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Abstract. The main goal of this work is to �nd a better solution to a kind of multi-
objective optimization problem subject to a system of fuzzy relational inequalities with
max-arithmetic mean composition. First, this problem is solved and, then, in the case that
the decision maker is not satis�ed with any of the solutions, by assigning linear membership
functions to the inequalities in the constraints and objective functions and using Bellman-
Zadeh decision, a new solution is found. This new solution does not belong to the feasible
domain but is considered acceptable based on the decision maker's view. In order to �nd
this solution easier, some simpli�cation processes are given. Afterwards, an algorithm is
presented to generate the new solution. Finally, an example is given to illustrate the steps
of the algorithm.
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1. Introduction

Since the time the notion of Fuzzy Relational Equation
(FRE) was introduced by Sanchez, many works have
been done in the domain of FREs, Fuzzy Relational
Inequalities (FRIs), and the problems relevant to them;
for instance, see Khorram and Zarei [1], Yang [2],
and Zhou et al. [3]. The usage of FREs and FRIs
can be observed in many �elds such as fuzzy control,
fuzzy decision making, knowledge engineering, image
processing, image and video compression and decom-
pression, image reconstruction, fuzzy modeling, fuzzy
diagnosis, and especially fuzzy medical diagnosis [4].
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Max-min composition is the most frequently used
composition in FREs and FRIs. Nevertheless, it is
shown that the min operator is not always the best
selection for the intersection operation [5]. Thus,
some researchers have studied FREs and FREIs in the
presence of other compositions. For example, Molai [6]
and Hassanzadeh et al. [7] considered max-product
composition, whereas Khorram et al. [8] and Guu
et al. [9] employed max-t-norm composition in their
problems. For the �rst time, Zimmermann used the
arithmetic mean operator, which was not a t-norms as
an \and" operator. Following Zimmermann's idea [10],
Khorram et al. [1,5] and Wu [10] considered FREs
and FRIs under max-arithmetic mean composition.
In [4], it was shown that with regards to sensitivity,
the arithmetic mean was one of the best aggregation
operators. Thereafter, a fuzzy optimization problem
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subject to a system of max-arithmetic mean relational
inequality was studied.

In addition to problems in which an objective
function is optimized over a system of FREs or FRIs,
multi- objective optimization problems have been con-
sidered by some researchers [8,9]. In [1], a multi-
objective optimization problem in the presence of a
system of FREs with max-arithmetic mean composi-
tion has been considered. In [11], the authors have
studied the same problem with FRIs.

As it is mentioned in [12], when the Decision
Maker (DM) is not satis�ed with the solution of an
optimization problem, it is possible to soften the rigid
requirements of the DM in order to consider the im-
precision of his/her judgment so that a better solution
can be obtained. To pursue this idea, in [13], the
authors have considered the fuzzy linear optimization
problem in the presence of fuzzy relational inequality
constraints with max-min composition. Also, in [4],
this problem has been studied with max-arithmetic
mean composition. To the authors' best knowledge, no
work has been done to investigate the multi-objective
model of the problem which has been studied in [4].
Here, we study this kind of problems.

As an application of this model, we can consider
the given example in [13]. Consider a schoolmas-
ter who decides to cover three educational zones by
enhancing the educational quality of his school (A).
He considers some criteria to convince the parents
to select school A. Also, he has some plans for each
potentially poor criterion. Thus, he wants to resolve
the problem of parents as desirably as possible in
three zones by enhancing the quality such that they
prefer to select school A while the cost expended
for this purpose becomes less than or equal to the
budget. In the case that the schoolmaster has more
aims such as maximizing the spent budget for one of
the criteria (consider athletic-recreational facilities that
can be considered as a potential investment for the
school) in comparison to other expenses, we have a
multi-objective problem subject to a system of fuzzy
relational inequalities. This problem can be considered
with any max-aggregation function composition. As
we have shown in [4], one of the best choices for an
aggregation function to use in FRIs is arithmetic mean,
which is the chosen aggregation function of this paper.

