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Abstract. In this paper, a proactive-reactive approach has been considered for achieving
stable and robust schedules despite uncertain processing times and unexpected machine
failures in a two-machine ow shop system. In the literature, Surrogate Measures (SMs)
have been developed for achieving stable and robust solutions against the occurrence of
stochastic disruptions. These measures proactively provide an approximation of the real
conditions of the system in the event of a disruption. Because of the discrepancies of
these measures with their real values, a di�erent approach is developed in this paper in
a two-step structure. First, an initial robust schedule is produced and then, based on a
multi-component measure, an appropriate reaction is adopted against unexpected machine
failures. Computational results indicate that this method produces better solutions
compared to the other two classical scheduling approaches considering their e�ectiveness
and performance.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In the classical scheduling problems, it is assumed that
the information about all jobs and their characteriza-
tions is known initially, and the objective is usually to
optimize some classical performance measures such as
tardiness and makespan under deterministic assump-
tions [1]. However, in dynamic manufacturing envi-
ronments, the scheduling problems with uncertainty
are addressed. In stochastic scheduling problems, the
solving approaches often try to optimize the expected
value or some other probabilistic measure of the ob-
jective function [2]. In uncertain scheduling problems,
other measures are proposed to incorporate the uncer-
tainty [3]. Ouelhadj and Petrovic [4] presented a survey
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on dynamic scheduling in manufacturing systems. In
fact, because of random disruptions that may occur
in the system, additional measures (such as robustness
and stability) should be considered. Some disruptions
that may occur in real-world manufacturing systems
include:

� Machine breakdowns;
� Cancellation of orders;
� Changes in delivery times;
� Uncertain due dates;
� Uncertain processing times;
� Equipment overhaul;
� Addition or removal of operations.

In practice, the scheduling process starts by de-
termining an initial schedule. Then, when a disruption
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arises, the initial schedule should be revised in order
to maintain its feasibility and quality. The type of
schedule that is actually carried out in shops is known
as real schedule. Obviously, real schedule can be
di�erent from the initial schedule because of occurrence
of unexpected events. This depends on the level of
failures, disruptions, and the changes of the setting.
In the literature, there are two strategies for obtaining
high system performance from the real schedule after
any disruption. These strategies are called reactive
scheduling and proactive scheduling.

The reactive scheduling approach does not ini-
tially consider uncertainty, but revises and improves
the schedule when unpredicted events occur. In fact,
reactive scheduling is a method that provides good
reactions when encountering failure and disruption.
This reaction can modify the initial schedule or gen-
erate a completely new schedule. However, proactive
scheduling strategy considers future disruptions when
generating an initial schedule. It actually seeks a
schedule that also controls the e�ects of future disrup-
tions by some predictive performance measures such
as robustness and stability. Optimization of stability
is concerned with the deviation of the real schedule
from the initial schedule. Optimization of robustness is
concerned with deference in terms of objective function
between initial and modi�ed schedules [5]. Of course,
a combined proactive-reactive approach can also be
considered [6].

In this paper, a two-stage proactive-reactive
method is presented for coping with uncertain and
unexpected events. In the �rst stage, it is attempted
to produce an initially robust schedule by using the
robust optimization approach. The initial robust
schedule counters the uctuations of processing times.
In the second stage, when an unexpected disruption
occurs (i.e., machine failure), an appropriate reaction
is adapted to rescheduling.

This paper is organized in the following manner.
In Section 2, the related technical literature is reviewed
and a brief description of robust optimization approach
is presented. The main two-step approach of the
paper is presented in Section 3. In the �rst step,
a robust model of two-machine ow shop scheduling
problem has been presented and solved, and in the
second step, the appropriate reactive approach has
been described. Computational results and relevant
comparisons have been presented in Section 4. Finally,
conclusions and recommendations for future studies
have been presented in the last section.

2. Literature review

Flow shop is one of the most practical and real-
world production environments, especially in assembly
facilities [7]. Some researchers including Fattahi et

al. [8] proposed mathematical models to formulate the
ow shop environment and some heuristics to solve the
problem.

In order to decrease the e�ect of uncertain pro-
cessing times, some researchers considered a speci�c
distribution function for them and solved the prob-
lem based on the stochastic optimization approach.
Some other researchers used the robust optimization
approach so that this approach could improve the
performance of the presented schedule by facing the
uctuations of uncertain processing times concerning
all possible future scenarios. Proactive scheduling
methods that deal with the future uctuations of
uncertain parameters using the robust optimization
approach are presented in [9-12].

Considering disruptions and unexpected events
in scheduling systems, the researchers either used
iteration based simulation methods [13] or attempted
to develop robust and stable schedules to face these
disruptions. Wu et al. [14] considered increase in
stability of the single-machine rescheduling problem
with machine breakdowns. They rescheduled the jobs
in response to machine failures so that the minimum
makespan could achieve a high scheduling stability.
Leon et al. [15] studied the issue of robustness in
the job shop environment. They assumed that the
times of failure and repairing were known values, and
makespan was the shop performance measure that
should be minimized. For analysis of the e�ects of
machine failures and changes of the processing times,
the authors proposed a slack time based robustness
measure. The most promising robustness measure is
expressed as:

