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Abstract. Consider a supply chain including a refinery producing evaporating chemical
product, an exporter, and one or some engine oil producers outside the exporter’s country.
The exporter uses vendor-managed inventory system implemented between refinery and
exporter to decrease his/her inventory cost. This paper develops two models with partial
backordering for evaporating chemical product developed in a two-layer chain including
single refinery and single exporter with one product before and after utilizing vendor-
managed inventory policy. Demand and partial backordering rates are deterministic and

constant. A numerical example is provided to illustrate the applicability of the proposed

model and solution method.
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1. Introduction and literature review

Vendor-managed inventory is a practice to improve
the inventory management in supply chains. In this
system, a vendor decides on the appropriate inventory
levels of each product for all his/her retailers and
the appropriate inventory policies to maintain these
levels [1]. The objective of the members of VMI
system is to decrease both inventory and replenishment
costs in each supply chain, which benefits all members
of the chain. Recently, this policy has widely been
studied and developed by many researchers. For
instance, Yang et al. [2] studied the effects of a
distribution center in a VMI policy including sin-
gle manufacturer and multi buyers. Hemmelmayr
et al. [3] employed vendor-managed inventory policy
for the delivery of blood products to hospitals in
FEastern Austria. Yu and Huang [4] studied how a
producer and its buyers interact with each other to
optimize their marketing strategies, platform prod-
uct configuration, and inventory management policies
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in vendor-managed inventory system utilized in the
proposed supply chain. Guan and Zhao [5] devel-
oped vendor-managed inventory system under contin-
uous review (r,Q) policy. Yao et al. [6] developed
VMI system with stochastic demand and backordered
shortage. Kristianto et al. [7] developed an adap-
tive fuzzy control application to support a vendor-
managed inventory policy in a supply chain. Darwish
and Odah [8] developed and utilized vendor-managed
inventory policy in a supply chain including single
vendor and several retailers. Egri and Vancza [9]
studied the problem of coordination in supply net-
works including single supplier and multiple retailers
where members had asymmetric information about
demand and costs. Yu et al. [10] analyzed retailer
selection in a vendor-managed inventory system for a
manufacturer. Zanoni et al. [11] studied two issues
having usual interactions in practice, which were the
‘VMI with consignment’ and the ‘Learning Curve’
policies.  Chen et al. [12] studied the impact of
transshipment and demand variability on distribution
policies of the vendor when vendor-managed inven-
tory strategy was used. Yu et al. [13] developed
VMI policy for replenishing deteriorating raw ma-
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terial in which shortage was not permitted. Shu
et al. [14] designed a logistic network using vendor-
managed inventory for a company that was in charge
of managing inventory for its retailers and down-
stream warehouses. Taleizadeh et al. [15] studied a
joint optimization of price, replenishment frequency,
replenishment cycle, and production rate in vendor-
managed inventory system for deteriorating items.
Moreover, recently, Cardnas-Barron et al. [16] re-
viewed the developments in EOQ models in honor
of Ford Whitman Harris. Yang et al. [17] analyzed
the robustness of different supply chain strategies
such as VMI, electronic point of sales, e-shopping,
and emergency transshipments under various uncer-
tain environments. Kastsian and Monnigmann [18]
studied robustness and stability of a supply chain
in which vendor-managed inventory was used. Lee
and Ren [19] examined the benefits of VMI in a
global environment under periodic-review stochastic
inventory policy, in which the supplier and the retailer
faced uncertain exchange rate and incurred different
fixed ordering costs. Almehdawe and Mantin [20]
modeled a Stackelberg-game vendor-managed inven-
tory framework with two different scenarios. In the
first one, the manufacturer was the leader and in
the second omne, the retailer was leader. Wong et
al. [21] studied how a sales rebate contract helped
to achieve supply chain coordination, allowing chain
members with decentralized decisions to perform a
centralized decision for the whole system. Zavanella
and Zanoni [22] developed an integrated inventory
production model in which vendor-managed policy was
used. Xu and Leung [23] studied a retail channel
and proposed an analytical model for the members
of that channel to determine the inventory policy
such that the net profit of channel was maximized.
Southard and Swenseth [24] studied VMI policy in a
unique chain such that a firm could justify spending
the money necessary to create the infrastructure to
support it. Gumus et al. [25] analyzed the impacts
of VMI policy and consignment inventory in a two-
layer supply chain. Hariga and Al-Ahmari [26] de-
veloped integrated inventory-shelf allocation model for
a stock-dependent demand of single product. The
integrated model was developed for a supply chain
operating under VMI policy and consignment stock
agreement. Yu et al. [27] developed a Stackelberg
game-theoretic model to optimize inventory, pricing,
and advertising decisions in Vendor-Managed Inven-
tory (VMI) system. Michaelraj and Shahabudeen [28]
developed two supply chain models operating under
VMI policy with two different objectives. In the
first one, distributors had the objective of minimizing
the balance payment considering the financial safety
and in the second one, they had the objective of
maximizing the sales with an aim to go beyond business

