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Abstract. Group Decision Making (GDM) is usually used for solving complex decision
problems, which is an important part of modern decision science. Weight of the Decision
Maker (DM) plays an important role in the GDM process, and the projection-based
approach is a comprehensive consideration between decision objects. It is a valuable work to
determine the weights of DMs by a projection measurement. This paper investigates a GDM
method based on projection measurement in an intuitionistic fuzzy environment. First,
this article introduces an ideal decision among all individual decisions, and the weights of
DMs are determined by using a projection measurement. Then, the individual decisions
are aggregated into a collective decision. Finally, the preference order of alternatives is
identi�ed by using the score and accuracy function of the intuitionistic fuzzy numbers.
In addition, a comparison with another GDM method is provided. Feasibility and
practicability of the developed method are illustrated by an experimental analysis. The
experimental result shows that the projection-based method is a high-resolution decision
method.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Decision making is a very common human activity.
Since the real-life decision problems often involve
multiple types of attributes (or criteria, or factors,
or indexes), it is di�cult to satisfy all attributes
simultaneously in a decision problem. In other words,
an alternative may satisfy some attributes whereas it
may fail in satisfying other attributes. In that context,
Multiple-Attribute Decision Making (MADM) [1-3]
provides us with a good decision tool. MADM is
used to �nd a desirable solution from a �nite number
of alternatives, in which some conicting and non-
commensurable attributes may be involved [4,5]. The
MADM methods so far have been successfully applied
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to various areas [6-8]. However, due to the increasing
complexity of the socio-economic environment, some
decisions in the real-world situation often need to
consider multiple points of view, performing Group
Decision Making (GDM) [9-11] in which a group of
experts provide their preferences to achieve a solution.

GDM methods have been extensively applied in
various areas. For example, Chen et al. [12] intro-
duced a GDM based on intuitionistic fuzzy sets and
evidential reasoning methodology. Ebrahimnejad et
al. [13] presented a novel two-phase GDM approach for
construction project selection in a fuzzy environment.
Vahdani et al. [14] developed a compromise solution
method for fuzzy GDM problems with an application
in the contractor selection. Mousavi et al. [15] o�ered a
fuzzy stochastic GDM approach for selection problems.
Vahdani et al. [16] suggested a GDM method based
on a novel technique. Mousavi et al. [17] presented a
soft computing method based on a fuzzy grey group
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compromise solution. Mousavi et al. [18] developed a
hierarchical GDM approach for new product selection
in a fuzzy environment. Sadr et al. [19] proposed a
GDM tool for the application of membrane technologies
in di�erent water reuse scenarios. Fasanghari et al. [20]
developed a novel credibility-based GDM method for
enterprise architecture scenario analysis using data
envelopment analysis. Aloini et al. [21] proposed a
decision support system for packaging machine selec-
tion. Merigo' et al. [22] introduced the uncertain
generalized probabilistic weighted averaging operator
for GDM. Feng and Lai [23] proposed an integrated
GDM approach with consideration of Decision Maker's
(DM's) or expert's aspirations. Srdjevic and Srdje-
vic [24] proposed an AHP-based GDM. Tapia-Rosero
et al. [25] proposed a method in the context of GDM.
Chen et al. [10] introduced a survey for GDM with
heterogeneous preference structures.

Since uncertain and imprecise assessment often
occurs in some actual decision processes, a DM may
provide his/her preferences over alternatives with im-
precision information. In this instance, the linguistic
variables [4,26,27] and the intuitionistic fuzzy informa-
tion [28] might be more suitable for dealing with them.

Zadeh [29] introduced fuzzy set theory. Since its
appearance, the fuzzy set theory has received more
and more attention and has been used in a wide
range of applications. Readers interested in the fuzzy
sciences can refer to a general overview of the related
research [30]. However, the fuzzy set only assigns a
membership degree to each element, and the represen-
tation of non-membership is a complement to member-
ship. It actually ignores the DM's hesitation in the
decision process. In 1986, Atanassov [28] introduced
the concept of intuitionistic fuzzy set, which emerged
from the simultaneous consideration of the degrees
of membership and non-membership with a degree of
hesitancy. Atanassov's intuitionistic fuzzy sets have
better exibility and practicality in the treatment of
fuzzy information and uncertainty than ordinary fuzzy
sets. Since the socio-economic environment becomes
more complex, the preference information is usually
imprecise. That is to say, there may be hesitation or
uncertainty about preferences because a decision may
be made under time pressure and lack of knowledge
or data, or the DMs may have limited attention and
information processing capabilities. In such cases, it
is suitable and convenient to express the DMs' prefer-
ences in an Intuitionistic Fuzzy Number (IFN) [31].