Zr=1(s) = MSmin �RD3(s); (1)

where MSmin is the makespan of schedule s and
RD3(s) is the average slack in schedule s. Lawrence
and Sevelle [16] studied the performance of the simple
dispatching heuristics against the algorithmic solution
techniques in a job shop environment with uncertain
processing times. A similar study was undertaken by
Sabunkuglu and Karabuk [17] in which they showed
that the dispatching rules for interruptions were more
robust than the optimum search algorithms for o�ine
schedules. Jensen [18] generated robust schedules in a
job shop environment with respect to machine break-
downs for minimizing makespan. Jensen's idea was
based on the principle that the robust optimal solution
was found in the wider regions of the distribution
(objective) function, while the non-robust and fragile
optimal solutions were located on the narrow peaks of
the distribution function. In fact, he considered the
neighborhood-based robustness measure for including
the schedule s and all the achievable schedules. His
formula is as follows:
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ZMSnib(s) =
1

jN1(s)j
X

s02N1(s)

MSmin(s0); (2)

where MSmin(s0) is the makespan of schedule s0.
The neighborhood N1(s) contains s and all feasible
schedules that can be created from s by interchange
of two consecutive operations on the same machine.
Goren and Sabuncuoglu [19] investigated the problem
of robust and stable schedule with random failures in
a single-machine environment. They presented two
surrogate measures for robustness and stability, and
used the tabu search algorithm to solve the problem.
Sotskov et al. [20] presented a number of approaches
based on interval processing times for the evaluation
of robustness and stability in a single-machine envi-
ronment. Bouyahia et al. [21] proposed a probable
comprehensive approach for the robustness design of
pre-scheduling, which assumed that the number of jobs
to be processed on parallel machines was a random
variable. They studied the total weighted ow time
as an objective function. Ghezail et al. [22] proposed
a qualitative graphical approach for responding to the
disruptions in the ow shop problem. They proposed
a graphical approach that helped the decision maker
to observe the consequences of random failures and to
choose the best sequence. Al-Hinai and ElMekkawy
[23] produced proactive robust and stable solutions for
the exible job shop scheduling problem with random
failures. They introduced a new methodology that
combined the approach of insertion of non-idle time
and a hybrid genetic algorithm proposed in [24].

Based on the literature, the researchers consid-
ered stability and robustness separately to face the
stochastic disruptions in scheduling problems. To
produce robust and stable solutions, the true value of
uncertain parameters should be determined. However,
since the exact values of these parameters are not
speci�ed from the start, either iteration based time-
consuming simulation methods or surrogate measures
are used in the literature to obtain robust and stable
solutions. Because of the discrepancies between these
measures and their true values, they may not show the
true performance of the system. We proposed a new
proactive-reactive approach instead of SMs to overcome
their weaknesses and achieve good-quality solutions.
We also considered a new practical measure called \ner-
vousness" in the two-machine ow shop scheduling in
addition to the stability and robustness. Accordingly,
a multi-criteria measure was presented in the reactive
stage of the proposed method. In the following, the
structure of the robust optimization approach used to
formulate our considered problem is explained [25].

Statement of contribution
� An uncertain two-machine ow shop problem is

considered;

� A two-stage method is presented to reduce the
e�ects of uncertainty and disruption;

� A robust model is developed to create an initial ro-
bust schedule to overcome the uncertain processing
times;

� A new measure called \NERS value" is proposed to
apply a good reaction after a machine failure;

� Four critical factors are included in the proposed
measure to select the best method for rescheduling
after a disruption;

� Multiple methods to evaluate the performance of the
proposed method are considered.

Robust optimization approach: The aim of the
robust optimization approach is to get a set of solutions
for the problem that remains robust despite the changes
that may occur in the real values of data and input pa-
rameters (shown by a set of scenarios). The structure of
robust optimization is briey explained in the following
section. Consider the following linear model:

min cTx+ dT y; (3)

subject to:

Ax = b; (4)

Bx+ Cy = e; (5)

x; y � 0;

where x is the vector of decision variables and y is the
vector of control variables. B and C are coe�cient
vectors and e is the right hand side vector. Assume that
there exists a set of scenarios, 
 = f1; 2; :::; ~�g. Under
each scenario, �, the uncertain coe�cients are de�ned
as fd�; B�; C�; e�g and the probability of occurrence
of each scenario is p� (

P
� p

� = 1). Each scenario
comprises a set of data that may occur in the future.
Since y (vector of control variables) is determined in
the constraint depending on the scenario that occurs,
it is de�ned as y�. Due to the existence of uncertain
parameters, the model may become infeasible for some
scenarios; in this case, �� is the degree of infeasibility
of the model under scenario �. If the model is feasible,
then �� = 0. Thus, �� is an error vector that will mea-
sure the infeasibility allowed in the control constraints
under scenario �. The ultimate goal of this approach
is the optimization of the problem with two kinds of
robustness: solution robustness, which guarantees a
near-optimum solution for all the scenarios, and model
robustness, which guarantees the problem solution to
be feasible for all the possible scenarios. Therefore, the
robust model is made as follows:

Min �
�
x; y1; y2; :::; y~�

�
+ !�

�
�1; �2; :::; �~�

�
; (6)
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subject to:

Ax = b; (7)

B�x+ C�y + �� = e� 8� 2 
; (8)

x � 0; y� � 0; �� � 0 8� 2 
: (9)

In Constrain (6), �(:) denotes the solution robustness
and �(:) is the model robustness. In fact, �(:) is a
penalty function for the solution possibility, which is
used to penalize the deviations of control constraints
under some of the scenarios. Also, coe�cient ! estab-
lishes the equilibrium between the solution robustness
and model robustness. Constraint (7) is the structural
constraint and there is no noise. Constraint (8) is the
control constraint that contains noisy coe�cients. Con-
straint (9) ensures non-negative values for variables.