survival. Passandideh et al. [29] developed a two-
layer supply chain in which VMI and EOQ policies
were used, but shortage was not permitted. Then,
Passandideh et al. developed their model to a multi-
product multi-constraint case and solved it with ge-
netic algorithm. In continuation, Cardenas Barron
et al. [30] developed a more efficient algorithm to
solve their proposed model. Liao et al. [31] devel-
oped a multi-objective integrated inventory-location
distribution network problem operating under vendor-
managed inventory policy. Chen et al. [32] studied
the problem of coordinating a vertically separated
distribution system under vendor-managed inventory
and consignment arrangements.

There is much additional research related to VMI
policy which is not introduced here. But, the interest-
ing point is that none of the studies has developed and
utilized VMI policy under partial backordering for an
evaporating or deteriorating item. Thus, the aim of this
research is to extend and utilize the VMI policy with
partial backordering for evaporating or deteriorating
items. Moreover, in this paper, a real case in petroleum
industry is presented and the developed model is used
to solve the problem on hand for that firm.

2. Problem definition

In this section, we describe a case study in which
a refinery and an exporter and some retailers of an
evaporating chemical product, which are engine oil
producers, exist. Decisions about when and how
much product should be ordered are so important.
Exporter intends to use Vendor-Managed Inventory
(VMI) system and asks the refinery to use VMI policy
in order to decrease his/her cost.

The second characteristic of the store’s situation
is that if the engine oil producers order the product
but cannot buy it because the exporter cannot satisfy
demand of the company at appropriated time, they
may do one of two things based on how much of it
they still have. If they have enough of the product
to wait until the exporter satisfies their demand, their
order will be backordered. But if engine oil producers
do not have enough of the product to wait, they will
apply to another exporter in the store and will buy
it from that one. In this situation, the sale at the
original exporter will be lost. If we assume that a
fraction of the demands can be postponed and the
remaining fraction will go elsewhere, which is the case,
the shortage at the original exporter will be partially
backlogged, which is one of the assumptions of the
proposed model.

The third characteristic of the store’s situation
is that the commodity exchange is evaporating raw
material of engine oil factory and needs special at-
tentions because of evaporation and its effects on
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mathematical modeling. Moreover, this paper can be
used for deteriorating product instead of evaporating
one, because of their similarities in assumptions and
modeling.

In addition to the characteristics of the problem,
it is assumed that all parameters of the problem,
including evaporation, partial backordering and de-
mand rates, and cost parameters, are constant and
deterministic. In the next section, we will model the
problem on hand.

3. Modeling

To model the problem, the following notations are used.

qN The order quantity of exporter

q The order quantity of exporter in
vendor-managed inventory system

0 The constant rate of product
evaporation

AR The setup cost per order of the refinery

Ag The ordering cost per order of the
exporter

C The deterioration cost per unit

d The constant demand rate of the
exporter

I The partial backordering rate of the
exporter

h The inventory holding cost of exporter

in a period per unit per unit time

by The maximum level of backordering
shortage of exporter

b The maximum level of backordering
shortage of exporter in vendor-managed
inventory system

7’ The fixed cost of lost sale of exporter
per unit
T The cost of shortage of exporter per

unit per time

Ty The time cycle

T The time cycle in vendor-managed
inventory system

Fy The percentage of cycle length with
positive inventory

F The percentage of cycle length with

positive inventory in vendor-managed
inventory system

TCEyN Inventory cost of the exporter in
vendor-managed inventory system

TCE Inventory cost of the exporter in
vendor-managed inventory system

TCRy Inventory cost of the refinery

TCR Inventory cost of the refinery in
vendor-managed inventory policy

TCxn The total cost before vendor-managed
inventory policy

TC The total cost of vendor-managed
inventory policy

Because of demand and deterioration, during
[0, FT], the inventory level drops to zero. Thus, the
differential equation shown in Eq. (1) shows the change
in the inventory level during [0, F'T].