The intuitionistic fuzzy theory has attracted
scholars' attention more and more [32-34]. For exam-
ple, Das and Kar [35] proposed an intuitionistic fuzzy
soft set approach to GDM medical system. Hashemi
et al. [36] o�ered a compromise ratio method with an
application to water resources management. Hashemi
et al. [37] suggested an extended compromise ratio

model with an application to reservoir ood con-
trol operation under an interval-valued intuitionistic
fuzzy environment. Vahdani et al. [14] introduced
a design for the elimination and choice translating
reality method for GDM in an intuitionistic fuzzy
environment. Mousavi et al. [38] presented a model
of intuitionistic fuzzy VIKOR in GDM problems.
Mousavi et al. [39] developed an intuitionistic fuzzy
grey model for selection problems with an application
to the inspection planning in manufacturing �rms.
Liu [40] introduced a GDM method based on intuition-
istic linguistic power generalized aggregation operators.
Hashemi et al. [37] modeled an extended compromise
ratio with an application to reservoir ood control
operation under an interval-valued intuitionistic fuzzy
environment. _Intepe et al. [41] modeled a forecasting
method with intuitionistic fuzzy information.

A key procedure in the GDM problems is to
aggregate all individual decisions into a collective
decision. There are numerous aggregation methods,
in which the weighted average is a common method
and how to determine the weight of DM is one of the
key techniques. Yue and Jia [42] proposed a TOPSIS
(Technique for Order Preference by Similarity to Ideal
Solution) method to determine the weights of DMs.
Meng et al. [43] utilized a distance measure to derive
the weights of DMs. Wan and Dong [44] utilized
a similarity degree to determine the DMs' weights.
Zhang and Xu [45] constructed a goal-programming
model to derive the weights of DMs. Wan et al. [46]
introduced a method for determining the DMs' weights
based on the similarity and proximity degrees.

As we all know, an alternative with respect to
multiple attributes can be characterized by an attribute
vector or by an attribute matrix. It is common that
the separations between attribute vectors/matrices and
their ideal solutions/decisions are measured by the
Euclidean distance or by the Hamming distance. How-
ever, it is not enough because their included angles
are ignored. To simultaneously consider the distance
measure and the included angle between two decision
objects, the objective of this research is to establish
a new GDM method in which the weights of DMs
are determined by using projection-based method [47].
The technical procedure includes the following steps:

1. An ideal decision is established, which is an average
of all individual decisions;

2. The projection of each individual decision on its
ideal decision is measured;

3. The weight of each DM, based on its individual im-
portance and an optimal coe�cient, is determined
by using its projection measurement;

4. All individual decisions are aggregated into a col-
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lective decision by using the weighted averaging
operator;

5. Based on the collective decision, the preference
order of alternatives is made by using the score and
accuracy functions of the IFNs.

Compared with the Euclidean distance or the
Hamming distance, projection measurement is a com-
prehensive consideration. It has been widely used in
many decision making problems. For example, using
projection measure instead of distance measure, Yue
and Jia [48] introduced a GDM model with hybrid
intuitionistic fuzzy information. Xu and Hu [49]
established two projection models for GDM problems.
Wei [50] proposed an MADM method based on the
projection technique, in which the attribute values were
characterized by IFNs. Zheng et al. [51] developed
an application of improved grey projection method.
Yue [52] proposed a GDM method based on the
projection measurement. Xu and Liu [53] described
a GDM approach based on a projection method in
uncertain fuzzy environment. Xu and Da [54] modeled
an uncertain MADM method. Yue [55] suggested a
GDM method based on a projection method. Yue
and Jia [56] proposed a direct projection-based GDM
methodology with crisp values and interval data.

The motivation and contribution of this paper are:

1. This work is intended to provide a novel GDM
approach with aggregation based on the weighted
average of all individual decisions;

2. The weight of DM is based on a uniform importance
of DM, an individual importance of DM, and an
optimal coe�cient;

3. The study is aimed to develop a high-resolution
decision method in an intuitionistic fuzzy environ-
ment.

To introduce our work, the rest of this paper
is organized as follows. Section 2 introduces some
related concepts. Section 3 describes the proposed
method in detail. Section 4 gives a comparison with
a related GDM method. Section 5 illustrates the
proposed method by using a numerical example and
an experimental analysis. Conclusions and further
research are drawn in Section 6.

2. Preliminaries

As a preparation for introducing our work, some related
concepts are illustrated in this section.

Zadeh [29] gave the concept of fuzzy set. As
a generalization of Zadeh's fuzzy set, Atanassov [28]
introduced the intuitionistic fuzzy set as follows.

De�nition 1: Let X be a �xed set; an intuitionistic
fuzzy set A inX is de�ned as A = f< x; �A(x); �A(x) >

jx 2 Xg, which is characterized by a membership
function, �A : X ! [0; 1], and a non-membership
function, �A : X ! [0; 1], with the condition 0 �
�A(x) + �A(x) � 1, for all x 2 X, where the numbers
�A(x) and �A(x) represent the membership degree and
non-membership degree of the element x to the set A
respectively.

For an intuitionistic fuzzy set A in X, if �A(x) =
1 � �A(x) � �A(x); 8x 2 X, then �A(x) is called the
indeterminacy degree [28] or hesitancy degree [57] as
to whether x belongs to A or not. The larger �A(x),
the more indeterminacy degree of the knowledge about
x. Especially, if �A(x) + �A(x) = 1, for all elements in
universe, the intuitionistic fuzzy set A is reduced to an
ordinary fuzzy set [58,59].