The �rst term in the objective function can be
de�ned with a random variable such as � = cTx+ dT y
that takes the value �� = cTx+d�

T
y� with probability

p� under scenario �. To de�ne �(:), Mulvey et al. [11]
used the following relation:

�(:) =
X
�=2


p��� + 
X
�2


p�
 
�� �X

�02


p�
0
��
0
!2

;
(10)

in which the solution has a lower sensitivity to the
changes of uncertain data as  increases. However,
since this term is quadratic, its solving will be com-
plicated; due to this, Yu and li [26] de�ned another
term for �(:) as:

�(:) =
X
�=2


p��� + 
X
�2


p�
������ �X

�02


p�
0
��
0
����: (11)

But since this term is non-linear, by de�ning a non-
negative deviational variable, the problem is converted
to a linear model as follows:

�(:) =
X
�=2


p��� + 
X
�2


p�
��
�� �X

�02


p�
0
��
0
�

+2��
�
; (12)

subject to:

�� �X
�02


p�
0
��
0
+ �� � 0; 8� 2 
;

�� � 0; 8� 2 
: (13)

3. Proposed method

In this paper, a two-machine ow shop problem with
uncertain job processing times is considered. There

is some information about uncertain processing times,
and they are estimated by scenarios. In addition to un-
certain processing times, unexpected failures may occur
in the future; but there is no predictive information in
this regard. Therefore, in the �rst stage of the proposed
method, unexpected machine failure is not considered,
because they are completely unexpected events and
there is no information to formulate them. Hence,
in the �rst stage, an initial solution for scheduling
is obtained by only considering the problem with
uncertain processing times. The robust optimization
approach is used in order for this initial solution to be
a robust solution as well. Actually, to reduce the e�ect
of uncertainty on processing times, which is a random
disruption in the future, the problem is formulated
using the robust optimization approach, �rstly, in an
attempt to produce robust initial solutions. After an
initially robust schedule is determined, the machines
start to process the jobs according to this schedule.
However, each machine may break down during the
processing of jobs. Therefore, in the second stage,
a reactive approach is presented to deal with such
unexpected failures. In fact, when a machine failure
occurs, an appropriate reaction should be adopted
to handle this disruption. Suppose that di�erent
reactions, like regeneration, right shifting, or any
other heuristic reaction can be implemented following
the failure. When adopting a reactive response, a
multi-component measure is de�ned based on a clas-
sic objective and three other performance measures.
This measure helps us choose the most appropriate
reaction to counter the e�ect of machine failures. A
owchart of our proposed approach is presented in
Figure 1.

3.1. Proactive scheduling stage
In this stage, only the problem with uncertain pro-
cessing times is considered. The robust optimization
approach is used to formulate the two-machine ow
shop problem to reduce the e�ects of uctuations of
the processing times in the future. Consider a set
J = f1; 2; :::; ng of n independent jobs that require
processing on each of the two machines. Assume
that there exists a limited set of f1; 2; :::; ~�g. A
robust solution is proactively generated as an initial
schedule.

3.1.1. Notations
Indices:
n The number of jobs

�; �0 Indices for scenarios
r Index for positions f1; 2; :::; ng
j Index for jobs f1; 2; :::; ng
i Index for machines f1; 2g
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Figure 1. The owchart of the proposed
proactive-reactive method.

Parameters:
t�ij The processing time of job j on

machine i under scenario �
p� The probability for occurrence of

scenario �
M A large number
Variables:
xijr 1 if the job j is processed on machine i

in the position r; 0 otherwise
CP�ijr The predictive completed time of job

j on the machine i in the position r
under scenario �

3.1.2. Proactive robust model
Now, the considered problem is formulated based on
the robust optimization approach described in the
previous section. The noteworthy point is that in
this model, due to the unequal form of the existing
constraints, it is not necessary to de�ne parameter
�� and function �(�1; �2; :::; �~�) to guarantee solution
robustness. Therefore, the issue of creating a balance
between solution robustness and model robustness no
longer exists. Therefore, our developed robust model
is as follows:

Min
X
�2


p�
nX
j=1

CP�2jn +
X
�2


p�
���� nX
j=1

CP�2jn

�X
�02


p�
0 nX
j=1

CP�
0

2jn

����; (14)

subject to:

nX
r=1

xijr = 1; 8i; 8j; (15)

nX
j=1

xijr = 1; 8i; 8r; (16)

nX
j=1

CP�ij(r+1) �
nX
j=1

CP�ijr +
nX
j=1

xij(r+1):t�ij ;

8i; 8�; r = 1; :::; n� 1; (17)

nX
r=1

CP�(i+1)jr �
nX
r=1

CP�ijr +
nX
r=1

x(i+1)jr:t�(i+1);

8j; 8�; i = 1; :::;m� 1; (18)

CP�ijr �M:xijr; 8i; 8j; 8r;8�; (19)

xijr = f0; 1g; 8i; 8j; 8r: (20)

To linearize the objective function, a method is used
and the de�ned parameter �� has been described in
the previous section [26]. Therefore, we have:

Min
X
�2


p�
nX
j=1

CP�2jn +
X
�2


p�
�� nX

j=1

CP�2jn

�X
�02


p�
0 nX
j=1

CP�
0

2jn

�
+ 2��

�
; (21)

��� �
nX
j=1

CP�2jn +
X
�02


p�
0 nX
j=1

CP�
0

2jn � 0; 8�:
(22)

Thus, Objective (21) and Constraints (22) ensure that
the optimal schedule conforms to the de�nition of ro-
bust schedule based on a linear model. Constraints (15)
to (20) are necessary scenario-based constraints in a
two-machine ow shop system to calculate appropriate
makespan. These constraints guarantee that the robust
schedule is feasible.