dlzhft) = —0I,(t)—d, O0<t<FT. (1)
Therefore, we have:
_ é O(FT—t)
Lt =7 (e 1) . 2)

Furthermore, at time F'7T, shortage occurs and
the inventory level starts dropping below zero such
that, finally, the backordered and lost sale quantities
are respectively:

b= pd(l - F)T, (3)

L=(1-p)(1-F)dT. (4)
Therefore, we have:

Imax = 11(0) = g (e”FT —1). (5)
Since @) = I,.x + b, we have:

q= g (e?FT — 1) + pd(1 — F)T. (6)

The total cost of system for the cycle time, T,
is made up of the exporter’s ordering cost, refinery’s
ordering cost, the holding cost of product stored in
exporter’s warehouse in a period, deterioration cost,
and cost of shortage. The exporter’s holding cost is:

FT FTd
h /Il(t):hx/g(eWT*t)q) dt
0 0

d _ FT pd
- (69<FT t)+6t)‘0 = o [T —0FT—1] -

Moreover, the fixed cost of exporter is A and the
deterioration cost will be:

C (1;(0) — dFT) = C [;l (e9<FT> - 1) - dFT] . (8)
and the back-ordered and lost sale costs are respec-
tively:

aud(l — F)2T?

2 )

7'd(1 - p)(1 = F)T. (10)
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3.1. Analysis of inventory costs

Before utilizing vendor-managed inventory system, the
total cost function of the exporter and the total cost
function of refinery are respectively shown in Eqgs. (11)
and (12). Then, the total cost of the chain is shown in
Eq. (13):

1 d
TCEN :T (AE + 97 [€6FNTN _ GFNTN _ 1]

+C [Z (e?FvIv —1) — dFNTN]

Fud(1— Fx)* T2
+7TM( N) N

2
+7T’d(1_:u)(1_FN)TN>7 (11)
TCRy = 28, (12)

1
TCny =TCENy +TCRy = T(AR + Ag

+ i [eeFNTN — QFNTN — 1]

(92
d OFNT
+C 5(6 NN —1) —dFNTN
N fpd(1 — Fn)*T%
2
+7'd(1— p)(1 - FN)TN) : (13)

Using approximation of the Taylor series expansion,
2
eOFNIN =1 + 0FNTN + 7(9FN2TN) , we have:

1

(AE L (60 +h)d(FyTy)*
N

2

| Apd(1— Fy)T}

2

+a'd(l—p)(1 - FN>TN>7 (14)

AR
T = — 1

CRy T (15)

1 0C + h)d(FnxTx)?
TCN—<AR+AE+( + hd(FnTy)

TN 2

+W+w’d(1—u)(1—FN)TN> '
(16)

3.2. Solution method

The exporter’s inventory cost in Eq. (14) is a function
of T and F'. Thus, global optimal values of T and F can
be obtained by taking the partial derivative of Eq. (14)
with respect to T" and F'; then setting them equal to
zero (in Appendix‘A, we prove that 7" and F* give a
global optimal solution).

OTCEN _—Ap (h+CO)dF?  7pd(1—Fy)?
oIy  T% 2 2 '

Then, we have:

Tn(Fy) = \/(h ¥ CG)dF]%,Zj—hjmd(l —Fy)? (18)
and:
aTaCTNEN =(h+ CO)dFNTy — 7pdTn (1 — Fy)
—7'd(1 — p). (19)
Finally:
N:ufrTN—i-W’(l—,u) (20)

(h+CO+ pa)In'

Substituting F5 into Tx (Fy) yields (see Appendix B):

TN:\/ZAE(h+C«9+ufr)—d(w’(l—u))? 1)

i (h+ Co)d

Shortage quantity before utilizing vendor-
managed inventory policy can be calculated as follows
(see Eq. (3)):

N = ud(l = Fy)Ty- (22)

Moreover, the ordering quantity before utilizing
vendor-managed inventory policy using approximation
of the Taylor series expansion in Eq. (6) will change to:

O(FnTy)?

q]*\/:d <FNTN+ 9

) +/Ld(1 — FN)TN. (23)
The optimal values of decision variables T' and F'
of the exporter’s total cost shown in Eq. (14) can be
obtained using Eqs. (20) and (21) only if p satisfies the
inequality given in Eq. (24) (see Appendix C).

