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Abstract. In this article, a new model and a novel solving method are provided to address
the non-exponential redundancy allocation problem in series-parallel k-out-of-n systems
with repairable components based on Optimization Via Simulation (OVS) technique.
Despite the previous studies, in this model, the failure and repair times of each component
were considered to have non-negative exponential distributions. This assumption makes
the model closer to the reality where the majority of used components have greater chance
to face a breakdown in comparison to new ones. The main objective of this research is
the optimization of Mean Time to the First Failure (MTTFF) of the system via allocating
the best redundant components to each subsystem. Since this objective function of the
problem could not be explicitly mentioned, the simulation technique was applied to model
the problem, and di�erent experimental designs were produced using DOE methods. To
solve the problem, some meta-Heuristic Algorithms were integrated with the simulation
method. Several experiments were carried out to test the proposed approach; as a result,
the proposed approach is much more real than previous models, and the near optimum
solutions are also promising.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

The increase in system reliability has been one of the
most appealing areas for the engineers and designers,
and the utilization of redundant components is one
of the common approaches in the development of the
systems. Each system is formed by putting di�erent
components together wherein their way of relation with
each other depends on their function in the system.
Di�erent kinds of the system structures could be sys-
tems with parallel, series, series-parallel, parallel-series
components, and bridge network structures [1]. In this
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paper, series-parallel structures are used; consequently,
it is one of those system structures designed by allo-
cating redundant components in parallel to the compo-
nents of a system with series structure [2]. Reliability is
the probability of proper function of system in a certain
time interval, and the reliability of the whole system
is a combination of reliability of its individual compo-
nents. Two approaches are proposed for increasing the
reliability of system. The �rst approach is to increase
the reliability of system components; the second is to
use the redundant components in addition to the main
components in parallel [3]. Due to economic and
technological limitations, the best and most e�cient
method of increasing system reliability is the second
approach by using the redundant components with the
main components. For this reason, this approach is
used in this article as well [4]. Redundancy strategies
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are categorized into active and standby strategies. In
an active redundancy strategy, it is assumed that all of
the redundant components are implemented together
from time zero, whereas in the standby strategy,
only the components operate. Hence, the redundant
components are idle until the active component fails.
Thus, whenever a component in operation fails, one
of the redundant components should be switched on.
In this paper, the active redundancy is considered.
After the �rst article by Fy�e et al. [5], in which they
studied the redundancy allocation problem in series-
parallel systems, a great number of researchers have
tried to develop this knowledge. The investigations
of Coelho [6], Zou et al. [7], Ramirez-Marquez and
Coit [8], Nahas et al. [9], Safaei et al. [10], Liang and
Chen [11], Ha and Kuo [12], Soltani et al. [13], Liang
et al. [14], Juang et al. [15], Zhang et al. [16], and
Chambari et al. [17] are of those investigations into
the redundancy allocation problem in series-parallel
systems. For more information about the redundancy
allocation problems, readers are referred to a work by
Soltani [18].

With a glance at the trend of the studies in
redundancy allocation problem, it is clearly seen that
this problem has not been addressed in the repairable
systems. The lack of investigations into the redun-
dancy allocation problem in series-parallel systems
with repairable components and subsystems by Kuo
and Wan [19], Guedenko and Ushakov [20], Elegbede
and Adjallah [21], and Ying-Shen et al. [22] is com-
pensated after some �nished research works in the
literature of redundancy allocation problem. Since
the structure of the system has a signi�cant e�ect on
system reliability, the reparability or non-reparability
of system components or subsystems is another issue
a�ecting the proper function of a system in its oper-
ating duration. The system reparability means that
it is possible to restart the system by the required
repairs of failures. Whenever a system is repairable,
\availability" is used instead of reliability. Availability
is the percentage of the time during which a repairable
system appropriately does the de�ned tasks [19]. In
this paper, reparability components are considered.

For the multi-objective redundancy allocation
problem, Chambari et al. [23], for non-repairable
components, considered a large series-parallel system
with two objectives: maximization of system reliability
and minimization of cost. Garg et al. [24] managed
to maximize system reliability and minimize cost by
Particle Swarm Optimization (PSO) in a series-parallel
system. Zoulfaghari et al. [25] formulated bi-objective
redundancy allocation problem with two objectives,
including maximization of the system availability and
minimization of cost of the system considering repara-
bility and non-reparability components. Furthermore,
Li and Lin [26] considered three-objective models,

whose objectives include reliability, total cost, and total
weight.

