=(�ki + 2): (21)

Note that in the denominator, number two is added
to ensure that D(i) < 1. Finally, adding D(i) to raw
�tness value Raw(i) of an individual i yields its �tness
F (i) as follows:

F (i) = Raw(i) +D(i): (22)

The owchart of this algorithm is presented in Figure 6.

4.2. Non-dominated Sorting Genetic
Algorithm (NSGA-II)

Deb et al. [43] were the �rst to introduce NSGA-
II. This algorithm is one of the most e�cient multi-
objective evolutionary algorithms to obtain Pareto
optimal fronts for any number of objectives with any
number of constrains. Due to its popularity and since
NSGA-II is also a population-based algorithm, it is
utilized in this research to validate the results obtained
by SPEA-II.

Population ranking in NSGA-II is made according
to two concepts: Fast Non-Dominated Sorting (FNDS)
based on the domination concept and Crowding Dis-
tance (CD) as a measure of solution density for solu-
tions in the same fronts. Between two solutions that
exist in a front, the one with the higher crowding
distance is preferable [44]. In general, to determine
whether a solution is dominated or not, all solutions
are compared with each other to sort the population
of size N , where the one that is not dominated by
the other (front) is selected. The solutions in this set
are the �rst non-dominated bond. To determine the
solutions in other bonds, the solutions of the �rst bond
are temporarily ignored and the process is repeated.
This process is continued until the whole solutions
stand in non-dominated bonds. To estimate solution
density around a special solution, average distance
of this solution from both adjoining solutions, called
crowding distance, is computed. In order to compute

Figure 6. Flowchart of SPEA-II.

the crowding distance of a special solution in a bond,
the largest rectangle in which the special solution lies
within and the two adjoining solutions located in its
two sides are considered. The summation of the length
and the width of the rectangle are then the crowding
distances of the special solution [43].

In order to compute crowding distances, the
population is �rst arranged in an ascending order
according to their objective function values. Then,
the crowding distances of the solutions in the �rst
and end of each bond (solutions with maximum and
minimum objective function values) become in�nite.
In this algorithm, n[j]distance represents mth objective
function value for ith member in set n. A solution
with minimum crowding distance expresses a higher
density around the solution. So, in the next step, it is
desirable to select solutions that are in a region with
lower density or, in other words, with a higher crowding
distance. By this method, a greater variety of solution
distributions become available [43]. The transmutation
mechanism of NSGA-II is shown in Figure 7.
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Figure 7. The transmutation process of NSGA-II [43].

In Figure 7, the parent population includes the
primal population in each iteration. The o�spring
population is then generated by the crossover and mu-
tation operations and the two population are merged to
create a larger population. Next, FNDS is performed
and the merged solutions are sorted in multiple fronts.
After ranking the population in separate fronts using
FNDS, the whole population in front1 and front2 are
transferred to the next iteration. Moreover, a part of
front3 with higher crowding distance is also transferred
to the next iteration, and this trend continues until the
optimal front is found. The owchart of this algorithm
is presented in Figure 8.

Figure 8. Flowchart of NSGA-II.

4.3. Solution encoding
The initial population in both algorithms is �rst gener-
ated randomly. Then, a number of parents are selected
based on the binary tournament selection method.
Finally, the crossover and mutation operators act on
the selected parents as follows.

� Crossover operator: The uniform crossover oper-
ator used in [19] is employed in this paper. In this
operator, a binary random number is generated for
each gene in the parent's chromosome. If this num-
ber is one, then the values of the parent genes are
exchanged with each other. Otherwise, if it is zero,
then the replacement is not performed. Figure 9
demonstrates this operation in both algorithms.

� Mutation operator: In the mutation operation of
this research, a random number is �rst generated
for each gene of a parent. If this number is less than
the mutation rate (mutation rate in this paper is
0.1), then the gene is mutated randomly [19]. The
mutation operation of both algorithms is illustrated
in Figure 10.