24, (h+ CO)d

p>py=1- o ~ (24)
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Then, this solution is optimal if this condition is
met and p* > 0. If the condition is met but p* < 0,
the cost of the optimal partial backordering solution
must be compared with the cost of not stocking. To
summarize: If 4 > p* > 0 (where p* is given
in Eq. (24)), then the optimal partial backordering
solution is given by Egs. (20) and (21); if, however,
©* < 0, the cost of that solution must be compared
with the cost of not stocking at all. If p < p*, the
optimal solution is either to use the classic EOQ model
or not to stock the item at all, whichever costs less [33-
36].

But, when vendor-managed inventory policy is
used, since refinery should pay the exporter costs,
Eqgs. (14) to (16) will change to:

TCE =0, (25)
1 hd
TCR =7 (AR + Ap + 7 [T —9FT —1]
d OFT
+C 5(6 —1) —dFT

fpd(1—F)*1?

5 +7r'd(1—,u)(1—F)T> ,(26)

TC:TCE—FTCR:;(AR—FAE

hd
+ 25 [e?FT —oFT —1]
+C [Z (e?FT —1) - dFT}

rud(l — F)2T?
L FpdQ — F)'T7

5 +7r'd(1—,u,)(1—F)T).

(27)

Using approximation of the Taylor series expansion, we
have:

2
TCR :% (AR 4 Ay + GCFRAET) h;d(F )

J Fud-FPT? 7r'd(1—,u)(1—F)T>,

2 (28)
TC:;“(AR“LAE“LW;d(FT)Q
N M +rd(1 - p)(1 —F>T)'
(29)

Once again, since the total inventory cost in
Eq. (28) is a function of T and F, global optimal
values of T"and F' can be obtained by taking the partial
derivative of Eq. (28) with respect to 7' and F, then
setting them equal to zero (as we mentioned in the
previous section, in Appendix A, we prove that T* and
F* give a global optimal solution):

OTC  (Ap+Ag)

L A(CO+MF? | ipd(1-F)*
- . .
oT T 2 2 (30)

Then, we have:

_ 2(Ar + AR)
T(F) = \/d(h+C)F2+fmd(1 —Fe (31
and:
OTC (4 COMFT —pdT(1—F)—'d(1— p).
oF
(32)
Finally:
o i
[ Gt D i (33)

(h+CO + pn)T~

Substituting F* into T7*(F*), same as when vendor-
managed inventory system is not utilized, yields:

T*:\/ 2An+Ap)(h+CO+pi) —dr (L= o

(u7)(h + CO)d

the shortage and order quantities after utilizing vendor-
managed inventory policy are respectively:

b* = pd(1 — F*)T*, (35)

9(FT)?
2

¢ =d (FT + ) +pd(1 = F)T. (36)

Same as the previous case, Eqgs. (33) and (34) give
the optimal values of T and F' for the cost function
in Eq. (14) only if u satisfies the inequality given in
Eq. (29).

ps =1 V2(Ar + 3;)@ +CO)d. (37)

Utilizing the solution method proposed by Pentico
et al. [37], the following solution procedure can be
developed to determine the optimal values of T and
F' when VMI policy is used:

V2(Ar+Ag)(h+CO)d |

dr’ 3

1. Calculate p* =1 —
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2. If p > p*, go to Step 3. If p < p*, determine the
optimal cost of ‘no stockouts’ and compare this with
the cost of losing all demands, #'d, to determine
whether it is optimal to allow no stockouts or all
stockouts. If \/2(Ag + Ag)d(h + C'f) < 7'd, then

Fr=1,T" = \/35eda8) ¢* = dT*, and b* = 0.

If \/2(Ar + Ag)d(h+ C'0) > w'd, then T* = oo,
F* =¢* =0 and Stop;

3. Using Eq. (33) and (34), calculate the couple of
(T*,F*) and go to step 4. If u* < 0, compute
TC(F*,T*) using Eq. (29); if ¥(F*,T*) < 7'd, go
to step 4. Otherwise, T = o0, and F* = ¢* = 0.
Stop;

4. Determine the optimal value of shortage and order
quantities using Eqgs. (35) and (36).

If we would like to solve an EOQ model with partial
backordering for deteriorating item (ignoring VMI
policy), we should use Ag = 0 in the described solution
method and all equations will be derived for when VMI
policy is ignored.