Since a di�erent word other than reliability is
de�ned as a functional parameter of the system for
repairable systems, the other notions regarding the
system function are also di�erent in repairable systems.
Mean Time To the Failure (MTTF) or survivability in
non-repairable systems shows the mean durability of
system lifetime, while the components of a repairable
system are repairable and the system could restart after
repair, and the MTTF is the mean time of system
failure for the �rst time (MTTFF) [27].

The aim of this manuscript is to represent a
bi-objective model developed for the series-parallel
system to allocate redundant components in systems to
repairable components in order to maximize MTTFF
of the system and minimize system cost under the
constraints of total cost, weigh of the system, and
sum of components within the system. The redun-
dancy allocation problem is the non-linear polynomial
optimization problem which is of NP-hard class [28].
It has been addressed by di�erent methods and with
the extension of solution space, the absolute solutions
in solving these problems are ine�cient; the meta-
heuristic approaches have been preferred instead in
recent years. Then, since the proposed model belongs
to an NP-hard class of optimization problems, an
e�ective Multi-Population Genetic Algorithm (MPGA)
is implemented to solve the model.

The rest of the paper is organized as follows.
Section 2 de�nes multi-objective optimization more
precisely and describes the problem de�nition and basic
assumptions in Section 3. Section 4 develops the pro-
posed methods for solving the reliability optimization
problem. Section 5 describes computational results
and provides analysis of the results for a set of test
problems. Finally, Section 6 concludes the paper and
all remarks.

2. Multi-objective optimization

Multi-Objective Optimization Problem (MOOP) refers
to the problems in which two or more objectives must
be optimized simultaneously. Often, such objectives
are in con
ict with each other and are expressed in dif-
ferent units. Because of their nature, the �nal solution
to MOOP is not a single one but a set of solution known
as Pareto-solutions [29,30]. When such solutions are
represented in the objective function space, the graph
produced is called the Pareto-front or the Pareto-
optimal set. A general formulation of a MOOP consists
of a number of objectives with a number of inequality
and equality constraints. The problem can be mathe-
matically written as minff1(x); f2(x); � � � ; fv(x)g sub-
ject to gl(x) � 0; l = 1; 2; � � � ; L and hk(x) = 0;
k = 1; 2; � � � ;K, where x is vector of decision variables,
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fv(x) is the ith objective function, and gl(x) and hk(x)
are constraints vectors. In the function set, some of the
objectives are often in con
ict with others; some have
to be minimized, while others are to be maximized.
The constraints limit feasible region X, and any point
x 2 X is categorized as feasible solutions. There is
rarely a situation in which all fv(x) function values
have an optimum in X at common point x. Therefore,
in the absence of preference information, solutions to
multi-objective problems are compared using the no-
tion of Pareto dominance. In a minimization problem
for all objectives, solution x1 dominates solution x2
(also written as x1 > x2), if and only if the two
following conditions are true:

� x1 is no worse than x2 in all objectives, i.e. fv(x1) �
fv(x2); 9v 2 f1; 2; � � � ; V g;

� x1 is strictly better than x2 for at least one objective,
i.e. fv(x1) < fv(x2); 9v 2 f1; 2; � � � ; V g.

Then, a solution is said to be Pareto-optimal if it is not
dominated by any other possible solution, as described
above. Thus, the Pareto-optimal solutions to a multi-
objective optimization problem form the Pareto-front
or Pareto-optimal set [31].

3. Problem de�nition

In this article, k-out-of-n system containing S inde-
pendent subsystems, as in Figure 1, is considered.
Since this structure is more realistic, it is the most
important and the most utilized structure in di�erent
studies [32]. In this structure, a system is arranged
with S subsystems beside each other; in each subsystem
ni (i = 1; 2; � � � ; S), di�erent components are arranged
in parallel. There are di�erent types of component
choices per subsystem, and the components within the
same subsystem are of the same type.

3.1. Assumptions
� The components of each subsystem are arranged in

parallel;
� The lifelong of elements (components) is non-

exponentially distributed;

Figure 1. The structure of a k-out-of-n system
containing s independent sub-systems.