For convenience, Xu and Cai [31] called:

� = (�; �); (1)

an IFN, such that �, � 2 [0; 1], � + � � 1 and � =
1� �� �.

Xu and Cai [31] introduced some operations
related to IFNs as follows:

De�nition 2: Let � = (��; ��) and � = (�� ; ��) be
two IFNs and � be a real number; then:

1. �+ � = (�� + �� � ���� ; ����);
2. �� = (1� (1� ��)�; ���), � > 0.

De�nition 3 [60]: Let �j = (�j ; �j)(j = 1; 2; � � � ; n)
be n IFNs and w = (w1; w2; � � � ; wn) be the weight
vector of �j , with wj � 0,

Pn
j=1 wj = 1; then:

�(w) =
nX
j=1

wj�j ; (2)

is called intuitionistic fuzzy weighted average of �j(j =
1; 2; � � � ; n).

Based on De�nition 2, we rewrite Eq. (2) as:

�(w) =

0@1�
nY
j=1

(1� �j)wj ;
nY
j=1

�wjj

1A : (3)

Especially, if w = (1=n; 1=n; � � � ; 1=n), then �(w) is re-
duced to the arithmetic average of �j(j = 1; 2; � � � ; n):

�(w) =

0@1�
nY
j=1

(1� �j)1=n;
nY
j=1

(�j)1=n

1A : (4)

Let �1 = (�1; �1); �2 = (�2; �2); � � � , and �n = (�n; �n)
be n IFNs; combining Eqs. (3) and (4), we can obtain
their sum as follows:

nX
j=1

�j =

0@1�
nY
j=1

(1� �j);
nY
j=1

�j

1A : (5)
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De�nition 4 [47,49]: Let � = (��; ��) and � =
(�� ; ��) be two IFNs; then:

j�j = p�2
� + �2

� + �2
�; (6)

is called the module of �, where, by Eq. (1), �� =
1� �� � ��; and:

� � � = ���� + ���� + ���� ; (7)

is called the inner/scalar product between � and �,
where, �� is same as that in Eq. (6) and �� = 1����
�� ; and:

cos(�; �) =
� � �
j�jj�j ;

is called the cosine of the included angle between � and
�, and:

Proj�(�) =
���� + ���� + ����q

�2
� + �2

� + �2
�

; (8)

is called the projection of � on �, where, Proj�(�) =
(� � �)=j�j; �� and �� are same as those in Eq. (7).

In general, the larger the value of Proj�(�), the
closer � is to �. The projection measurement can be
illustrated in Figure 1.

De�nition 5: Let X = (xij)m�n be a matrix. If
all the elements xij are IFNs, then X is called an
intuitionistic fuzzy matrix.

Similar to the projection between two IFNs, we
introduce the projection between two intuitionistic
fuzzy matrices below.

De�nition 6: Let X = ((�ij ; �ij))m�n and Y =
((�ij ; �ij))m�n be two intuitionistic fuzzy matrices;
then:

ProjY (X) =

mP
i=1

nP
j=1

(�ij�ij + �ij�ij + �ij�ij)s
mP
i=1

nP
j=1

((�ij)2 + (�ij)2 + (�ij)2)
; (9)

is called the projection of X on Y , where, by Eq. (1),
�ij = 1 � �ij � �ij , and �ij = 1 � �ij � �ij(i =
1; 2; � � � ;m; j = 1; 2; � � � ; n).

Figure 1. The projection of � on �.

Chen and Tan [61] introduced a score function s
of an IFN as follows.

Let � = (�; �) be an IFN; the score of � can be
evaluated by the score function s shown as:

s(�) = �� �; (10)

where s(�) 2 [�1; 1]. The larger score s(�) means that
the IFN � is greater.

The following example shows that some IFNs
cannot be graded by the score function.

Example 1: Let � = (0:1; 0:1) and � = (0:5; 0:5) be
two IFNs; by applying Eq. (10), we obtain that s(�) =
s(�) = 0. In this case, we do not know which IFN is
greater.

Later, Hong and Choi [62] added an accuracy
function h as:

h(�) = �+ �; (11)

to evaluate the degree of accuracy of the IFN � =
(�; �), where h(�) 2 [0; 1]. The larger value of h(�)
means that � has the greater degree of accuracy.

For � = (0:1; 0:1) and � = (0:5; 0:5) given in
Example 1, according to the accuracy function h, we
have h(�) = 0:2 and h(�) = 1; thereby, we have � < �.

Based on the score function s and the accuracy
function h, Xu and Cai [31] gave an order relation
between any pair of IFNs, which is de�ned as fol-
lows.

De�nition 7: Let � = (��; ��) and � = (�� ; ��) be
two IFNs, and s and h be score function and accuracy
function, respectively; then:

1. If s(�) < s(�), then � < �;

2. If s(�) = s(�), then:

a) If h(�) = h(�), then � = �;
b) If h(�) < h(�), then � < �.

3. Projection-based approach to group
decision making

For convenience, throughout this paper, the following
index sets and the key elements are used in the decision
process.