The rest of the paper is outlined in the following.
In Section 2, a multi-objective optimization of linear
functions with ordinary inequalities in the presence
of a max-arithmetic mean composition problem is
studied [11]. Then, using a selected solution and linear
membership functions, the multi-objective optimiza-
tion problem in the presence of the fuzzy inequalities
is converted into another problem with one objective
function. In Section 3, the main goal is to reduce
the dimension of the feasible domain as much as

possible. Section 4 introduces an algorithm to give
the solution using the steps of Section 3 and provides
one numerical example to illustrate the algorithm.
Concluding remarks are given in Section 5.

2. Problem formulation

Consider the following linear multi-objective optimiza-
tion problem:

min fZ1(x); � � � ; Zp(x)g;
s.t. A � x � b;

x 2 [0; 1]n: (1)

where, \�" stands for the max-arithmetic mean com-
position. Assume that DM is not satis�ed with (any
of) the solution(s) of Relation (1). In this case, we
try to �nd a better solution, which is called fuzzy
solution here. Fuzzy solution, which violates at least
one constraint and is still acceptable to be a solution
based on the DM's view, is achieved by softening
the constraints of Relation (1) [13]. The amount of
perturbations imposed on the constraints is determined
by having interaction with the DM. To this end, the
focus is on solving the following problem:gmin fZ1(x); � � � ; Zp(x)g;

s.t. A � x 4 b;
x 2 [0; 1]n; (2)

where, A = (aij)m�n is a matrix, and b = (bi)m�1
and x = (xj)n�1 are the right-hand-side and unknown
vectors, respectively, such that aij , bi 2 [0; 1]; i 2
I = f1; 2; � � � ;mg and j 2 J = f1; 2; : : : ; ng. Also,
for all l 2 L = f1; 2; � � � ; pg, Zl(x) = ctlx are linear
objective functions where, cl = (clj)n�1, clj 2 R and
R is the set of real numbers. Here, \gmin" and \4"
represent moderate or fuzzy types of \min" and \6"
meaning that \objective functions should be minimized
as much as possible" and \the constraints should be
well satis�ed", respectively [12].

Let ai denote the ith row of matrix A; then,
Relation (2) can be demonstrated as follows:gmin fZ1(x); � � � ; Zp(x)g;

s.t. ai � x 4 bi; i 2 I;
x 2 [0; 1]n;

where, ai � x 4 bi means maxj2J (aij+xj2 ) 4 bi for all
i 2 I.

In order to solve Relation (2), it is necessary to
�nd solutions of Relation (1); then, de�ne member-
ship functions for 4 and objective functions; and use
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Bellman-Zadeh decision [14]. Accordingly, Relation (1)
and its solutions have a signi�cant role in solving
Relation (2). Correspondingly, in the following, some
previously obtained results are stated [4,5,11,12] that
are in the direction of solving Relation (1).

Notation 1 [4]. Set:

Si(A; b) = fx 2 [0; 1]n : ai � x � big for all i 2 I;
S(A; b) =

\
i2I

Si(A; b) = fx 2 [0; 1]n : A � x � bg:

De�nition 1 [12]. bx 2 S(A; b) is a complete optimal
solution to Relation (1) if and only if Zl(bx) � Zl(x),
for all l 2 L and all x 2 S(A; b).

Nevertheless, generally, when the objective func-
tions conict with each other, such a complete optimal
solution which concurrently minimizes all of the objec-
tive functions does not always exist. Therefore, Pareto
optimal solution is used as a substitute [12].

De�nition 2 [12]. x0 2 S(A; b) is said to be a Pareto
optimal solution to Relation (1) if and only if there does
not exist another x 2 S(A; b) such that Zl(x) � Zl(x0)
for all l 2 L and Zl(x) 6= Zl(x0) for at least one l.

Throughout this work, any kind of (com-
plete/Pareto) solution is called an \optimal solution".
However, it is clear that a complete (Pareto) optimal
solution yields a fuzzy complete (Pareto) optimal solu-
tion.

The following theorems state some properties
of S(A; b). For more details and proof of theorems
see [4,5].

Theorem 1 [4].

a) S(A; b) 6= ;, if and only if for all i 2 I and all j 2 J ,
2bi � aij > 0;

b) If S(A; b) 6= ;, then 0 = [0; 0; � � � ; 0]t1�n is the
unique minimal element of S(A; b).

Theorem 2 [4]. If S(A; b) 6= ;, then x = (xj)n�1
is the unique maximal element of S(A; b) where, xj =
minf1;mini2If2bi � aijgg.