� The components are repairable and the repair rate
of elements is also non-exponential;

� Mixture of components is allowed within a subsys-
tem;

� The components allocated to each subsystem are of
the same type;

� A certain number of components are utilized within
each subsystem;

� There is one repairman able to repair all the com-
ponents.

3.2. Mathematical model of the problem
According to the assumptions, the applied symbols,
indices, and mathematical models including objective
function and the constraints of the problem are as
follows:

3.2.1. Symbols, indices, and variables of the problem
i Index of subsystem
j Index of component choice used for

subsystems i
xij Number of selected components of type

j for subsystem i
�ij Failure rate of component of type j for

subsystem i
�ij Repair rate of component of type j for

subsystem i
S Number of subsystems
ni Number of components allocated to

subsystem i
cij Cost of component j available for

subsystem i
wij Weight of component j available for

subsystem i
Ws Weight of the system
Ni Upper bound for ni
Ns Maximum number of components used

in the whole system
yij Binary variable to choose/not choose

one component type for the subsystem
i

M A big number

3.2.2. Mathematical model

maxZ = minfMTTFSig; (1)

minCs =
SX
i=1

niX
j=1

cij � xij ; (2)
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s.t.

SX
i=1

niX
j=1

wij � xij �Ws; (3)

niX
j=1

yij=1; 0�xij�Ni:yij 8i=1; � � � ; S; (4)

SX
i=1

niX
j=1

xij � Ns; (5)

ki �
niX
j=1

xij � Ni 8i = 1; � � � ; S; (6)

yij 2 f0; 1gki; xij � 0; int; (7)

where:

MTTFSi = f(xij ; �ij ; �ij):

Eq. (1) is the main objective function or Mean MTTFF
of the system. The second objective function of the
problem is based on the minimization of the total
cost of the system in Eq. (2); Eq. (3) is the system
weight constraint; constraints required to choose only
one component type are provided in Eq. (4); Eq. (5) is
the constraint of number of components of the whole
system; Eq. (6) is the constraint of lower and upper
bounds for the number of components allocated to each
subsystem; for the proper function of each subsystem,
it is required that, at least, ki out of ni components
operates. And �nally, the constraint of components'
type and their extents is provided in Eq. (7).

The aim of this article is to increase MTTFF
of a series-parallel system. In this system, there are
components arranged in parallel in each subsystem,
and a subsystem operates in spite of failures and repairs
until all the components fail. This system with its
series subsystems fails for the �rst time, i.e. the
�rst failure occurs whenever one of the subsystems
completely fails [8]. Hence, mean time of the �rst
failure of the system is the mean time within which
one of the subsystems completely fails. Therefore,
the increase of mean time of the �rst failure of the
system is the minimum value of the mean failure of
each subsystem. The algorithm for the calculation of
MTTFF of a subsystem with parallel and reparable
components is provided in [33].

4. Methods for reliability optimization

The methods for reliability optimization are classi�ed
into three main categories of exact, approximate,
heuristic and meta-heuristic. These are explained as
follows [4,18]:

� Exact methods: In these methods, the optimal
solution is calculated for the reliability optimization
problems. Rate of the computations of the exact
method exponentially increases according to the
increase of the problem quantity. Some of the
exact methods are dynamic programming, gradient
method, linear programming, and integer program-
ming;

� Approximate method: In these methods, the
model of the problem is approximated due to the
complexity of the models, and the optimal solution
to the approximate model is calculated using the
exact methods. Some of the important approximate
methods are the geometric programming, Lagrange
multiplier method, random search and lexicographic
method;

� Heuristic and meta-heuristic methods: Con-
sidering the long duration of computation, the
heuristic and meta-heuristic methods are proposed.
These methods provide a near optimal solution in a
proper computational time.

4.1. The proposed solving methods
4.1.1. The Multi-Population Genetic Algorithm

(MPGA)
The two-stage approach, which we call MPGA, is
illustrated in Figure 2. In the �rst stage, the GA
evolves based on the combined objective. The solutions
at the end of the �rst stage are rearranged and
divided into subpopulations, then they start to evolve
separately. The steps of each stage are described in the
following subsection. Essentially, this approach uses
a modi�cation of Multi-Objective Genetic Algorithm
(MOGA) in stage one and a modi�cation of Vector
Evaluated Genetic Algorithm (VEGA) in stage two.
The general pseudo-code of the proposed MPGA is
described in Figure 2.