Index:
i : Index for alternatives, i 2 M =

f1; 2; � � � ;mg;
j : Index for attributes, j 2 N =

f1; 2; � � � ; ng;
k : Index for DMs, k 2 T = f1; 2; � � � ; tg.
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Key elements for GDM:

1. A set of m feasible alternatives written as A =
fA1; A2; � � � ; Amg(m � 2);

2. A set of attributes written as U = fu1; u2; � � � ; ung;
3. A weight vector of attributes written as w =

(w1; w2; � � � ; wn), with 0 � wj � 1 and
Pn
j=1 wj =

1;
4. A set of DMs written as D = fd1; d2; � � � ; dtg;
5. A weight vector of DMs written as � = (�1;

�2; � � � ; �t), with 0 � �k � 1 and
Pt
k=1 wk = 1.

A GDM problem can be described in the following
steps.

3.1. Determining the weights of decision
makers

First, each DM employs the linguistic variables [27,63]
to evaluate the attribute values and the grades of
attributes. Let:

Xk=(xkij)m�n; hk=(hk1 ; h
k
2 ; � � � ; hkn); k2T;

(12)

be the decision matrix of the kth DM and the grades of
attributes, in which the decision information, xkij and
hkj , are expressed by linguistic variables.

For convenience, we convert the linguistic vari-
ables in Xk into the IFNs and the grades hk into their
weights, shown as:

Yk=(ykij)m�n; wk=(wk1 ; w
k
2 ; � � � ; wkn); k2T;

(13)

where ykij = (�kij ; �kij)(i 2 M; j 2 N; k 2 T ) are IFNs.
wkj (j 2 N; k 2 T ) are the weights of attributes, with
0 � wkj � 1 and

Pn
j=1 w

k
j = 1.

In the next step, we assign each weight, wkj (j 2
N), to its corresponding attribute, uj ; then the
weighted decision matrix is obtained as follows:

Rk = (rkij)m�n; k 2 T; (14)

where, rkij = wkj ykij = wkj (�kij ; �kij) = (�kij ; �kij); by
De�nition 2, �kij = 1�(1��kij)wkj and �kij = (�kij)

wkj (i 2
M; j 2 N; k 2 T ).

Then, we hope to �nd an ideal decision among all
weighted decisions, Rk(k 2 T ). Inspired by the idea in
literature [64], the average of all individual decisions in
Eq. (14) should be an ideal decision as follows:

R� = (r�ij)m�n; (15)

where, r�ij = (��ij ; ��ij) and by Eq. (4), ��ij = 1 �Qt
k=1(1 � �kij)1=t and ��ij =

Qt
k=1(�kij)1=t(i 2 M; j 2

N).

The following work is to determine the weights of
DMs. The basic idea is very straightforward, that is,
the larger the projection of Rk on R�, the better the
decision Rk is and the larger the weight of the kth DM
is.

According to Eq. (9), the projection of Rk on R�
can be calculated by:

ProjR�(Rk) =

mP
i=1

nP
j=1

(�kij��ij + �kij��ij + �kij��ij)s
mP
i=1

nP
j=1

(��ij)2 + (��ij)2 + (��ij)2)
;

k 2 T; (16)

where, by Eq. (1), �kij = 1 � �kij � �kij and ��ij = 1 �
��ij � ��ij(i 2M; j 2 N; k 2 T ).

Thus, a projection-based closeness coe�cient is
derived by Eq. (16) as follows:

Ck =
ProjR�(Rk)
tP

k=1
ProjR�(Rk)

; k 2 T; (17)

such that 0 � Ck � 1.
Ck is a measure of importance of the kth DM. It

can measure the degree of closeness that the kth DM's
opinion approaches the average of the group's opinions.
We call it a uniform importance.

Furthermore, in many cases, a DM is an expert
in an area (the main reason of GDM) and his/her
opinion in that area may be much more important than
the opinions of the others. This relative importance
can also be measured. For example, a member of
the Chinese Academy of Engineering/Sciences (at a
national level), a famous expert in a province (at a
provincial level), and a famous expert in a local city
(at a local level), in China can be scored 1, 0.8, and
0.6, respectively. The importance of an expert in
his/her area is called the individual importance in this
paper, which is written as Ik. To keep the measure Ik
consistent with Ck, we restrict it to 0 � Ik � 1.

Based on the above-mentioned reasons, the weight
�k of DM is determined by:

�k = �Ck + (1� �)Ik; k 2 T; (18)

where �(0 � � � 1) is an optimal coe�cient and �k
satis�es �k � 0 and

Pt
k=1 �k = 1.

3.2. Preference ranking of alternatives
For the weight vector, � = (�1; �2; � � � ; �t), of DMs, we
aggregate all individual decisions, Rk, in Eq. (14) into
a collective decision as follows:

R = (rij)m�n; (19)
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where:

R =
tX

k=1

�kRk; rij =
tX

k=1

�krkij =
tX

k=1

�k(�kij ; �
k
ij)

= (�ij ; �ij);

and by Eq. (3), �ij = 1 �Qt
k=1(1 � �kij)�k and �ij =Qt

k=1(�kij)�k(i 2M; j 2 N).
In the following sections, we will focus on the

ranking of alternatives, which is also the aim of GDM.
Summing all elements in each line of R in Eq. (19), we
have the overall attribute value of each alternative as
follows:

�i = (�i; �i); i 2M; (20)

where, by Eq. (5), (�i; �i) =
Pn
j=1 rij = (1�Qn

j=1(1�
�ij);

Qn
j=1 �ij).