5. Numerical examples

Some randomly generated numerical examples are
solved in this section to not only validate the results
obtained using SPEA-II, but also to evaluate the
performances of the two algorithms. Consider a system
consisting of six subsystems. The interconnection
costs, the three failure rates of the components, the four
di�erent versions of technical activities, and one organi-
zational activity are shown in Table 3. Besides, Table 4
contains the e�ects of technical and organizational
activities on each subsystem and its components. All
of the numbers listed in Tables 3 and 4 are generated
randomly using uniform distributions.

In order to compare the results obtained using
the two algorithms, 20 test problems are used for the
presented system at time t = 100. These problems
are generated based on the upper and lower bounds of
component costs in [32] using a uniform distribution,
i.e., Uniform (12; 22). The component costs are shown
in Table 5. Moreover, the minimum acceptable value
of ki in each subsystem is k = [2 1 3 1 5 3] that is
obtained based on a uniform distribution.

5.1. Performance measures
The measures used for evaluating the performance of
the two multi-objective evolutionary algorithms are:

1. Diversity: This metric evaluates the extension of
the Pareto front [38];

2. Spacing: This metric measures the standard devia-
tion of the distances among solutions of the Pareto
front [45];

3. Number of non-dominated solutions (NOS): is the
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Figure 9. Crossover operation of the two algorithms.

Figure 10. Mutation operation of the both algorithms.

Table 3. Input parameters of the problem.

I

Interconnection
costs

Variable cost of
technical and

organizational activities

Constant cost of
technical and

organizational activities

The three
failure rates

of components
�i Ckh1i Ckh2i Ckh3i Ckh4i Ck1i Cko1i Cko2i Cko3i Cko4i �i1 �i2 �i3

1 0.1 5 3 4 2 11 2 2 1 1 0.008 0.004 0.006
2 0.2 4 5 6 3 12 1 1 2 2 0.006 0.003 0.005
3 0.1 2 1 1 3 15 2 2 3 1 0.009 0.0045 0.0055
4 0.15 5 5 3 2 19 2 2 3 3 0.009 0.005 0.007
5 0.25 2 2 3 3 20 4 4 3 5 0.005 0.002 0.004
6 0.1 6 1 3 3 25 2 2 1 3 0.007 0.002 0.004

Table 4. E�ects of technical and organizational activities on subsystems and their components.

i = 1 i = 2 i = 3
�11 �12 �13 �21 �22 �23 �31 �32 �33

�1ij 0.1 0 0 0.3 0 0 0.3 0.1 0
�2ij 0.2 0.05 0 0.05 0 0.4 0 0 0.3
�3ij 0.2 0.1 0.1 0 0.1 0 0 0.1 0
�4ij 0.3 0.1 0.2 0 0.1 0 0.05 0 0.2
�1ij 0 0 0.1 0.1 0.05 0.2 0 0.05 0

i = 4 i = 5 i = 6
�41 �42 �43 �51 �52 �53 �61 �62 �63

�1ij 0 0.25 0 0 0 0.5 0.1 0 0.2
�2ij 0.5 0 0.07 0 0.25 0 0 0 0.15
�3ij 0.08 0 0 0 0.3 0.4 0 0.2 0
�4ij 0 0 0.15 0.1 0 0 0.24 0 0.14
�1ij 0.18 0 0.35 0 0.45 0.2 0.25 0 0.1
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Table 5. The components cost in each test problem.

I Test problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 18 12 21 18 14 19 15 18 15 14 17 18 19 19 17 19 16 21 22 21
2 20 17 14 13 19 21 16 21 13 20 22 19 21 22 22 21 13 13 13 13
3 22 22 13 19 22 17 13 19 18 16 19 21 17 20 13 13 12 17 14 13
4 15 13 14 22 17 19 12 22 19 14 21 13 14 12 13 13 22 18 14 18
5 13 15 12 13 16 22 12 13 21 14 18 17 12 12 18 18 20 14 12 19
6 12 20 18 16 18 20 15 14 18 14 20 19 18 15 19 19 15 12 18 18

Table 6. Performance measures to compare the two multi-objective optimization algorithms.