Encoding
The �rst step in running the Genetic Algorithm is to
represent the solution or design the chromosome. The
chromosomes are so designed to estimate the main
limitations of the problem as much as possible. The
chromosome designed in this study is a T �N matrix
where T represents the type and number of selected
components, and N is the number of subsystems. Each
column represents a subsystem, and the value of each
cell in the �rst row represents the type; in the second
row, the value of each cell represents the number of
components in the relevant subsystem.

For example, Figure 3 shows the layout of a sys-
tem with four subsystems, where in the �rst subsystem,
there are four components of type two; in the second
subsystem, there is one component of type three; in the
third subsystem, there are three components of type
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Figure 2. The general pseudo-code of the proposed MPGA.

Figure 3. Encoding solution as a chromosome
representation.

two; in the fourth subsystem, there are two components
of type one.

Initialization
In this article, di�erent populations are generated
instead of using only the initial population and running
the steps of genetic algorithm on it. The chromosome
structure is the same as in all of these populations, but
each population could have its own steps of selection,
generation, and mutation; after some generations, we
exchange the chromosomes within them by Elitism
Algorithms. Since the e�ciency of di�erent models
of Genetic Algorithm heavily depends on data types,
the proposed method minimizes the risk of exposure
to local minimum due to its possibility to use various
methods in each population.

Selection
Selection is an operation to select two parent strings
for generating new o�spring. Let Xi

t be the ith
solution (I between 1 and population size) in the tth
generation, and f(xit) be the performance measure of
solution Xi

t . Each solution Xi
t is selected as a parent

string according to the selection probability P (xit). The
following method is used:

P (xit) =
[fwt � f(xit)]2PN
k=1[fwt � f(xkt )]2

; (8)

where fwt is the worst value of objective at generation
t.

Crossover
For crossover operation, we follow steps below consid-
ering the condition of feasibility of the generated o�-
springs:

1. The �rst chromosome of the population is selected;
2. Generate a random number r between 0 and 1;
3. If r < Pc, then choose that algorithm for the

crossover operation;
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Figure 4. An example of the crossover process to �ne
new solutions.

4. Now, pair the selected chromosomes randomly;
generate a random number of \cross point" per
chromosome in the range of f1; � � � ; Ng, where N
is the number of subsystems;

5. Copy the bits of 1 through cross point in the
chromosome of the �rst parent directly into the
genes of the �rst o�-spring;

6. The bits of cross point+1 through N of the second
parent are transited to the �rst o�-spring according
to their arrangement in the second parent;

7. Repeat steps 6 and 7 for the generation of the
second o�-spring;

8. Repeat the above steps to generate the other o�-
spring chromosomes.

The crossover process is shown in Figure 4 schemati-
cally.

Mutation
The most important function of mutation operator is to
avoid the convergence and local optimum and searching
in intact spaces of the problem. The task of mutation
of a chromosome is to change its genes, and it has
di�erent methods depending on the type of coding. We
follow the steps below concerning the mutation on the
chromosomes:

1. The �rst chromosome in the population is selected;
2. Generate a random number r between 0 and 1;
3. If r < Pm, then the chromosome is mutated, i.e.

one of the genes of the component type or the
number of components is selected and replaced with
another value being randomly and feasibly gener-
ated. Figure 5 illustrates this operator graphically.

Evaluation of the main objective function
A series-parallel system fails for the �rst time when one
of the subsystems fails, i.e. if each subsystem of the
system fails �rst, it results in the failure of the whole
system. Hence, in order to calculate the MTTFF of the

Figure 5. Example of the mutation process to avoid local
optimums.

system, it is required to simulate the MTTFF of each
subsystem, and the MTTFF value of the subsystem
which has the earliest failure time is considered as the
MTTFF of the whole system. Since all the relations
and equations for calculating the MTTFF of a system
are possible by failure probabilities and exponential
repair by mathematical and statistical analyses; it is
not possible by any kind of repair or analysis other than
non-exponential repair, and in this way, the simulation
approach is applied to calculate this value. It should
be noted that the �tness of each chromosome is equal
to their mean �tness in n times of simulation of that
chromosome. Therefore, we are able to calculate the
�tness rate of each chromosome without any unrealistic
assumption.