3.2. Reactive scheduling stage
Assume that in the �rst stage, an initial robust schedule
is determined. The machines may break down during
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the processing of jobs unexpectedly. Suppose that
machine i fails at time tf . In this case, the main point
is to choose an appropriate heuristic as a good reaction
after this failure. The important point that should be
mentioned is that the proposed approach to respond to
the machine failure is a reactive one. Therefore, there is
no need to know the distribution function of the failure
occurrence time and repair duration.

Suppose that a set of heuristic methods, � =
fH1;H2; :::; Hhg, exists, which can be used after the
occurrence of failure. These heuristic methods can be
the right shifting, regeneration, or any other heuristic.
In this research, a multicomponent measure is de�ned
to choose the most appropriate heuristic method from
the set �. This measure is de�ned based on a classi-
cal objective and three other performance measures.
The considered classical objective in this research
is makespan that indicates scheduling e�ectiveness.
Other performance measures include robustness, sta-
bility, and nervousness that control the unexpected
disruptions. This measure is called \NERS value"
(including Nervousness, E�ectiveness, Robustness, and
Stability). These components are described in the
following subsections.

3.2.1. Scheduling e�ectiveness
This measure indicates the degree of optimality of a
schedule. In this paper, this criterion is measured
by the classical objective \makespan". It should be
mentioned that because of disruptions such as machine
failures in the system, the real completion time of
a�ected jobs may change. The stochastic variable
CRijr is de�ned as the real completion time of job j on
machine i at position r. Therefore, in a two-machine
ow shop system,

P
j CR2jn is the real makespan for

the realized schedule that explains scheduling e�ective-
ness.

3.2.2. Robustness
The robustness of a schedule refers to its ability to
perform well under di�erent operational environments.
In fact, robustness is concerned with the di�erence in
objective function values before and after a disruption.
It refers to the insensitivity of scheduling performance
to the disruptions. Some robustness measures are
based on the actual performance of the realized sched-
ules, and some are based on regret. [3]. In this research,
this measure is de�ned as the closeness of the realized
schedule performance to the initial schedule.

It should be mentioned that in the �rst stage, in
order to determine the initial schedule, the processing
times were estimated as scenarios. In fact, some
issues such as the condition of machines, the state of
operators, the environmental conditions, etc. a�ect
processing times and the real states of these issues
would be determined only at schedule execution time.

A �nite number of scenarios (three scenarios) were
considered to de�ne the uncertain processing times
to obtain a robust initial schedule. As mentioned
earlier, in robust optimization approach, one of these
scenarios would occur in future. During the planning
of an initial schedule, the real scenario that will really
occur in the system is not determined. But, when the
production process begins, before a disruption, one or
more jobs have been processed on machines, and so we
can �nd out which scenario has occurred. In fact, the
compatible scenario with these completed jobs has been
determined. Considering this notion, suppose �00 2 

is the scenario that has really occurred after the start of
jobs processing. In this case, the real completion times
without considering unexpected failures are speci�ed
based on the scenario �00 2 
. Based on this matter
and the de�nition of robustness (absolute deviation
in system performance), the robustness measure is
calculated as follows:

Robustness measure :

������Xj CR2jn �X
j

CP�
00

2jn

������ ; (23)P
j CR2jn is the real makespan of the perturbed

schedule and
P
j CP

�00
2jn is the predictive makespan

according to the initial schedule that is determined
according to the occurred scenario �00.
3.2.3. Stability
It is the degree of rearrangement of jobs (sequence,
start-times, and so on) after rescheduling [27]. In
this paper, this measure is de�ned as the di�erence
between the completion times of the jobs in the initial
schedule and the realized ones [23]. When a disruption
occurs, the real sequence may change after a needed
rescheduling. This matter may lead to additional costs,
including the costs of reallocation of tools and equip-
ment, reordering raw materials, etc. However, when
the real schedule is closer to the initial one, these costs
are reduced and stability increases. On the other hand,
stability is concerned with the di�erence between initial
and realized schedules themselves rather than between
their performances. Therefore, stability measure is
de�ned as absolute deviation in job completion times
as follows:

Stability measure :
2X
i=1

nX
j=1

nX
r=1

jCRijr � CP�00ijr j;
(24)

CRijr is the real completion time of job j on the
machine i in position r, and CP�

00
ijr is the predictive

completion time of job j on machine i in position r
under occurred scenario �00.
3.2.4. Nervousness
Schedules are intrinsically nervous and fragile with
some unexpected information. This information is not
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known a priori in the planning phase and is revealed
over time; thus, dynamic or on-line scheduling tech-
niques are usually used [27,28]. To show the inuence of
nervousness in scheduling problems, another approach
is developed in this paper and a new measure, such as
the measure of robustness or stability, is de�ned. This
measure includes the e�ect of frequency of rescheduling
in the system after disruptions. When a disruption
occurs in a system and the sequence of jobs changes
after rescheduling, the change in the sequence causes
nervousness in the system. In fact, internal system
components, like the operators, will fall into disarray
due to change in the sequence and the more this
rescheduling frequency, the higher the nervousness of
the system will be. Therefore, when the sequence of
one or several jobs in the real schedule changes relative
to the initial schedule, the system becomes turbulent
and chaotic. In this paper, the concepts of instability
and nervousness are di�erentiated. For example, the
jobs may be right-shifted after a failure. In this way,
due to the change in the completion time of jobs, the
stability measure will be a positive number while the
nervousness is zero, because the sequence of jobs does
not change.