We can utilize Eqs. (11) and (12) to calculate
the score and accuracy degree of the overall value �i
in Eq. (20), respectively. After that, we rank the
alternatives according to De�nition 7.

3.3. Procedure of the proposed model
In sum, an algorithm for GDM, based on the projection
measurement, is given in the following steps:

- Step 1. Determine individual decision informa-
tion. Each DM dk provides his/her decision matrix
Xk = (xkij)m�n, on alternatives with respect to
attributes and grade vector, hk = (hk1 ; hk2 ; � � � ; hkn),
of attributes, which are shown in Eq. (12);

- Step 2. Convert the decision information. The
decision information in Xk, expressed by linguistic
variables, can be converted to IFNs and the at-
tributes' grades in hk, expressed by linguistic vari-
ables, can be converted to their weights expressed
by non-negative real numbers, which are shown in
Eq. (13);

- Step 3. Construct the weighted individual decision.
For the attributes' weight vector (wk1 ; wk2 ; � � � ; wkn)
given by the kth DM, the weighted individual deci-
sion matrix Rk is constructed by Eq. (14);

- Step 4. Determine the ideal decision of all indi-
vidual decisions. The ideal decision of all individual
decisions, Rk (k 2 T ), R�, is determined by Eq. (15);

- Step 5. Calculate the projection of each individual
decision on the ideal decision. The projection of each
individual decision, Rk, on the ideal decision, R�,
ProjR�(Rk), is calculated by Eq. (16);

- Step 6. Calculate the uniform importance of DM.
A projection-based uniform importance of the kth
DM, Ck, is calculated by Eq. (17);

- Step 7. Calculate the weights of DMs. For the
individual importance Ik and the uniform impor-
tance Ck, the weights of DMs can be calculated by
Eq. (18);

- Step 8. Calculate the collective decision. The
collective decision R of the group can be obtained
by Eq. (19);

- Step 9. Calculate the overall attribute value for each
alternative. The overall attribute value of alternative
Ai, �i (i 2M), can be calculated by Eq. (20);

- Step 10. Calculate the score and accuracy degree of
the overall attribute value of each alternative. The
score and accuracy degree of the overall attribute
values of alternative Ai, s(�i), and h(�i)(i 2M) are
calculated by Eqs. (10) and (11), respectively;

- Step 11. Rank the preference order of alternatives.
According to De�nition 7, all the alternatives are
ranked in accordance with their scores and accuracy
degrees of the overall attribute values.

To realize this algorithm, a framework is illustrated in
Figure 2.

4. Comparison with another method

In this section, we compare the proposed approach
with another projection-based GDM method in an
intuitionistic fuzzy environment.

Yue [47] introduced a GDM approach, in which
the alternatives were directly ranked based on an
extended TOPSIS technique. It is related to the
current approach. There are two contributions in
literature [47]:

1. The separation measure in the TOPSIS technique
is replaced by a projection measurement;

2. An optimistic coe�cient of relative closeness is
established [47].

However, the DM's importance is not taken into con-
sideration. In fact, in many cases, the importance of
the di�erent DMs may be di�erent. The di�erences of
this work from the literature [47] are as follows.

First, the weights of DMs are the same in
model [47], which does not consider the di�erence of
DM's importance; whereas the current GDM method
pays much attention to the weights of DMs and
provides a novel projection-based method to implement
it. An individual importance Ik is added to the
comprehensive relative coe�cient in order to determine
the comprehensive weighs of DMs.

Second, the alternatives are ranked by the TOP-
SIS technique in the literature [47], in which some
negative ideal decisions are established; however, the
current model has no negative ideal decision and the
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Figure 2. Framework of the projection-based approach to group decision making.

alternatives are ranked only through an (positive) ideal
decision (an average of all individual decisions). Thus,
the current model is simpler than the model in [47].

Finally, there are no aggregations of individual
decisions in model [47]. All alternatives are ranked di-
rectly based on their relative closeness to an optimistic
coe�cient; on the contrary, our method in this paper
aggregates all individual decisions into a collective
decision. All alternatives are ranked based on their
scores and accuracies. In a sense, the current method
is simple and the two methods are complementary.

5. Experimental analysis

5.1. Illustrative example
To test the contribution of our approach, a real-life sup-
plier evaluation and selection problem is solved by the
proposed projection-based approach in the following.

An automotive manufacturing company desires to
select a suitable material supplier to purchase a key
component of automobile part manufacturing. To eval-
uate and select the suitable supplier(s), a committee,
including three DMs in the company, is set up; the DMs
are:
d1 The production manager
d2 The quality manger

d3 The planning manager

Four attributes considered here are as follows:
u1 Product quality
u2 Technical speci�cation
u3 Delivery performance
u4 exibility

After the preliminary screening, three candidates as
alternatives remain for the latter evaluation, which
are written as fA1; A2; A3g. For the performance
grades of attributes, the linguistic terms [27] and their
corresponding scores are shown in Table 1.