Evaluation of the combined objective
One of the most famous methods of multi-objective
optimization (MOOP) is \weighted aggregation". In
this method, a linear combination of objective func-
tions with non-negative di�erent weights is used to
form \aggregated function" as below:

F (x) =
mX
i=1

wifi(x)
mX
i=1

wi = 1; wi � 0: (9)

In the above formula, F (x) is aggregated function, and
wi is lth non-negative weight related to lth objective
function. There are di�erent methods for aggregating
objective function and producing aggregated function
F (x). The best method to estimate aggregation of
functions is \Dynamic Weighted Aggregation" method
(DWA), because this method shows better ability to
estimate concave Pareto-fronts. This method is de�ned
for two objective functions as below (it can be general-
ized easily to more than two-objective functions):

(w1(t); w2(t)) = (j sin(2�t=R)j; 1� w1(t)); (10)

where t is tth sub-population (t = 1; 2; � � � ; Ns) and
R = 200.

MOOPs are usually solved by scalarization (it
means converting the problem with multiple objectives
into a single objective or a family of single objec-
tive optimization problems). The major trouble of
weighting method is the need for scalarizing multiple
objectives in sum weighting, and in this regard, we
employ one of the most widely used multi-objective
methods called Min-Max. In Min-Max approach, we
use the idea of minimizing the distance of every solution
from the best possible solution f�. In other way, if
fi(x) is the ith objective function and f�i is the best
available solution for fi(x), then the quantity of f�
will be f� = (f�1 ; f�1 ; � � � ; f�m)T . So, the following
function is minimized subject to the constraint of the
problem:
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min

"
mX
i=1

�
fi(x)� f�i

f�i

�p# 1
p

;

s.t. X 2 S;
1 � p � 1: (11)

Exponent p shows various ways for measuring the dis-
tance. The most widely applied values of p are 1 for the
simplest formulation and 2 for the Euclidean distance,
Andersson [34]. The major challenge in this approach is
to �nd the value of p that will maximize the satisfaction
of Decision-Makers (DM). Another shortcoming of this
method is that there is only one output, and DM has
to accept it as a �nal solution. Thus, in this phase,
through mixing the weighting and Min-Max method,
two problems will be solved, one of which is the mono-
solution of Min-Max, and the other is the problem of
scalarzing in weighting method. Consequently, there
would be two-objective functions de�ned by:�

w
�
f1(x)�f�1

f�1

�p
+(1�w)

�
f2(x)�f�2

f�2

�p� 1
p

; (12)

where f1(x) and f2(x) indicate each individual minima
of each respective objective function, and 0 < w < 1.
w denotes the weight (or relative importance) of a
number of setups and the usage rate. In this paper,
p value is determined as 1. Because the scales of the
objectives are di�erent, the normalization process
has been applied to objective values of this method.
Note that all the examples solved here have used 10
di�erent seeds for every algorithm, and the minimum
solution in all runs is f� for each objective. These are
substituted in Eq. (13).

Elitist
The best solution of each objective and the best one of
the combined objective function are preserved in each
generation. For each generation, if the best solution
is worse than the preserved one, a randomly selected
string will be replaced with the preserved.

Turning criterion
After a certain number of generations, the algorithm
switches to the next stage. In stage 2, the populations
of the solution from stage 1 will be rearranged based
on their performance of each objective.

Re-initialization
Assume N objectives to be optimized, as discussed
above, the solutions from the �rst stage are rear-
ranged and N + 1 sub-populations will be created
and evolved separately. The �rst stage through Nth
sub-populations is for N objectives, and (N + 1)th
subpopulation is for the combined objective.

Selection, Crossover, and Mutation
The same selection, crossover, and mutation proce-
dures used in Stage 1 are applied to each subpopu-
lation.

Elitist strategy
Although each sub-population evolves separately, the
elitist strategy searches for the best solution to each
objective and combined objective across all subpopu-
lations. N + 1 solutions will be stored and will replace
the worst solution of each objective and the combined
objective.

Stopping criteria
A test run indicates that the algorithm does not
show signi�cant improvement after 2,000 generations.
However, to consider the error due to the randomness
and have more promising results, a larger generation
number should be used as the stopping criteria. In
addition, most literature reviews have used 3,000
generations to stop the algorithm. Therefore, 3,000
generations are used in this study as stopping criteria.
A 
ow chart of the proposed MPGA is depicted in
Figure 6.