Here, the feasible domain of Relation (1) can be
given.

Corollary 1. If S(A; b) 6= ;, then S(A; b) = [0; x].
Now, one simpli�ed form of Relation (1) can be

presented.

Theorem 3. Relation (1) is equivalent to the fol-
lowing problem:

min fZ1(x); � � � ; Zp(x)g;
s.t. x 2 �0; x� : (3)

Proof. Due to Corollary 1, the proof follows
immediately.�

Notation 2. Set:
J 0 = fj 2 J jclj < 0 for all l 2 Lg;
J 00 = fj 2 J jclj > 0 for all l 2 Lg;
J = J n (J 0 [ J 00) and

J � = J n J 00:
Theorem 4. If xos is an optimal solution to Rela-
tion (3), then (xos)j = xj and j 2 J 0 and (xos)j = 0
for all j 2 J 00.
Proof. Let x 2 S(A; b) be an optimal solution where,
for some j0 2 J 0, xj0 6= xj0 . Set x0j = xj for all j 2
J n fj0g and x0j0 = xj0 . Thus, Zl(x0) < Zl(x) for all
l 2 L, which is a contradiction. Similarly, the other
part could be proven.�

According to Theorem 4, it is enough to compute
(xos)j for all j 2 J . Thus, in order to solve Relation (3)
and, as a result of Theorem 3 to solve Relation (1), we
just consider the following problem:

min
X
j2J

cljxj +
X
j2J 0

cljxj for all l 2 L;

s.t. xj 2 [0; xj ] for all j 2 J: (4)

Since the feasible domain of Relation (4) is no longer a
system of FRIs, it can be solved by any existing method
for these kinds of problems that are explained in [12].
Also, it can be solved by heuristic methods such as
the Genetic algorithm [15]. If the problem has several
solutions and the DM is satis�ed with none of them,
then the DM shall choose one of these solutions based
on his/her point of view in order to obtain one fuzzy
solution [11].

Now, using the selected solution of Relation (1),
we try to solve Relation (2). In fact, we are going to
investigate if it is possible to minimize all objective
functions considering aspiration levels zl of the DM by
imposing certain exibility on the constraints. That
means we consider the following problem:

ctlx 4 zl; for all l 2 L;
A � x 4 b;
x > 0: (5)

Assume that zl for all l 2 L and the amount of
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acceptable exibility on the constraints are speci�ed
having interaction with the DM. Then, the following
linear membership functions for fuzzy inequalities in
Relation (5) can be employed as in [4,13]:

�i(ai � x) =

8><>:1 ai � x 6 bi
1� ai�x�bi

di bi 6 ai � x 6 bi + di
0 ai � x > bi + di;

(6)

�l(ctlx) =

8><>:
1 ctlx 6 zl
1� ctlx�zl

dl0
zl 6 ctlx 6 zl + dl0

0 ctlx > zl + dl0:

(7)

where, zl = Zl(xos) � vdl0 for some �xed v 2 (0; 1).
Each di and dl0 is a chosen constant expressing the
limit of the permissible violation of the ith inequality
for all i 2 I and all l 2 L. Further, �l(zl) = 1,
�l(Zl(xos)) = 1 � v, and �l(Zl(xos) + (1 � v)dl0) = 0
for all l 2 L. The parameters v, dl0, and di for all
i 2 I and l 2 L can usually be found based on the
empirical-technical views of the DM. Note that Eqs. (6)
and (7) allocate a higher degree to those points that
are closer to the feasible solution set. Assignment
of these membership functions is crucial to �nd the
best fuzzy solution as near as possible to the feasible
solution set. On the occasion that the exibility of the
constraints is not su�cient, the optimal solution will
not change and, afterwards, more exibility is enforced
on the constraints to �nd a better fuzzy solution [13].

Remark 1 [12]. Some other membership functions
can be used, such as piecewise, exponential, hyperbolic,
or hyperbolic inverse ones, besides the linear member-
ship function.

Notation 3 [13]. Set S� = fx 2 [0; 1]n : x =2
S(A; b)g.

In fact, only the vectors of x 2 [0; 1]n can be
better solutions than xos for Relation (5) that violate at
least one inequality ai �x 6 bi. That is, x is an infeasi-
ble solution or, by Notation 3, x 2 S� equivalently [13].