It is assumed that PO�
00
ij is the predictive position

of job j on machine i under occurred scenario �00 and
ROij is the real position of job j on machine i following
a failure. A variable is de�ned as follows:

Nij = 1 if ROij 6= PO�
00
ij ; and Nij = 0 otherwise:

In fact, if the position of job j in the real schedule
is di�erent from the predictive one, then Nij = 1.
Now, variable TCO is de�ned as the total change
in position of jobs following an unexpected failure;
therefore, TCO =

P2
i=1
Pn
j=1Nij . TCO describes

nervousness of scheduling.

3.2.5. NERS value as a selector measure
The NERS value is a multicomponent measure for the
selection of a suitable heuristic to deal with failure of
machines. The �nal de�nition of NERS value based on
the above de�ned components is as follows:

Selection measure = � (E�ectiveness)

+� (Robustness measure) + v (Stability measure)

+' (Nervousness): (25)

The existing coe�cients in this measure indicate the
importance of each component. These values are de-
termined by the decision makers of the system, such as
managers. Thus, in the proposed reactive stage, when
a failure occurs, �rst, the values of these coe�cients
are determined by the managers of the production
system. To determine the weight of each measure,

a sensitivity analysis approach can be used, such as
the research presented in [27]. They similarly de�ne a
comparison metric with four components for comparing
deterministic, robust, and online scheduling. They use
a sensitivity analysis to determine the weight of each
component. Therefore, in a real case, the analyst can
consider di�erent amounts for the classical measure
and other three components and the manager can
choose the better one according to her/his preferences.
Moreover, there are many approaches for determining
preference weights in multi-criteria decision making,
such as the eigenvector method, weighted least-square
method, entropy method, and linear programming
technique for multidimensional analysis of preference
(LINMAP). The readers are referred to Hwang and
Yoon [29] for more information. The de�nition of
NERS value is as follows:

NERS valueH = �
� (

P
j CR2jn)H

maxH2�(
P
j CR2jn)H

�
+�
� ���Pj CR2jn �Pj CP

�00
2jn

���
H

maxH2�

���Pj CR2jn �Pj CP�
00

2jn

���
H

�

+v
� P2

i=1
Pn
j=1

Pn
r=1

���CRijr � CP�00ijr

���
H

maxH2�
P2
i=1
Pn
j=1

Pn
r=1

��CRijr�CP�00ijr
��
H

�
+'
�

TCOH
maxH2� TCOH

�
; (26)

�+ � + v + ' = 1: (27)

A set of heuristics can be compared using the NERS
value. In fact, after determining the weights, the NERS
value is calculated for each heuristic, such as right
shifting, regeneration, etc., and the heuristic with the
lowest amount of NERS value is selected as a proper
reaction to respond to the disruption. The terms in
Eq. (25) will be normalized to enable a reasonable
comparison between heuristics [27].

3.3. Solution methods
There are di�erent heuristics to deal with unexpected
disruptions. More common methods in the literature
are regenerations and right shifting methods that are
explained in the following subsections.

3.3.1. Right shifting
One of the simplest reactions, which are commonly
implemented in the literature, following the occurrence
of a disruption is right shifting. In this approach,
when a failure happens, the jobs are processed with
the same previous sequence following the repair of
failed machine. In this case, the completion time of
jobs will be shifted to right within the repair duration
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(df ). The schedule may be less stable in this method
because the real completion time of jobs may change
signi�cantly. The advantage of this method is that,
due to no change in the sequence, the costs of setup
and startup will be less and the system nervousness
will be zero. As mentioned earlier, when the man-
ufacturing process begins, we are absolutely certain
about which scenario has occurred. Considering this
notion, suppose that �00 2 
 is the scenario which has
really occurred after the start of the jobs processing.
Now, assume that the system has a failure and the
scheduled activities are shifted to the right following
the failure. Two hypothetical machine failures are
shown in Figure 2. Assume that j1, j2, and j3 are
scheduled based on occurred scenario �00 according to
Figure 2(a). Figure 2(b) and (c) are presented machine
failures in di�erent times for machine 1 and machine 2,
respectively. Figure 2 shows the steps of right shifting
method following the considered failures.

In general, with a repair duration df and occurred
scenario �00, the value of real completion time of jobs
is obtained as follows:

r0j = fr 2 njx2jr = 1g; 8j; (28)

r00j = fr 2 njx1jr = 1g; 8j: (29)

If machine 1 fails:

Figure 2. (a) An initial schedule. (b) Right shifting
following a failure on machine 1. (c) Right shifting
following a failure on machine 2.

CR1jr00j = CP�
00

1jr00j + df if CP�
00

1jr00j > tf ; and

CR1jr00j = CP�
00

1jr00j + df if CP�
00

1jr00j � tf ; 8j;
(30)

CR2jr0j =max

8<:X
j

CR2j(r0j�1); CR1jr00j

9=;+t2j ; 8j:
(31)

If machine 2 fails:

CR1jr00j = CP�
00

1jr0j ; 8j; (32)

SPijr = CP�
00

ijr � tij ; 8i; j; r; (33)

CR2j0r0j0 = CP�
00

2j0r0j0
:

if j0 =
�
j 2 J jCP�002j0r0j0

� tf and SP�
00

2jr0j � tf
�

;

8j0; (34)

CR2j00r0j00 = CP�
00

2j00r0j00

if j00 =
�
j 2 J jCP�002jr0j � tf and SP�

00
2jr0j � tf

�
;

8j00; (35)

CR2j000r0j00 =max
�X

j

CR2j(r0j�1); CR1j000r00j00

�
+t2j000

if j000 =
�
j 2 J jCP�002jr0j � tf and SP�

0
2jr0j � tf

�
;

8j000: (36)

3.3.2. Regeneration
Another method that can be adopted as a rescheduling
method following a failure is regeneration heuristic.
It reschedules the set of jobs not processed before
the rescheduling point and a�ected by the disruption.
In this approach, all jobs that have not yet been
processed are completely rescheduled. In this case,
the sequence of jobs may change and the system may
become stressed and chaotic, but on the other hand,
this change of sequence causes good improvement in
the e�ectiveness (objective function).