Metric Formula Description

Diversity [38] D =

s
mP
j=1

�
max
i
f ji �min

i
f ji
�2

Evaluates the spread of the
curve (m is the number of
objectives and f ji is the ith
value of the jth objective)

Spacing [45]

S =

s
1=(n� 1)

nP
i=1

�
di � �d

�2
di = min

k3n\k 6=i
mP
j=1
jf ij � fkj j

�d =
nP
i=1

di=n

Evaluates uniformity of the
distribution of solutions
within a front (n denotes
the size of the Pareto front)

Number of non-dominated
solutions in �nal Pareto (NOS)

|
It measures the number
of Pareto solutions

Mean Ideal Distance (MID) [46] MID = 1=NOS
NOSP
i=1

ci

Evaluates the closeness of
solutions of a Pareto front
with an ideal point (ci represents
the distance of each member
of population from the best
possible value)

Time | Computational time in second

number of the Pareto solutions in Pareto optimal
front;

4. Mean Ideal Distance (MID): This measure evalu-
ates the closeness of solutions of a Pareto front with
an ideal point [46];

5. Time: This metric measures the CPU time of
running the algorithms to obtain near-optimum
solutions.

Table 6 summarizes these measures. Interested readers
are referred to the references shown in the �rst column
of this table for more details.

5.2. Results
Both algorithms are coded in MATLAB Version
7.10.0.499, R2010a. The codes are executed on a

Pentium 4 computer with a 3GB RAM and 2 cores
2.40 GHZ CPU under Windows 7 operating system,
where the mission time is set 100 hours. The results
obtained by employing the two algorithms on the 20
test problems along with the averages of the metrics
are shown in Table 7.

The results in Table 7 show that both algorithms
have similar performances in terms of the NOS metric.
However, while, based on the diversity metric, NSGA-
II is the better algorithm, SPEA-II shows better
performances in terms of Spacing, MID, and Time
metrics. These conclusions can be clearly seen in
Figure 11. Moreover, Pareto solutions to four test-
problem numbers 5, 10, 15, and 20 are shown in
Figure 12, and the actual values of the objective
functions for test problem #15 are presented in Table 8.
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Table 7. The results obtained using the two algorithms based on the presented performance measures.

Test
SPEA-II NSGA-II

Diversity" Spacing# NOS" MID# Time# Diversity" Spacing# NOS" MID# Time#
1 544.079 5.5728 50 434.859 155 653.422 7.5473 50 455.883 186
2 489.888 12.1197 50 432.942 161 683.514 7.0605 50 470.362 178
3 542.341 5.2803 50 408.385 169 735.975 7.0095 50 433.842 178
4 530.456 6.2072 50 487.664 161 599.794 6.4419 50 443.115 182
5 444.783 8.1653 50 387.801 162 823.840 7.8969 50 510.776 171
6 423.207 4.6155 50 422.551 161 760.160 7.7314 50 517.547 174
7 519.982 6.0948 50 401.988 164 621.419 5.7031 50 415.329 175
8 620.128 7.9404 50 496.963 160 780.629 12.6776 50 509.381 174
9 573.460 9.1757 50 524.917 162 829.809 9.2023 50 543.750 178
10 535.364 4.1593 50 432.531 159 678.245 7.9885 50 425.451 178
11 523.560 4.7657 50 563.705 164 859.267 9.6233 50 546.679 178
12 369.637 3.0433 50 446.802 168 807.757 10.7860 50 538.489 182
13 575.589 6.9892 50 500.620 157 691.043 11.6351 50 456.771 178
14 615.517 7.8024 50 466.830 170 734.899 10.7558 50 468.867 180
15 594.585 5.9494 50 501.839 162 694.547 7.5843 50 454.786 179
16 672.134 7.8882 50 503.074 159 705.465 7.5145 50 481.353 172
17 473.927 5.5913 50 481.354 163 685.569 10.5791 50 448.156 178
18 444.634 7.7175 50 418.204 172 754.681 6.9333 50 466.690 177
19 602.204 5.6084 50 487.498 173 820.475 14.3270 50 450.937 182
20 505.053 7.9379 50 452.204 177 670.149 11.2653 50 518.158 176