The next theorem represents the most important
problem of Section 2.

Theorem 5. Relation (5) is equivalent to the fol-
lowing problem:

max �;

s.t. Di

�
max
j2J (aij + xj)

�
+ � � Bi; i 2 I;

Dl
0(ctlx) + � � Bl0; l 2 L

x 2 [0; 1]n: (8)

Proof. Similar to [4,12,13], following the decision of
Bellman and Zadeh, Relation (5) has the following
form:

� = max
x2[0;1]n

�
min
l2L

�
�l(ctlx);min

i2I �i(ai � x)
��

: (9)

Considering Eqs. (6) and (7) and substituting Di = 1
2di

and Bi = 1+ bi
di for all i 2 I, Dl

0 = 1
dl0

and Bl0 = 1+ zl
dl0

,
Eq. (9) is rewritten as:

� = max
x2[0;1]n

(
min
l2L

(
Bl0 �Dl

0(ctlx);

min
i2I

�
Bi �Di

�
max
j2J (aij + xj)

��))
: (10)

Now, by introducing � as the auxiliary variable:

�=min
l2L

�
Bl0�Dl

0(ctlx);min
i2I

�
Bi�Di

�
max
j2J (aij+xj)

���
;

we have:

� � Bi �Di

�
max
j2J (aij + xj)

�
; (11)

for all i 2 I and

� � Bl0 �Dl
0(ctlx); (12)

for all l 2 L. Using Relations (11) and (12), Problem
(8) is equivalent to the following problem:

max �;

s.t. � � Bi �Di

�
max
j2J (aij + xj)

�
; i 2 I

� � Bl0 �Dl
0(ctlx); l 2 L

x 2 [0; 1]n: (13)

Now, from Problem (13), Problem (8) is derived
immediately. �

Therefore, according to Theorem 5, in order to
�nd the fuzzy solution to Relation (2), it is adequate
to consider Relation (8). In the next section, the
dimension of Relation (8) is reduced as much as
possible.

3. Simpli�cation process

In this section, some theorems are given in order to
convert Relation (8) into the equivalent problems that
are more simpli�ed and more easily solvable as well.
Similar to [4], we use the following notations:
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Notation 4. Set
�l0(x) = Bl0 �Dl

0(ctlx) for all l 2 L;

�i(x) = Bi �Di

�
max
j2J (aij + xj)

�
for all i 2 I;

�ij(xj) = Bi �Di(aij + xj) for all

i 2 I and j 2 J and

�(x) = min
�

min
i2I f�i(x)g;min

l2L f�l0(x)g
�
:

Theorem 6. The functions �i for all i 2 I and �ij
for all i 2 I and j 2 J are non-increasing continuous
functions. Especially, �ij decreases for each component
xj 2 [0; 1]. Also, �l0 for all l 2 L decreases with respect
to component xj if cj > 0, and increases if cj < 0.

Proof. Straightforward. �
The next theorem provides a simpli�cation pro-

cess to solve Problem (8) by �nding some components
of its solution.

Theorem 7. If x� is the optimal solution of Prob-
lem (8), then x�j = 0 for all j 2 J 00.
Proof. The proof is similar to that of Theorem 2
in [13]. �

Remark 2. According to Theorem 7, in the solving
procedure of Problem (8), some columns of matrix A
can be removed. Thus, to solve Problem (8), it is
adequate to consider only the columns of matrix A that
belong to J �.

By Remark 2, Problem (8) is converted into the
following simpli�ed form:

max �;

s.t. Di

�
max
j2J� (aij + xj)

�
+ � � Bi; i 2 I

Dl
0

0@X
j2J�

cljxj

1A+ � � Bl0; l 2 L

x 2 [0; 1]jJ�j; (14)

where jJ �j is cardinality of J �.

Theorem 8 [4]. For all i 2 I and j 2 J �,
a) If 2bi� aij > 1 then, �ij(xj) > 1 for all xj 2 [0; 1];
b) If 2bi � aij < 1 then, �ij(xj) > 1 for all xj 2

[0; 2bi � aij ].

Proof. See the proof of Theorem 7 in [4]. �
Theorem 8 has two interesting conclusions.