3.4. A numerical example
Consider a two-machine ow shop scheduling problem
with �ve jobs; the processing times of jobs with
fewer than three scenarios are given in Table 1. The
probabilities for the scenarios are p1 = 0:3; p2 = 0:5,
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Table 1. Processing time for job j on machine i under
scenario �.

Scenario Machine

Job processing time
(min)

1 2 3 4 5
1 1 1 3 7 9 3

2 2 5 7 3 3
2 1 4 2 6 8 5

2 4 6 9 5 2
3 1 2 4 8 7 6

2 3 4 10 2 3

and p3 = 0:2, respectively. In the �rst stage, we should
solve this problem based on the proposed model that is
developed based on the robust optimization approach.
We solve that model with the software GAMS23.6.
Based on the outcome of this software, the initial
schedule for machines 1 and 2 is \j2; j1; j3; j4; j5".
This solution is an initial robust schedule for this
problem. We assume that when processing begins, the
second scenario will really occur (�00 = 2).

Now, assume that machine 1 fails at the time
point 9 (tf = 9) and the length of the repair time for it
is df = 3. We should react properly to this unexpected
disruption and reduce its e�ects based on the proposed
multi-criteria measure of \NERS value". We assume
that the heuristic methods that we can choose are
regeneration and right shifting, so we calculate the
NERS value for each of them and select the best. At
�rst, we should determine coe�cients of this measure.
These parameters are determined as: � = 0:4, � = 0:2,
v = 0:3, and ' = 0:1. Table 2 shows the obtained
results for both regeneration and right shifting. The
results indicate that following this assumptive failure,
the regeneration method should be chosen because it
has smaller NERS value.

Since the time point of machine failure, the ma-
chine that may fail, and df (length of repair time) are
stochastic variables, we extend this problem with sim-
ulating failures. We assume that tf is generated from
a uniform distribution such as uniform= [0:001; 20];
also, df is generated based on uniform= [5, 10] and
the machine that will fail is chosen stochastically.
Then, we consider three levels of the coe�cients in
the NERS value that are shown in Table 3. We have
run the problem for each level of coe�cients at 100
repetitions and, �nally, the mean values of e�ectiveness
and performance objectives have been calculated. The
results are shown in Table 4. The worst makespan of

Table 3. Three kinds of test problem for setting the
coe�cients.

Test problem Coe�cient
� �  '

1 0.5 0.15 0.3 0.05
2 0.4 0.2 0.3 0.1
3 0.4 0.3 0.1 0.2

all iterations that occurs in the simulated failures is
shown in column 7 and the NERS values are presented
in column 8. We call our Proactive-Reactive Method
PRM for simplicity. Recall that the classical approach
is also used as a benchmark.

Classical approach: The algorithm calculates the
initial schedules based on the expected value ap-
proach. In fact, the objective function in this approach
is minimizing the expected value of all makespans
that have been computed for each scenarios (Z =
Min

P
�2
 p

�Pn
j=1 CP

�
2jn). Then, when a disruption

occurs, two reactions may be made. In the �rst classical
approach, after a disruption, the a�ected jobs shift to
right with the length of the repair time. We call this
method CA-Ri. It means that the right shifting method
will be used following any disruptions. In the second
classical approach, after a disruption, the a�ected
jobs regenerate a new schedule based on the objective
function. We call this method CA-Re method.

It should mentioned that there is a logical conict
between stability and robustness of the solution. Be-
cause for a more robust solution, it may be necessary
to change the sequence of jobs, which can increase
stability. To show the conict between the stability and
robustness for this problem, assume that ' = 0, � = 1;
also, suppose that v = 1 � �. Then, for three values
of �, the proposed example is solved. The results are
shown in Table 5 and Figure 3. According to the plots,

Figure 3. The robustness and stability values.

Table 2. Comparing two heuristics to select following the machine failure.

Approach E�ectiveness Robustness Stability Nervousness NERS value
Regeneration 31 3 33 5 0.581
Right shifting 41 13 74 | 0.900
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Table 4. The mean values of e�ectiveness and performance objectives according to the accomplished simulations.

Prob. Approach E�ectiveness Robustness Stability Nervousness Worst makespan NERS value

1
PRM 29.02 2.32 24.16 3 30.24 0.712
CA-Ri 34.97 5.77 58.01 | 36.38 0.924
CA-Re 28.05 2.91 65.03 2.5 32.61 0.946

2
PRM 31.73 2.73 32.76 2 29.96 0.590
CA-Ri 34.61 6.11 55.87 | 35.23 0.745
CA-Re 31.04 3.20 85.33 3.9 33.00 0.815

3
PRM 31.37 2.76 32.32 2.2 30.95 0.657
CA-Ri 33.99 6.09 58.18 | 37.75 0.737
CA-Re 30.52 2.94 51.37 2.6 35.61 0.705

Table 5. The conict between stability and robustness.

Measure Robustness coe�cient
� = 0 � = 0:5 � = 1

Stability 20 22 27
Robustness 6.6 5 3

it can be easily deduced that larger value of � leads to
increase in stability and reduction in robustness.

4. Experimental design

Extensive computational experiments are conducted to
show the performance of the proposed method. We
solved a set of test problems, whose details are given
in the following section.