Based on Table 1, the linguistic variables can
be converted into their scores; then, the weights

Table 1. Linguistic terms and corresponding scores for
rating the grades of attributes.

Linguistic variable Score

Very Unimportant (VU) 1
Unimportant (U) 2
Medium (M) 3
Important (I) 4
Very Important (VI) 5
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of attributes are obtained. A speci�c conversion is
introduced in the following example.

Example 2: Let (h1; h2; h3; h4) = (VI;M;M;VI) be
the grades of attributes fu1; u2; u3; u4g, which are given
by a DM. According to Table 1, we �rst convert
the linguistic variables (VI;M;M;VI) into the scores
(5; 3; 3; 5). Then, we need to normalize the scores
(5; 3; 3; 5) as (w1; w2; w3; w4), where w1 = 5=sum =
0:3125, w2 = 3=sum = 0:1875, w3 = 3=sum = 0:1875,
w4 = 5=sum = 0:3125, and sum = 5 + 3 + 3 + 5 = 16.

Table 2 introduces the linguistic terms for rating
the attribute values and corresponding IFNs, which are
also described by the 5-point scales.

Three DMs employ the linguistic variables with
the 5-point scales to assess the candidates with respect
to attributes and the grades of attributes, which are
shown in Table 3.

According to Step 2, the potential suppliers'
grades in Table 3, expressed by linguistic variables,
can be converted to IFNs, and the attributes' grades

Table 2. Linguistic terms and corresponding IFNs for
rating attribute values.

Linguistic variable IFN

Strong Dissatisfaction (SD) (0.05, 0.90)

Dissatisfaction (D) (0.20, 0.70)

Fair (F) (0.50, 0.30)

Satisfaction (S) (0.70, 0.20)

Strong Satisfaction (SS) (0.90, 0.05)

Table 3. Candidates' evaluation and attributes' grades in
linguistic variables.

DM Candidate and
grade of attribute

u1 u2 u3 u4

d1

A1 S D F F

A2 SS SD S S

A3 S D S SD

h1 VI M M VI

d2

A1 S F D S

A2 F S D F

A3 F S SS S

h2 I VI M VI

d3

A1 SS D S SS

A2 SS D S S

A3 F SD SS S

h3 M I M M

in Table 3, expressed by linguistic variables, can be
converted to their weights, which are shown in Table 4.
For the weights of attributes in Table 4, by Step 3, we
can calculate the three weighted individual decisions,
which are summarized in Table 5.

The ideal decision of all individual decisions is
determined by Step 4, which is shown in Table 6.

The projection of each individual decision, Rk, on
the ideal decision, R�, is calculated by Step 5. The
uniform importance of DM is calculated by Step 6.
The individual weights of three DMs, (I1; I2; I3) =
(0:4; 0:3; 0:3), are given according to the social inuence
of each DM as an expert. The optimistic coe�cient � =
0:6 is given by all DMs. Also, the weights �k of DMs are
calculated by Step 7, which are summarized in Table 7.

For the weight vector (�1; �2; �3) = (0:3681;
0:3139; 0:3180) of DMs, we can calculate the collective
decision of the group by Step 8, which is shown in
Table 8.

The overall attribute value of each candidate is
calculated by Step 9; the score of each candidate is
calculated by Step 10; and all candidates are ranked
by Step 11, which are summarized in Table 9.

Table 9 shows that the ranking of candidates:

A2 � A1 � A3; (21)

where A � B represents that A is superior to B. That
is to say, A2 is to look for the best or the most suitable
supplier among the three potential suppliers in this
automotive manufacturing company, followed by A1
and A3.

5.2. Sensitivity analysis for the optimistic
coe�cient

The optimistic coe�cient � in Eq. (18) is very
important, which should be determined before
Eq. (18) is used. To show feasibility and e�ectiveness
in Eq. (21), we would like to know how � impacts
the overall ranking of the candidates. To intuitively
illustrate the relation between the rankings of potential
suppliers as � increases from 0 to 1, we geometrically
show it in Figure 3.

If � = 0, then the scores of three candidates A1,
A2, and A3 are 0.3850, 0.4508, and 0.3383, respectively.
In this case, A2 is the best candidate, followed by
A1 and A3. When � increases from 0 to 1, Figure 3
shows that the rankings of three potential suppliers do
not change, and the di�erence between their grades is
obvious. This outcome shows that Eq. (18) is robust
and it provides the same order for di�erent values of �.

5.3. Experimental analysis of di�erent
distance measures

In this subsection, we compare our result in Table 9
with di�erent distance measures: the Euclidean dis-
tance and the Hamming distance.
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Table 4. Candidates' evaluation in IFNs and weights of attributes.