Corollary 2 [4]. Let i 2 I and j 2 J �. Then,
�ij(xj) > 1 for all xj 2 [0; 1] if and only if xj does
not violate the inequality aij � x 6 bi.
Proof. See the proof of Corollary 3 in [4]. �

Corollary 3 [4]. Under the simpli�cation burdened
by Remark 2, x 2 S� if and only if there exist i 2 I
such that �i(x) < 1.

Proof. See the proof of Corollary 4 in [4]. �
The next theorem introduces another simpli�ca-

tion to convert Relation (14) to the more simpli�ed
form.

Theorem 9 [4]. Suppose that the simpli�cation
by Remark 2 is done and i 2 I. Then, �i(x) =
minj2J�if�ij(xj)g, where J �i = fj 2 J � : 2bi � aij < 1g.
Proof. See the proof of Theorem 8 in [4]. �

Corollary 4. Relation (14) is equivalent to the
following problem:

max �;

s.t. Di

�
max
j2J�i

(aij + xj)
�

+ � � Bi; i 2 I

Dl
0

0@X
j2J�

cljxj

1A+ � � Bl0; l 2 L

x 2 [0; 1]jJ�j: (15)

Proof. Straightforward. �

Theorem 10. Let I �j = fi 2 I : 2bi � aij < 1g for
all j 2 J � and bJ = fj 2 J � : I �j 6= ;g. Then:

a) We can remove all columns j =2 bJ from matrix
A with no e�ect on the optimal solution to Prob-
lem (8);

b) x�j = 1 for all j =2 bJ , where x� is the optimal
solution to Problem (8).

Proof. Proof is followed by a modi�cation of Corol-
lary 6 in [13]. �

Corollary 5. Relation (15) is equivalent to the
following problem:
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max �;

s.t. Di

 
max
j2 bJ (aij + xj)

!
+ � � Bi; i 2 I

Dl
0

0@X
j2 bJ cljxj

1A+ � � Bl0; l 2 L

x 2 [0; 1]j bJj: (16)

Proof. Straightforward. �

4. An algorithm to solve Relation (2)

Until now, Relation (8) has been in the process of being
simpli�ed to Relation (16) as its equivalent problem.
Now, some de�nitions are presented to provide an
algorithm improving the objective functions of Rela-
tion (16) in each step and stopping at the optimal so-
lution. Here, it is presumed that all the simpli�cations
mentioned earlier have been done on Relation (16).
Similar to [4], we consider the following notations.

Notation 5. Let �K 2 (0; 1). For all j 2 bJ set Ij =
fi 2 I �j : �ij(xij) = �K for some xij 2 (0; 1)g and xi

0
j =

mini2Ijfxijg. Also, see Remark 2 in [13].

Remark 3 [4]. �ij(xij) = �K and xi
0
j � xij implies

�ij(xi
0
j ) � �ij(xij) = �K by Theorem 6; thus,

�ij(xi
0
j ) � �K for all i 2 Ij . Therefore, it can be

assumed that I �j = fi0g.

Remark 4 [4]. If xi
00
j = xi

000
j = mini2Ijfxijg for some

i00 6= i000, then set i0 = i00 in the case di00+ai00j
bi00 �

di000+ai000j
bi000 , otherwise, set i0 = i000.

Remark 5. It is possible that, for some i 2 I we have
i 2 I �j for more than one j 2 bJ . This means there exist
I� � I such that for all i 2 I�, there exist J 0i � bJ such
that i 2 I �j for all j 2 J 0i .
Theorem 11.

a) If for all j; j0 2 bJ such that j 6= j0, I �j and I �j0 are
disjoint, then Relation (16) is equivalent to:

max �;

s.t. Di(aij+xj)+��Bi; 8i2I �j
and 8 j2 bJ

Dl
0

0@X
j2 bJ cljxj

1A+ � � Bl0; l 2 L

x 2 [0; 1]j bJj: (17)

b) Let for some i 2 I, i 2 I �j for more than one j 2 bJ .
In this case, Relation (16) is equivalent to:

max �;

s.t. Di(aij+xj)+��Bi; 8 i2I �j 8 j2J�

Di(aij+xj)+��Bi; 8 i2I �j 8 j2J 0i

Dl
0

0@X
j2 bJ cljxj

1A+ � � Bl0; l 2 L

x 2 [0; 1]j bJj;
(18)

where, J� = bJ nSi2I� J 0i .
Proof.