Average 530 6.631 50 462.6 163.95 729.5 9.013 50 477.82 177.8
#: Implies a negative metric (in this type of metric a lower value is desired);
": Implies a positive metric (in this type of metric a higher value is desired).

Figure 11. Graphical representation of the performances of both algorithms.
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Figure 12. Examples of non-dominated solutions.

Table 8. Pareto solutions to the test problem 15.

Solution
NSGA-II SPEA-II

Solution
NSGA-II SPEA-II

Reliability Cost Reliability Cost Reliability Cost Reliability Cost

1 0 146.215 0.9457 739.728 26 0.1790 275.713 0.1123 264.125

2 0 146.215 0.9455 727.728 27 0.6861 428.348 0.5505 391.964

3 0.9582 824.46 0.9268 640.126 28 0.9432 715.46 0.7222 443.227

4 0.8056 499.227 0.9347 643.728 29 0.2760 305.998 0.3037 310.537

5 0.8865 552.96 0.9363 651.728 30 0.2072 286.207 0.0385 222.738

6 0.3353 314.614 0.9378 668.728 31 0.0430 207.894 0.6741 414.678

7 0.1277 252.307 0.9228 593.633 32 0.9244 648.46 0.6780 425.835

8 0.9516 789.46 0.9245 622.633 33 0.9399 681.46 0.7057 435.678

9 0.5581 374.183 0.0150 204.365 34 0.2986 310.756 0.7423 462.932

10 0.5014 355.026 0.4365 351.138 35 0.3924 335.884 0.2400 301.395

11 0.8308 533.129 0.9206 581.633 36 0.9434 734.46 0.1633 277.125

12 0.7057 445.504 0.9143 580.633 37 0.0715 251.036 0.8601 517.419

13 0.7396 455.053 0.0156 210.365 38 0.9088 600.46 0.9020 558.887

14 0.9059 577.46 0.4160 342.808 39 0.2424 296.478 0.6375 411.723

15 0.0194 186.766 0.3257 319.537 40 0.5974 388.032 0.7776 471.557

16 0.3923 324.884 0.0761 235.854 41 0.7673 466.227 0.1908 280.395

17 0.9474 759.46 0.5063 365.138 42 0.9384 666.46 0.8498 505.714

18 0.7753 474.227 0.0785 237.854 43 0.6731 412.428 0.8681 530.419

19 0.6412 398.174 0.0812 240.854 44 0.0660 249.036 0.8742 531.887

20 0.1527 267.571 0.0394 226.738 45 0.9213 625.46 0.8277 497.419

21 0.4404 339.026 0.3711 336.756 46 0.5974 388.032 0.7983 489.165

22 0.5346 362.183 0.0918 241.854 47 0.0211 193.766 0.8853 546.056

23 0.8354 542.96 0.1040 262.854 48 0.6480 412.174 0.8171 496.419

24 0.4682 341.884 0.5570 399.183 49 0.2351 289.842 0.8963 546.887

25 0.0565 222.023 0.5433 374.183 50 0.9144 617.46 0.8141 492.557

In order to compare the performances of the two
solution algorithms statistically, four tests of hypoth-
esis on the means of four performance measures are
performed based on paired t-tests at � = 0:05. A
typical hypothesis in these tests is:

(
H0 : �NSGA-II = �SPEA-II

Ha : �NSGA-II 6= �SPEA-II

To this aim, the performance measures obtained using
both algorithms (shown in Table 7) are normalized by
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Table 9. Paired T -test on the mean diversity.