DM Candidate and
weight of attribute

u1 u2 u3 u4

d1

A1 (0.70, 0.20) (0.20, 0.70) (0.50, 0.30) (0.50, 0.30)
A2 (0.90, 0.05) (0.05, 0.90) (0.70, 0.20) (0.70, 0.20)
A3 (0.70, 0.20) (0.20, 0.70) (0.70, 0.20) (0.05, 0.90)
w1 0.3125 0.1875 0.1875 0.3125

d2

A1 (0.70, 0.20) (0.50, 0.30) (0.20, 0.70) (0.70, 0.20)
A2 (0.50, 0.30) (0.70, 0.20) (0.20, 0.70) (0.50, 0.30)
A3 (0.50, 0.30) (0.70, 0.20) (0.90, 0.05) (0.70, 0.20)
w2 0.2353 0.2941 0.1765 0.2941

d3

A1 (0.90, 0.05) (0.20, 0.70) (0.70, 0.20) (0.90, 0.05)
A2 (0.90, 0.05) (0.20, 0.70) (0.70, 0.20) (0.70, 0.20)
A3 (0.50, 0.30) (0.05, 0.90) (0.90, 0.05) (0.70, 0.20)
w3 0.2308 0.3076 0.2308 0.2308

Table 5. Three weighted individual decisions with intuitionistic fuzzy information.

Decision Candidate u1 u2 u3 u4

R1

A1 (0.3136, 0.6047) (0.0410, 0.9353) (0.1219, 0.7979) (0.1948, 0.6864)
A2 (0.5130, 0.3921) (0.0096, 0.9804) (0.2021, 0.7395) (0.3136, 0.6047)
A3 (0.3136, 0.6047) (0.0410, 0.9353) (0.2021, 0.7395) (0.0159, 0.9676)

R2

A1 (0.2467, 0.6848) (0.1844, 0.7018) (0.0386, 0.9390) (0.2982, 0.6229)
A2 (0.1505, 0.7533) (0.2982, 0.6229) (0.0386, 0.9390) (0.1844, 0.7018)
A3 (0.1505, 0.7533) (0.2982, 0.6229) (0.3340, 0.5893) (0.2982, 0.6229)

R3

A1 (0.4122, 0.5009) (0.0663, 0.8961) (0.2426, 0.6897) (0.4122, 0.5009)
A2 (0.4122, 0.5009) (0.0663, 0.8961) (0.2426, 0.6897) (0.2426, 0.6897)
A3 (0.1478, 0.7574) (0.0157, 0.9681) (0.4122, 0.5009) (0.2426, 0.6897)

Table 6. The ideal decision among all individual decisions.

Candidate u1 u2 u3 u4

A1 (0.3277, 0.5919) (0.0995, 0.8379) (0.1385, 0.8025) (0.3075, 0.5983)
A2 (0.3758, 0.5289) (0.1342, 0.8180) (0.1656, 0.7824) (0.2487, 0.6640)
A3 (0.2079, 0.7014) (0.1282, 0.8262) (0.3215, 0.6021) (0.1943, 0.7463)

Table 7. Projections, uniform importance, individual importance, weights of DMs, and their ranking.

DM ProjR�(Rk) Ck Ik �k Ranking
d1 2.7541 0.3468 0.4000 0.3681 1
d2 2.5665 0.3232 0.3000 0.3139 3
d3 2.6214 0.3301 0.3000 0.3180 2

Table 8. Collective decision of the group.

Candidate u1 u2 u3 u4

A1 (0.3273, 0.5922) (0.0963, 0.8431) (0.1381, 0.8017) (0.3022, 0.6023)
A2 (0.3843, 0.5203) (0.1276, 0.8263) (0.1679, 0.7796) (0.2524, 0.6607)
A3 (0.2138, 0.6960) (0.1233, 0.8324) (0.3159, 0.6084) (0.1857, 0.7567)
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Table 9. Overall attribute values �i, scores s(�i), and
the ranking of candidates.

Candidate �i s(�i) Ranking

A1 (0.6344, 0.2411) 0.3932 2
A2 (0.6659, 0.2215) 0.4444 1
A3 (0.6160, 0.2667) 0.3494 3

Figure 3. The rankings of three potential suppliers vs. �.

If we use the Euclidean distance to replace the
projection measurement in the procedure of the pro-
posed model, Eq. (16) will be replaced by:

sEk=

vuut mX
i=1

nX
j=1

((�kij���ij)2+(�kij���ij)2+(�kij���ij)2);

k 2 T;
where, sEk = sE(Rk; R�); �kij and ��ij are same as those
in Eq. (16). Eq. (17) is replaced by:

Ck = 1� sEk
tP

k=1
sEk

; k 2 T; (22)

The separation of each Rk(k = 1; 2; 3) from the
ideal decisionR�, the uniform importance calculated by
Eq. (22), the individual importance, the comprehensive
closeness coe�cient, the weights of DMs, and their
ranking based on the Euclidean distance are shown in
Table 10.

Table 10. Separations, uniform importance, individual
importance, weights of DMs, and their ranking based on
the Euclidean distance.