4.1.2. Weighted sum Multi-Objective Genetic
Algorithm (WMOGA)

One of the most famous methods in multi-objective
optimization is \weighted aggregation". The two
objectives are usually formulated in a weighted sum
approach. The details of the proposed WMOGA are
presented in Figure 7.

4.1.3. Non-dominated Sorting Genetic Algorithm II
(NSGA-II)

As a well-known Multi-Objective Evolutionary Algo-
rithm (MOEA), the NSGA-II has been the most widely
used and has been proven to do well on various real-
world application problems [35]. The pseudo-code of
NSGA-II is presented in Algorithm 1 in Figure 8. We
used NSGA-II in our research, since there have been
many investigations ensuring that NSGA-II can often
converge to Pareto-optimal set, and the obtained solu-
tions can often spread well over the Pareto-optimal set.
NSGA-II takes the fast non-dominated-sort mechanism
to ensure the well convergence, shown in Algorithm 2,
Figure 8. For details of NSGA-II, one can refer to [36].
The general pseudo-code of the NSGA-II is described
in Figure 8.

5. Computational results

In order to conduct the experiment, we implement the
proposed algorithms in Matlab 7.8 software, ED 8.1 to
simulate the problem. All computations are on a PC
with Intel Pentium 4, 1.67 GHz processor, 4 GByte
memories with windows 7 Professional Operating
System.
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Figure 6. A two-stage Multi-Population Genetic Algorithm (MPGA).

Test problems: The experiments were implemented
over 30 test problems. For all experiments, the
following assumptions were considered:

Data generation: Also, in this article, a series of
experiments are designed where the following values
are considered for the variety of distributions:

� The component type one has exponential distribu-
tion: � for the failure (mean value) in the range of
(0.06, 0.25) and � for the repair value in the range
of (0.033, 0.167) are considered, respectively;

� The component type two has Erlang distribution:
for the failure of the components, the value of � in
the range of (0.3, 0.9) and � = 2; for the repair, the
value of � in the range of (0.1, 0.6) and � = 2 are
considered, respectively;

� The component type three has Weibull distribution:
for the failure of the components, the value of � in
the range of (0.5, 0.9) and � = 0:5 and for the repair,
the value of � in the range of (0.1, 0.5) and � = 0:5
are considered, respectively.

In order to explain the e�ciency of the proposed
algorithms, the illustrative examples are designed with
30 experiments. The number of subsystems in the
problem is 5, 15, and 20 subsystems based on which
the random problems are produced in small, medium,
and large sizes. For each size, 10 sample problems are
generated. In these problems, the maximum number of
the components in each subsystem is between 5-10, the
minimum number of components for each subsystem is
between 2-4, the volume and cost of each component
are between 200-300 and 100-500, and the maximum
volume available for the system is between 9000-13000.
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Figure 7. The pseudo-code of the WMOGA.

Figure 8. The pseudo-code of the NSGA-II.

Comparator algorithms: Performance of the de-
veloped MPGA was compared with two Meta heuristics
developed for the multi-objective redundancy alloca-
tion problem, discussed in this paper in a set of
problems.

5.1. Parameters settings
This subsection tries to �nd the optimal parameter
setting in the algorithms. There are several parameters
that may in
uence the performance of the algorithms.
For example, the larger population size may �nd better
solution quality but cost higher computational expense.

It should be noted that changing these parameters
may result in di�erent outcomes than those achieved
in this research. When the number of populations is
larger, it may have better diversity. However, it may
also be a trade-o� to cut the number of generations.
Moreover, the crossover and mutation operator is also
considered, because it may o�er better solution quality.
The parameters' setting of algorithms is indicated in
Table 1.

5.2. Performance measures
To evaluate the performances of the proposed MPGA,
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Table 1. Parameter setting.

Parameter setting MPGA Parameter setting NSGA-II Parameter setting WMOGA
Parameter Value Parameter Value Parameter Value

Population size (N) 500 Popsize 500 Popsize 600
Number of sub-population (Ns) 50 Max Gen 750 Max Gen 800
n 10 Crossover rate 0.7 Crossover rate 0.6
Max Gen phase 1 400 Mutation rate 0.3 Mutation rate 0.2

Max Gen phase 2 600 Elitist Top 20% of
population

Elitist Top 20% of
population

Crossover rate 0.6
Mutation rate 0.4

Elistist Top 20% of
population

Figure 9. Comparability of MPGA in comparison with NSGA-II and WMOGA on diversity, CPU time, MID, spacing,
and NOS metrics.