N Mean StDev SE Mean
NSGA-II 20 0.5797 0.0454 0.010
SPEA-II 20 0.47965 0.00983 0.010
Di�erence = � (NSGA-II) � � (SPEA-II)

H0 is rejected

Estimate for di�erence: 0.1594
95% CI for di�erence: (0.1303, 0.1884)
T -test of di�erence = 0 (vs not =):
T -value = 11.11, P -value = 0.000
Df = 38

Table 10. Paired T -test on the mean spacing.

N Mean StDev SE Mean
NSGA-II 20 0.5766 0.0967 0.022
SPEA-II 20 0.4234 0.0967 0.022
Di�erence = � (NSGA-II) � � (SPEA-II)

H0 is rejected

Estimate for di�erence: 0.1531
95% CI for di�erence: (0.0913, 0.2150)
T -test of di�erence = 0 (vs not =):
T -value = 5.01, P -value = 0.000
Df = 38

Table 11. Paired T -test on the mean MID.

N Mean StDev SE Mean
NSGA-II 20 0.5084 0.0266 0.060
SPEA-II 20 0.4916 0.0266 0.060
Di�erence = � (NSGA-II) � � (SPEA-II)

H0 is rejected

Estimate for di�erence: 0.01671
95% CI for di�erence: (-0.00034, 0.03377)
T -test of di�erence = 0 (vs not =):
T -value = 1.98, P -value = 0.055
Df = 38

Table 12. Paired T -test on the mean CPU time.

N Mean StDev SE Mean
NSGA-II 20 0.52035 0.00983 0.0022
SPEA-II 20 0.47965 0.00983 0.0022
Di�erence = � (NSGA-II) - � (SPEA-II)

H0 is rejected

Estimate for di�erence: 0.04070
95% CI for di�erence: (0.03441, 0.04700)
T -Test of di�erence = 0 (vs not =):
T -value = 13.09, P -value = 0.000
Df = 38

dividing them by their totals in order to eliminate the
e�ect of the size of the test problem solved.

The results, shown in Tables 9-12, indicate sig-
ni�cant di�erences between the means of diversity,
spacing, and CPU time (the P -values of these tests are

less than the signi�cant level 0.05). However, there is
no di�erence between the two means of MID obtained.
The interval-plots of all metrics shown in Figure 13
show that the above conclusion is better. In other
words, NSGA-II works better in terms of diversity,
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Figure 13. Interval plots of the means of the metrics.

while SPEA-II is the better algorithm in terms of the
spacing and CPU time metrics.

6. Conclusion and future studies

One of the useful methods to increase system reliability
is RAP. In modeling this type of problem, it is more
realistic to optimize more than one objective simul-
taneously. This paper aimed to solve a bi-objective
optimization problem of a tri-state system consisting of
several k-out-of-n subsystems connected in series. The
components in each subsystem were assumed to have
only three levels of performances degrading from fully
working to failed states that would a�ect the system
reliability over time. The system reliability could be
improved by either adding redundant components or
performing technical and organizational activities to
change the transition rates of the components. The bi-
objective optimization model that considered maximiz-
ing system reliability and minimizing total cost as two
conicting objectives was developed. The two multi-
objective algorithms, i.e. the Strength Pareto Evolu-
tionary Algorithm (SPEA-II) and the Non-dominated
Sorting Genetic Algorithm (NSGA-II), were used to
solve the resulting optimization problem. The compar-
ison study of the two algorithms in terms of �ve multi-
objective performance measures obtained using 20 test
problems showed better performances of SPEA-II in
most of the measures.

For future research studies in this area, we recom-
mend the followings:

� Considering repairable components;

� Considering multiple types of components for sub-
systems;

� Considering failure rates of component as time-
dependent;

� Considering failure rates of components as random
or fuzzy variables;

� Extending the model by adding other constraints or
other objective functions;

� Using other meta-heuristic algorithms such as
multi-objective simulated annealing, multi-objective
biogeography-based optimization, and similar ones.
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