4.1. Data generation
- Number of jobs (n): Seven levels of the number of

jobs are considered (n = 5, 8, 10, 12, 15, 20, and
25). In general, the number of jobs speci�es the size
of the problem;

- Processing time (t�ij): Job processing times are
generated from discrete uniform distributions. The
unit of the job processing time is minute. The
distribution used for t�ij is uniform [a; �� b], where
a = 10 and b = 40. The parameter �� leads
to di�erent intervals in processing times for each
scenario; it is assumed that �1 = 1, �2 = 1:5 , and
�3 = 2;

- Break-down time (tf ): This parameter explains the
time point that a machine fails. The interval between
two failures usually follows an exponential distribu-
tion with MTBF as the mean time between failures.
But, since our proposed method is a reactive one,
it is necessary to determine a time point in any
simulated run of the problem instead of the interval
between failures. Since a machine may fail from
the moment zero, the machine begins processing to
the moment of proactive makespan, assuming that
this parameter is generated from a discrete uniform
distribution Uniform [0; CP�

0
2jn];

- Duration of repair time (df ): This parameter follows
an exponential distribution with MTTR as the mean
time to repair. Therefore, df = exp�rand (MTTR)
and assume MTTR = 20 time units for any machine.

4.2. Experimental results
Seven-type problems de�ned above are considered
based on the number of jobs. In the �rst stage, each
problem is formulated based on the proposed robust
model and solved with GAMS23.6 software, and their
solutions are determined as the initial robust schedules.
Then, machine failures in the scheduling problem are
simulated with MATLAB R2007b software and run on
a personal computer with a 2.26 GHz processor with
3.00 GB of RAM.

It should be mentioned that our candidate meth-
ods to respond to the failures are regeneration and right
shifting methods that have been explained in previous
sections.

The test problems are simulated in 1000 repeti-
tions and the mean value of each de�ned criterion is
calculated for them. The obtained results for PRM,
CA-Ri, and CA-Re are shown in Table 6 and Figure 4.

Table 6 shows details of computational results ob-
tained using PRM, CA-Ri, and CA-Re. These results
can be used to evaluate e�ectiveness and e�ciency of
the proposed solution methods. A general review of
the results in Table 6 and Figure 4 shows that:

Figure 4. A comparison between NERS values of
di�erent solution methods.
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Table 6. The mean values of e�ectiveness and performance criteria according to solution methods.

Number
of jobs

Method E�ectiveness Robustness Stability Nervousness Worst
makespan

NERS
value

n = 5
PRM 307.14 20.14 214.22 5.2 320.42 0.6564
CA-Ri 290.97 51.17 415.87 | 316.14 0.7674
CA-Re 285.78 48.15 395.01 6.8 305.29 0.7381

n = 8
PRM 324.5 29.06 320.58 7.7 346.45 0.6895
CA-Ri 339.73 23.33 356.56 | 371.45 0.8388
CA-Re 312.8 27.42 357.91 6.1 337.00 0.8651

n = 10
PRM 375.14 32.67 379.58 11.5 404.87 0.7162
CA-Ri 419.02 49.14 423.13 | 505.47 0.9017
CA-Re 370.66 30.76 409.76 8.4 420.12 0.8703

n = 12
PRM 384.03 37.89 388.5 10.7 429.00 0.7501
CA-Ri 423.91 34.02 421.09 | 450.53 0.9382
CA-Re 373.76 36.87 499.32 8.3 457.91 0.9234

n = 15
PRM 418.17 35.65 419.77 11.9 456.86 0.8019
CA-Ri 436.90 41.60 446.81 | 470.90 0.9278
CA-Re 421.87 47.98 497.06 13.9 450.07 0.9631

n = 20
PRM 423.40 46.33 467.50 14.0 550.32 0.8315
CA-Ri 512.94 57.87 469.45 | 578.98 0.9590
CA-Re 456.82 52.80 517.90 16.1 498.55 0.9351

n = 25
PRM 562.06 49.65 499.77 16.5 581.06 0.8498
CA-Ri 587.21 65.40 476.81 | 600.53 0.96.01
CA-Re 571.87 65.36 547.06 19.9 530.07 0.9839

� The NERS value of PRM is lower than the NERS
values of the two other methods in each level of jobs.
These results show the e�ciency of the proposed ap-
proach compared to two common classical methods;

� The NERS value for all solution methods will be
worse when the problem size increases.

With regard to Table 6, the e�ectiveness of PRM
is better than that of other methods for n >= 15. This
fact indicates that in addition to NERS, this method
also works much better in terms of makespan value of
systems with large numbers of jobs.

As mentioned before, the existing coe�cients in
the NERS value measure indicate the importance level
of each component. These values are determined by
system decision makers such as managers. Changing
the values of these coe�cients will cause change in
the proper reaction. To consider the impact of these
coe�cients, we simulated the previous system for 8

di�erent levels of coe�cients for two di�erent numbers
of jobs (n = 5 and n = 8) to analyze of the inuence of
robustness and stability. The values of each component
are reported in Tables 7 and 8.

The impact of the stability in the NERS value is
considered in Table 7, in which for n = 5 in rows 2 and
3, � and ' are �xed, and  and � change; then, in rows
4 and 5, � and � are �xed, and  and ' change.

The results show that when the coe�cient of
stability increases and the coe�cient of nervousness
decreases while two other coe�cients (�; �) are �xed,
the value of stability decreases because its importance
increases in the NERS measure. The NERS values
in the last column indicate that the coe�cient of
stability has a strong inuence on NERS measure. The
same conclusion can be drawn when the coe�cient of
stability increases and the coe�cient of the robustness
decreases while two other coe�cients (�;') are �xed.
There are similar conclusions for n = 8.
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Table 7. Stability analysis based on di�erent coe�cients of the NERS value components.