DM sEk Ck Ik �k Ranking

d1 0.5339 0.3425 0.4000 0.3655 1
d2 0.6272 0.4023 0.3000 0.3614 2
d3 0.3978 0.2552 0.3000 0.2731 3

If we use the Hamming distance to replace the
projection measurement in the procedure of the pro-
posed model, Eq. (16) will be replaced by:

sHk =
mX
i=1

nX
j=1

(j�kij � ��ij j+ j�kij � ��ij j+ j�kij � ��ij j);

k 2 T;
where, sHk = sH(Rk; R�), and �kij and ��ij are same as
those in Eq. (17). In this case, Eq. (17) is replaced by:

Ck = 1� sHkPt
k=1 sHk

; k 2 T; (23)

The separation of each Rk(k = 1; 2; 3) from the
ideal decision R�, the uniform importance calculated
by Eq. (23), the individual importance, the weights
of DMs, and their ranking based on the Hamming
distance are shown in Table 11.

The scores of three candidates A1, A2, and A3
with three measures are shown in Table 12. In Table 12,
sP (�i), sE(�i), and sH(�i), respectively, represent
the scores measured by using the projection measure,
the Euclidean distance, and the Hamming distance.
Table 12 shows that the rankings based on three
di�erent measures are the same. In this case, we do
not know which measure is better.

To show the advantage of the current method,
we compare three measures based on a resolution of
scores of candidates. Speci�cally, we compare the
resolutions of the rankings derived from the measures,
and these resolutions are based on their ratios. For
example, to show the resolution of ranking 0:4444 �
0:3932 � 0:3494 based on projection measurement,
it can be calculated by two ratios: large/medium
= sP (�2)=sP (�1) = 0:4444=0:3932 = 1:1302 and
medium/small = sP (�1)=sP (�3) = 0:3932=0:3494 =
1:1254. The overall resolution is calculated by
sP (�2)=sP (�1) + sP (�1)=sP (�3) = 1:1302 + 1:1254 =
2:2556. Our idea is that the larger the overall reso-
lution a result provides for the scores of candidates,
the smaller sensitivity and the higher robustness this
measure will have. Therefore, this result is more
reliable. The resolutions of rankings based on three
measures are shown in Table 13.

Table 11. Separations, uniform importance, individual
importance, weights of DMs, and their ranking based on
the Hamming distance.

DM sHk Ck Ik �k Ranking

d1 2.4523 0.3393 0.4000 0.3636 1

d2 2.8565 0.3952 0.3000 0.3571 2

d3 1.9192 0.2655 0.3000 0.2793 3
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Table 12. Scores of three candidates with three measures.

Candidate sP (�i) Ranking sE(�i) Ranking sH(�i) Ranking

A1 0.3932 2 0.3781 2 0.3804 2
A2 0.4444 1 0.4339 1 0.4346 1
A3 0.3494 3 0.3601 3 0.3597 3

Table 13. Resolutions of rankings based on three measures.

Measure Large/medium Medium/small Overall resolution Ranking

Projection 1.1302 1.1254 2.2556 1
Euclid 1.1476 1.0500 2.1976 3

Hamming 1.1425 1.0575 2.2000 2

Table 13 shows that the projection is the best
measure in the sense of overall resolution, followed
by the Hamming distance and the Euclidean distance.
That is to say, the projection-based method is a high-
resolution decision method.

6. Conclusion and further research

GDM is a very active research topic among all decision
making methods. So far, as we know, the separation
between decision objects has been measured by the
distance measurement in most of the decision methods;
the included angle between objects is often ignored.
To overcome this drawback, this paper has introduced
a projection measurement instead of the distance
measurement to deal with the GDM problems. The
main contribution of this paper is providing a novel
GDM method, which can provide a ranking for a �nite
number of alternatives, which is high-resolution and
robust.

The proposed method has some practical advan-
tages. On the one hand, its idea is straightforward.
The projection of an object on another one, in a sense,
is an indication of its closeness to the other. Thus, it is
easy to understand. On the other hand, its technology
is comprehensive. The projection measurement consid-
ers not only the module size but also the included angle
between two objects. Therefore, its considerations are
more comprehensive. Moreover, its methodology is also
comprehensive. The weight of DM is considered by
its individual importance, uniform importance, and an
optimistic coe�cient; as a result, the proposed method
is a comprehensive methodology. Finally, its procedure
is simple. The projection-based GDM method is
straightforward and can be implemented easily on a
computer.

The proposed method has important theoretical
and practical implications. On the one hand, the
existing literature has paid very little attention to the
development of projection measure, methodology, and
technique. Thus, there is still room for improvement of

GDM. On the other hand, the proposed method not
only can evaluate a real-life supplier evaluation and
selection problem, but also may be used to evaluate
the service quality and service performance, such as the
performance of library service, the customer satisfac-
tion in e-retailing, and the satisfaction and loyalty for
smartphone users. Meanwhile, the proposed method is
expected to be applicable to other areas such as risk in-
vestment and engineering management. Furthermore,
since the proposed method is di�erent from the existing
methods, it may provide scholars with more methods
for solving GDM problems. For example, the method
proposed in this paper can be easily extended to solve
the heterogeneous GDM problems.

In addition, we have only considered the IFN as
a decision information in the decision process, which
is a limitation. Other decision information, such as
the ordinary fuzzy number and the interval-valued
intuitionistic fuzzy number, may be left for our future
study. In the future, we will continue working on the
application of our work to other areas [65-68].
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