�ve standard metrics of multi-objective algorithms are
applied as follows:

� Diversity: Measures the extension of the Pareto
front in which bigger value is better [23];

� Spacing: Measures the standard deviation of the
distances among solutions of the Pareto front in
which smaller value is better [23];

� Mean Ideal Distance (MID): Measures the conver-
gence rate of the Pareto front to a certain point (0,
0) in which smaller value is better [23];

� Number Of found Solutions (NOS): Counts the
number of the Pareto solutions in Pareto optimal
front in which bigger value is better;

� The computational (CPU) time of running the
algorithms to reach near optimum solutions.

The experiments are implemented on 30 test
problems. Furthermore, to eliminate uncertainties of
the solutions obtained, each problem is used three

times under di�erent random environments. Then,
the averages of these three runs are treated as the
ultimate responses. Then, we compare the proposed
MPGA algorithm with WMOGA and NSGA-II as the
most applicable Pareto-based MOEAs in the test prob-
lem to demonstrate the performance of the proposed
algorithm to solve the multi-objective optimization
problems.

To evaluate the performance of the proposed
MPGA, Table 2 reports the multi-objective metrics'
amounts on 30 test problems, in which \NAS" shows
that the algorithm cannot �nd Pareto front in the
reported time.

The algorithms are statistically compared based
on the properties of their obtained solutions via the
analysis of variance (ANOVA) test. These outputs are
reported in Tables 3 to 7 in terms of de�ned metrics.
In order to clarify our statistical results, interval-plots
are represented in Figure 9.

Based on the statistical outputs in Tables 3
and 6 along with Figure 9, NSGA-II shows better
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Table 2. Evaluation of non-dominated solution for algorithms grouped by problem size and index type.

P
ro
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o. CPU Time Spacing metric MID NOS Diversity
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O
G

A

N
S
G

A
II

M
P

G
A

W
M

O
G

A

N
S
G

A
II

M
P

G
A

P1 511 551 468 54 87 51 36177 43539 40388 10 24 13 3605 3608 3375
P2 466 514 581 57 84 59 40698 43304 41446 12 22 18 3500 3265 3361
P3 435 525 505 54 90 57 37564 41965 40008 12 27 16 3643 2887 3631
P4 529 498 506 53 84 60 39188 43587 40159 14 26 16 3704 3203 3522
P5 469 572 436 52 90 49 35951 44781 40206 11 29 16 3315 3257 3367
P6 451 575 561 56 85 54 38052 40629 39698 14 28 20 3656 2947 3308
P7 426 420 577 55 86 52 35003 40362 40157 11 24 17 3422 3375 3773
P8 501 412 489 59 83 50 35622 43768 41349 12 28 13 3323 2787 3715
P9 494 467 503 82 110 58 49656 51269 50928 21 25 21 3617 3417 4178
P10 915 1190 1482 75 104 80 44878 54642 48350 21 24 22 4278 3304 3563
P11 1079 1215 1595 78 105 83 47157 46195 49202 20 39 23 3328 3425 4297
P12 865 1271 1450 73 96 73 44595 47183 48562 14 33 19 3704 3557 4077
P13 838 1007 1528 77 93 80 46780 46929 47838 16 31 19 4219 3436 4219
P14 913 1045 1696 82 103 83 48738 43714 53699 20 34 23 4005 3502 3883
P15 3730 5263 6052 82 106 79 46195 49526 50788 21 37 21 3895 3254 3568
P16 3486 5156 8050 83 95 79 48658 46145 48988 18 38 23 3708 3522 4096
P17 3888 4317 8296 119 180 82 229771 275696 225875 15 35 18 4838 4453 4735
P18 3202 5841 8993 105 169 88 220649 289771 261871 21 36 28 5053 4058 4371
P19 3555 4822 8974 111 171 82 224140 277417 261938 23 37 28 4114 4694 4015
P20 3386 4563 8439 102 161 91 229502 287780 234874 18 40 18 4114 4430 4310
P21 8915 9190 9482 109 165 91 225910 270478 243206 29 35 18 4248 4148 4546
P22 9079 9215 9595 103 164 92 222076 280034 262142 28 39 28 5213 4791 4058
P23 8865 9271 9450 116 171 86 223147 282323 247898 24 38 21 5161 4627 4685
P24 8838 9007 9528 105 177 89 224107 285924 235584 19 35 27 4973 4666 4409
P25 8913 9045 9696 112 194 72 306678 380782 363201 37 55 37 4980 3592 5298
P26 11730 13263 14052 126 172 93 314191 377458 337583 35 48 39 5000 4277 4851
P27 11486 13156 16050 121 191 92 304098 384322 333531 35 50 29 4736 3893 5462
P28 11888 12317 16296 127 175 92 310736 381013 349602 37 45 31 4360 3743 5339
P29 11202 13841 16993 121 188 94 303129 386547 339830 33 44 32 4569 4282 5437
P30 11555 12822 16974 127 180 88 304583 391846 366935 36 53 35 5004 3897 5504