a) By Notation 5 and Remark 3, for each j 2 J ,
the key role to �nd the fuzzy solution is played
by i 2 I �j . Now, if all I �j 's are mutually disjoint,
then Relation (17) is derived from Relation (16)
immediately;

b) Now, let for some i 2 I, i 2 I �j . for more than
one j 2 bJ . Then, by Part (a), Relation (16) is
equivalent to the following form:

max �;

s.t. Di(aij + xj) + � � Bi; 8 i 2 I �j
and 8 j 2 J�

Di

�
max
j2J 0i

(aij + xj)
�

+ � � Bi; 8 i 2 I �j

Dl
0

0@X
j2 bJ cljxj

1A+ � � Bl0; l 2 L

x 2 [0; 1]j bJj;
where, J� = bJ nSi2I� J 0i .

Since Di(maxj2J0i (aij +xj)) +� � Bi implies Di(aij +
xj) + � � Bi for all j 2 J 0i Relation (16) is concluded
directly. �

Now, all the requirements are ready to present
the algorithm. The following algorithm obtains a fuzzy
solution to Relation (2).
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Algorithm 1. Suppose Relation (2) is given and
di(i 2 I), dl0(l 2 L), and v are suggested by the DM;
then do the following steps:

- Step 1. Consider Relation (1) and compute x by
Theorem 2;

- Step 2. Obtain J 0, J 00, J , and J � by Notation 2;

- Step 3. Using Theorem 4, convert Relations (1)
to (4) and solve it by any multi-objective linear
programming method such as the heuristic one. Com-
pletely derive all xos's and Zl(xos)'s by Theorem 4.
Choose one optimal solution having interaction with
the DM;

- Step 4. Derive Relation (8) considering the selected
solution in Step 3;

- Step 5. Set x�j = 0 for all j 2 J 00 by Theorem 7.
Then, convert the problem of Step 4 to the form of
Relation (14);

- Step 6. Obtain J �i for all i 2 I and convert the
problem obtained in Step 5 into Relation (15) using
Theorem 9;

- Step 7. By Theorem 10, derive I �j for all j 2 J �
and obtain bJ . Set x�j = 1 for all j =2 bJ and then,
convert the problem of Step 6 into Relation (16) by
Theorem 10;

- Step 8. Get �; P . Let K = 1, �K = 1 � v, and
(x�)j = (xos)j for all j 2 bJ ;

- Step 9. Until �K � 1� � or K = P or �K = �K�1,
do:

9-1. Derive Ij for all j 2 bJ using Notation 5;
9-2. If for some j 2 bJ , Ij = ;, then if �K = 1 � v,

then Relation (2) with this �K has no better
solution than x� and so, x� and Zl(x�) for all
l 2 L are optimal. Otherwise, �� = �K�1, x� =
x and go to Step 11;

9-3. Obtain I �j for all j 2 bJ using Notation 5,
Remark 3, and Remark 4;

9-4. If for all j 6= j0 and j, j0 2 bJ ; I �j \ I �j0 = ;, then
convert the problem obtained in Step 7 to Rela-
tion (17); otherwise, convert it to Relation (18)
using Theorem 11;

9-5. Solve the problem obtained in step 9-4 with any
linear programming method such as the simplex
method and �nd x, �. If it has no optimal
solution, then set �� = �K�1 and x� = x is
the optimal solution and go to Step 11;

9-6. K := K + 1, �K = �.

Step 10. x�j = xj for all j 2 bJ and �� = �;

Step 11. Zl(x�) = ctlx� for all l 2 L;

Step 12. End.

Remark 6. Algorithm 1 is a polynomial time algo-
rithm, and in the following, it is illustrated by one
example.

Example 1. Consider the following problem:

min f2x1+x2�x3�6x4;�3x1+x2�3x3+2x4g;

s.t.