Number
of jobs

� �  ' E�ectiveness Robustness Stability Nervousness NERS value

n = 5

0.5 0.3 0.15 0.05 294.89 26.70 161.12 3.5 0.51
0.5 0.3 0.05 0.15 306.85 18.80 219.65 3.9 0.62
0.5 0.05 015 0.3 341.90 57.32 182.29 3.3 0.66
0.5 0.15 0.05 0.3 351.82 53.56 376.01 1.7 0.73

n = 8

0.5 0.3 0.15 0.05 412.90 72.39 229.72 5.9 0.65
0.5 0.3 0.05 0.15 355.90 53.18 210.03 8.2 0.73
0.5 0.05 015 0.3 408.22 87.30 387.12 3.5 0.71
0.5 0.15 0.05 0.3 391.56 80.09 420.76 3.3 0.79

Table 8. Robustness analysis based on di�erent coe�cients of the NERS value components.

Number
of jobs

� �  ' E�ectiveness Robustness Stability Nervousness NERS value

n = 5

0.5 0.15 0.3 0.05 295.89 27.73 279.17 3.7 0.56

0.5 0.05 0.3 0.15 320.99 34.57 201.98 3.2 0.61

0.5 0.2 0.1 0.2 295.89 24.70 279.17 3.6 0.63

0.5 0.1 0.2 0.2 339.31 47.23 190.03 2.1 0.69

n = 8

0.5 0.15 0.3 0.05 393.98 81.32 296.43 2.6 0.64

0.5 0.05 0.3 0.15 410.19 89.25 291.30 4.5 0.75

0.5 0.2 0.1 0.2 421.99 80.91 309.07 4.1 0.77

0.5 0.1 0.2 0.2 381.34 63.21 387.26 5.9 0.83

Table 8 shows the impact of robustness in the
NERS value. The results indicate that robustness has
a strong inuence on NERS measure, too.

Tables 7 and 8 show that stability is more e�ective
than robustness; thus, a moderate amount is required.

Moreover, the tables demonstrate that when �
and ' are �xed and � and  change, a natural conict
between stability and robustness occurs. Based on the
results, when � increases and  decreases, stability
and robustness change conversely and this shows the
conict between these two measures.

Furthermore, the NERS values for these di�erent
levels of coe�cients are considered to gain a proper
tradeo� between these di�erent components and
decision makers can choose the best ones based on
their opinions.

4.2.1. Comparing e�ectiveness of solution methods
The NERS measure is used to evaluate the performance
of the solution methods and to show e�ectiveness of
the proposed method. A single factor ANOVA is used
to �nd out whether there is a signi�cant di�erence
among the performances of solution methods. Data

have been made normal and they have equal variances
(tested by MINITAB14 software). ANOVA results are
presented in Table 9. These results with P-value =
0.003 con�rm that there is at least one method with
di�erent mean response when con�dence level is set at
0.95. Thus, Fisher's least signi�cant di�erence method
is used to compare the performances of methods
(see Table 10). The results con�rm that there is
a signi�cant di�erence between PRM, CA-Ri, and
CA-Re. Also, Table 9 shows no signi�cant di�erence
between CA-Ri and CA-Re.

As Figure 5 illustrates, among the solution meth-
ods, proactive-reactive method for NERS value is
better than both the classical approach with right
shifting and the classical approach with regeneration.

Table 9. ANOVA results for solution methods.

Source df SS MS F P -value

Algorithm 2 0.09347 0.04674 8.07 0.003
Error 18 0.10426 0.00579
Total 20 0.19773
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Table 10. Fisher 95% individual con�dence intervals for all pair-wise comparisons.

Algorithms Lower Center Upper Signi�cant di�erence
at 95% level

PRM vs. CA-Ri 0.057 0.143 0.228 Yes
PRM vs. CA-Re 0.055 0.141 0.226 Yes
CA-Ri vs. CA-Re -0.087 -0.002 0.083 No

Figure 5. Means and interval plot for NERS value.

Therefore, the superiority of the proposed solution
approach is concluded over other heuristics including
CA-Ri and CA-Re due to the computational results.

5. Conclusions

In this paper, a proactive-reactive approach was pre-
sented instead of SMs. This two-stage approach
produced robust and stable solutions for a two-machine
scheduling problem in a ow shop environment. In this
approach, �rstly, by considering uncertain processing
times and using the robust optimization approach,
the problem was solved and a robust initial solution
was proactively produced. Then, in case of machine
failure, the appropriate reaction was adopted based on
the de�ned performance measure. This measure was
a multi-criteria measure de�ned in terms of solution
e�ectiveness, robustness, stability, and reduction of
system nervousness. Computational results indicated
that this method was much more e�ective than the
ordinary scheduling methods that operated on the basis
of makespan alone. The results showed e�ciency of the
proposed approach compared to two common classical
methods in the face of unexpected failures. For future
research, this problem can be considered for other
scheduling problems of shop oor, and other classical
objectives can be used to evaluate this method. As
another research subject, random distributions can be
considered for the occurrence time of failure and repair
duration, because they can be used for obtaining initial
solutions that are proactively able to reduce the e�ect
of machine breakdown. Moreover, the e�ect of this
approach on other random disruptions such as the
arrival of new jobs, order cancellations, etc. can be

investigated and analyzed. Another important future
research could be the presentation of proper heuristic
methods for machine failure, which can be applied in
the second step of this approach.
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