performances in terms of NOS, while WMOGA has a
better performance in terms of CPU time.

Moreover, Tables 4 to 7 along with Figure 9
show the comparability of MPGA in comparison with
NSGA-II and WMOGA on MID, spacing, and diver-
sity metrics, in which the algorithms have no sig-
ni�cant di�erences and statistically work the same.
It is required to be mentioned that this conclusion
is con�rmed at 95% con�dence level. Based on the
outputs in Table 2, there is the increasing of size of
problems in test problems 22 and 30; in test problem
30, NSGA-II and WMOGA cannot �nd Pareto front,

Table 3. Analysis of variance for the time metric.

Source DF SS MS F P
Algorithms 2 55606000 278030 1.09 0.340
Error 87 221143724 254188
Total 89 226704324

Table 4. Analysis of variance for the spacing metric.

Source DF SS MS F P
Algorithms 2 51401 25701 28.00 0.000
Error 87 79855 918
Total 89 131256
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Table 5. Analysis of variance for the MID metric.

Source DF SS MS F P
Algorithms 2 139856556 699282 0.40 0.669
Error 87 1.508E+12 173386
Total 89 1.525E+12

Table 6. Analysis of variance for the NOS metric.

Source DF SS MS F P
Algorithms 2 3529.9 1764.9 25.98 0.000
Error 87 5910.6 67.9
Total 89 9440.5

Table 7. Analysis of variance for the diversity metric.

Source DF SS MS F P

Algorithms 2 4291874 2145937 5.38 0.006
Error 87 34708077 398943
Total 89 38999951

respectively. However, in these large sizes, MPGA can
�nd Pareto front. The MPGA algorithm performs
better performance in the terms and CPUT metric.
These features conclude robustness of the proposed
MPGA in large-sized problems in the area of multi-
objective optimization problems.

6. Conclusions

In this article, a new method is provided to model and
solve the Redundancy Allocation Problem in the k-
out-of-n series-parallel systems with non-exponential
repairable components based on OVS technique. A
bi-objective function was used to model the system.
The �rst one was optimizing the Mean Time To the
First Failure (MTTFF) of the system, and the second
one was minimizing the total costs. The components
are assumed to have non-exponential breakdowns and
repair times, which are the main contributions of this
research. A model with non-exponential components
is closer to the reality where the memoryless property
is rare to be found among the components. In general,
the used components have shorter expected life time in
comparison to new ones. Also, we have no practical
reasons to assume exponential distributions for the
components of repair times. When the stochastic
events, such as the failures and repair times, are non-
exponential, the MTFFF function cannot be written
explicitly. This is the simulation technique which
enables us to model and solve the model, where all
stochastic events with any kind of distribution function
could be modeled easily. In order to demonstrate appli-
cability of the proposed solving algorithm (MPGA), the
multi-objective reliability problems were applied. The
proposed algorithm was able to improve the quality of

the obtained solutions by taking the speci�c advantages
of the multi-population Genetic Algorithm and also
using the simulation techniques.

The results show the capability of the MPGA
algorithm to solve the multi-objective problems. To
justify the proposed algorithm, NSGA-II and WMOGA
algorithms have been implemented to evaluate the
performance of the proposed MPGA. The results show
the e�ciency of MPGA in the large-size problems. For
future research, one may compare the proposed MPGA
with other multi-objective algorithms (e.g., MOPSO or
MOTS) in various optimization problems.
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