26640:5 0:2 0:3 0:3
0:4 0:8 0:1 0:2
0:0 0:3 0:7 0:6
0:1 0:3 0:1 0:4

3775 � x �
26640:4

0:7
0:5
0:6

3775 :
Let v = 0:5, d1

0 = 2
3 , d2

0 = 1
2 , d1 = 0:3, d2 = 0:1,

d3 = 0:2, d4 = 0:1.
Using Algorithm 1, we have the following steps:

- Step 1. We consider the following problem:

min f2x1+x2�x3�6x4;�3x1+x2�3x3+2x4g

s.t.

26640:5 0:2 0:3 0:3
0:4 0:8 0:1 0:2
0:0 0:3 0:7 0:6
0:1 0:3 0:1 0:4

3775 � x �
26640:4

0:7
0:5
0:6

3775 ;
and we have x = (0:3; 0:6; 0:3; 0:4).

- Step 2. We have J 0 = f3g, J 00 = f2g, J = f1; 4g,
and J � = f1; 3; 4g.

- Step 3. In this step, we have the following problem:

min f2x1 � 6x4 � 0:3;�3x1 + 2x4 � 0:9g
s.t. x1 2 [0; 0:3]

x4 2 [0; 0:4]:

By the optimization toolbox of Matlab software
and \gamultiobj" solver, which uses the Genetic
algorithm for solving multi-objective problems, 11
Pareto optimal solutions have been computed for
the problem of this step and they are presented in
Table 1, where (xos)2 = 0 and (xos)3 = 0:3 for all
Pareto optimal solutions. Assume the DM has chosen
xos = (0:239; 0; 0:3; 0:307). Therefore, Z1(xos) =
�1:664 and Z2(xos) = �1:003.

- Step 4. We have D1 = 5
3 , D2 = 10, D3 = 5, D4 =

10, D1
0 = 3

2 , D2
0 = 2, B1 = 7

3 , B2 = 8, B3 = 7
2 ,

B4 = 7, z1 = �1:997, z2 = �1:253, B1
0 = �1:995,

and B2
0 = �1:506. Thus, the problem is converted to

the following problem:
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Table 1. Pareto optimal solutions for Example 1.

1 2 3 4 5 6 7 8 9 10 11

Z1(xos) -2.691 -0.301 -2.691 -2.377 -1.664 -2.313 -2.007 -0.913 -0.448 -2.118 0.257
Z2(xos) -0.112 -1.507 -0.112 -0.386 -1.003 -0.539 -0.922 -1.361 -1.404 -0.694 -1.783
(xos)1 0.004 0.26 0.004 0.077 0.239 0.133 0.253 0.285 0.237 0.171 0.299
(xos)4 0.4 0.087 0.4 0.372 0.307 0.38 0.369 0.197 0.104 0.36 0.007

max �;

s.t.
5
3

�
max
j2J (a1j + xj)

�
+ � 6 7

3
;

10
�

max
j2J (a2j + xj)

�
+ � 6 8

5
�

max
j2J (a3j + xj)

�
+ � 6 7

2

10
�

max
j2J (a4j + xj)

�
+ � 6 7

3
2

(2x1 + x2 � x3 � 6x4) + � 6 �1:995

2(�3x1 + x2 � 3x3 + 2x4) + � 6 �1:506

x 2 [0; 1]4:

- Step 5. Since 2 2 J 00, we have x�2 = 0 and then:

max �;

s.t.
5
3

�
max
j2J� (a1j + xj)

�
+ � 6 7

3

10
�

max
j2J� (a2j + xj)

�
+ � 6 8

5
�

max
j2J� (a3j + xj)

�
+ � 6 7

2

10
�

max
j2J� (a4j + xj)

�
+ � 6 7

3
2

(2x1 � x3 � 6x4) + � 6 �1:995

2(�3x1 � 3x3 + 2x4) + � 6 �1:506

x 2 [0; 1]3:

- Step 6. We have J �1 = f1; 3; 4g, J �2 = ;, J �3 = f3; 4g,
J �4 = f4g and then:

max �

s.t.
5
3

(max((0:5 + x1); (0:3 + x3); (0:3 + x4)))

+ � 6 7
3

5(max((0:7 + x3); (0:6 + x4))) + � 6 7
2

10(max(0:4 + x4)) + � 6 7

3
2

(2x1 � x3 � 6x4) + � 6 �1:995

2(�3x1 � 3x3 + 2x4) + � 6 �1:506

x 2 [0; 1]3:

- Step 7. We have I �1 = f1g, I �3 = f1; 3g, I �4 = f1; 3; 4g,
and bJ = f1; 3; 4g. Thus:

max �;

s.t.
5
3

(max((0:5+x1); (0:3+x3); (0:3+x4)))

+ � 6 7
3

5 (max((0:7 + x3); (0:6 + x4))) + � 6 7
2

10 (max(0:4 + x4)) + � 6 7

3
2

(2x1 � x3 � 6x4) + � 6 �1:995

2(�3x1 � 3x3 + 2x4) + � 6 �1:506

x 2 [0; 1]3:

- Step 8. We have � = 10�2, P = 10, K = 1, �K =
0:5, x�1 = 0:239, x�3 = 0:3, and x�4 = 0:307.

- Step 9. This step includes six parts:
9-1. We have I1 = I3 = f1g and I4 = f1; 4g;
9-2. Since Ij 6= ; for all j 2 bJ , we go to the next

part;
9-3. In this part, I �j 's are derived as I �1 = I �3 = f1g,

and I �4 = f4g;
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9-4 Since I �1
T
I �3 6= ;, the problem of Step 7 should

be converted to the form Relation (18). We have
I� = f1g, J 01 = f1; 3g, J� = f4g and thus:

max �;

s.t.
5
3

(0:5 + x1) + � 6 7
3

5
3

(0:3 + x3) + � 6 7
3

10(0:4 + x4) + � 6 7

3
2

(2x1 � x3 � 6x4) + � 6 �1:995

2(�3x1 � 3x3 + 2x4) + � 6 �1:506

x 2 [0; 1]3:

9-5. Solving the problem in step 9-4, we have x1 =
0:0, x3 = 0:595, x4 = 0:215, and � = 0:841;

9-6. Since � < 1� � by considering K = 2 and �K =
0:841, we repeat Step 9.

In the second repetition of Step 9, we have:
9-1. I1 = I3 = f1g and I4 = f1; 4g;
9-2. Ij 6= ; for all j 2 bJ and thus, we go to the next

part;
9-3. We have I �1 = I �3 = f1g and I �4 = f4g;
9-4. Since I� = f1g, J 01 = f1; 3g and J� = f4g, the

problem in this part is similar to the problem
in step 9-4 in the previous repetition;

9-5. We have x1 = 0:0, x3 = 0:595, x4 = 0:215, and
� = 0:841.

As it is seen that �K = �K�1 and hence, we should
break this step.

- Step 10. We have x�1 = 0:0, x�3 = 0:595, x�4 = 0:215,
and �� = 0:841.

- Step 11. Z1(x�) = �1:885 and Z2(x�) = �1:355,
which are the optimal values of the problem.

- Step 12. End.

Hence, in this example, the fuzzy solution is
(0; 0; 0:595; 0:215) and its values in objective functions
are -1.885 and -1.355, respectively. If the DM is not
satis�ed with this fuzzy solution, he/she should accept
more perturbation in constraints or choose another
solution in Step 3 of Algorithm 1.

5. Conclusion

We have used Max-Arithmetic mean composition in
a multi-objective optimization problem subject to a
system of fuzzy relational inequalities in which ordinary

inequalities have been replaced by fuzzy inequalities
to bene�t from the advantages of this composition
and obtain more realistic solutions. Assigning linear
membership functions to the inequalities and objective
functions using one selected solution of the same multi-
objective optimization problem with ordinary inequal-
ities and employing Bellman-Zadeh decision, we have
converted the multi-objective optimization problem in
the presence of fuzzy inequalities in its constraints
into a new simpler one in order to use infeasible
points to obtain better solutions. Afterwards, we have
diminished the dimension of the problem and proposed
an algorithm to generate the optimal solution. If the
algorithm yields a solution similar to the one which
is obtained using only the feasible points, then the
decision maker should accept more perturbation on
the constraints. Also, in the case that the decision
maker is not satis�ed with the obtained solution by
the algorithm, he/she should accept more perturbation
on the constraints as well or choose another solution
to the ordinary multi-objective optimization problem.
This process should be continued until the desired
solution of the decision maker is achieved. For future
studies, it seems useful to employ other kinds of
membership functions as they have been mentioned in
Remark 1.
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