4. Numerical example

In order to illustrate the above solution procedure,
let us consider an inventory system with the following
data:

Ap =100, Ap =100, h=3, d=2,000,

C =100, #=0005 = =1, #=2.
4.1. First ecample: p = 0.5

Using Eq. (37), we have p = 0.5:

- Step 1.
V2(Ar + Ag)(h + C6)d
wo=1-=
dm!
. +/2(100 + 100)(3 + 100 x 0.005)2000
B 2000(1)
= 0.1633;

- Step 2. Since = 0.5 > p* = 0.1633, go to Step 3;
- Step 3. Using Egs. (34) and (33), we have:

7% —  /2(100+100)(3+100x0.00540.5x2) ~2000(1(1-0.5))?
- (0.5x2)(3+100%0.005)2000

= 0.4309,

1(1 = 0.5) + 2(0.5)0.4309

F* =
(34100 % 0.005+2 x 0.005)0.4309

=0.48.

- Step 4. Using Eqs. (35) and (36), we have:

b* =0.5x% 2000 x (1—0.48) x0.4309 = 224.0689,

‘ 0.005(0.43 x 0.4309)?
g" =2000 (O.43><O.4309 + ( 2X ) )

+ 0.5x2000(1 — 0.48)0.4309 = 638.0366.

4.2. Second example p = 0.1

- Step 1. From the first step of the first example, we
know p* = 0.1633;

- Step 2. Since p = 0.1 < u* = 0.1633, the optimal
cost of ‘no stockouts’ and the cost of losing all
demands should be compared. Since the optimal
cost of ‘no stockouts’ \/2(Agr + Ag)d(h+C'0) =
/2(100 + 100)2000(3 + 100 x 0.005) = 1673.32 is
less than the cost of losing all demands #'d =
1 x 2000 = 2000, we have:

Fr=1,
T — 20Ar + Ap) 2(100 + 100)
—\ d(h+C8) '\ 2000(3 + 100 x 0.005)
= 0.2390
and:

g" = dT" = 2000 x 0.2390 = 478.0914.

5. Conclusion

In this paper, a supply chain including a refinery
producing evaporating chemical product and a dis-
tributer who exports the products of refinery, with and
without vendor-managed inventory policy, is studied.
According to the observations of real case, the partial
backordering is assumed where all parameters of the
model are constant and deterministic. The closed-
form solutions for decision variables, including optimal
period length, order and shortage quantities of evap-
orating item under vendor-managed inventory policy,
after proofing the concavity of objective function, are
derived. Two numerical examples are provided to illus-
trate the applicability of the proposed model and solu-
tion method. The result shows that vendor-managed
inventory decreases cost in all conditions and is more
beneficial for the coordination system. For future
research, considering stochastic partial backordering or
demand rates and several competing refineries or ex-
porters, considering pricing and revenue management
topic, using time-dependent partial backordering rate
or using contacts between the partners can enhance the
developed model.
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Appendix A

Proof of the optimality of the solutions

(Eqs. (20), (21), (33), and (34))

Using the method proposed by Pentico et al. [37], we
can prove that Eqs. (20), (21), (33), and (34) are global
optimal, although the cost functions, which are shown
in Egs. (16) and (29), are not convex. The cost function
can be rewritten as follows:

TC(F,T) :% + (MF? =20 F + )T

— X3F + As, (A1)

where:

A=A >0,
(NoVMI: A= Ap; VMI: A=Agr+ Ag), (A.2)
A = w >0, (A.3)
Ao = %“d >0, (A4)
A3 =a'd(1—p) > 0. (A.5)

Note that all the A;s are positive. We can rewrite

Eq. (A.1) as follows:

Ao

TC(F,T) = a +Tr(F) + q(F), (A.6)
where:

r(F) = M F? =2\ F + Xs. (A.7)
and:

q(F) = =X3F + As. (A.8)

Our objective is to establish the condition under
which Eq. (A.6) has a unique interior minimizer.
Differentiating Eq. (A.6) with respect to T yields:

orcC Ao
- _ 20 F A.
aT 72 (), (A.9)
which equals zero if and only if T satisfies:
T =T*F) = Ao (A.10)
N -\ r(F) '

Note that this is the same result, with appropriate
change of notation, given in Egs. (21) and (33). Since
the discriminant of r(F') is negative, r(F) has no roots.
Thus, r(F) is either all-positive or all-negative. Since
r(0) = Ay > 0, r(F) is strictly positive in [0, 1]. Thus,
Eq. (A.10) gives, for each F, a unique T = T*(F)
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that minimizes the cost function given by Eq. (A.7).
Substituting the expression for T*(F) in Eq. (A.10)
into TC(F,T) given by Eq. (A.6) gives:

TC(F) = TO(T*(F), F) =2/ Aor(F)+q(F), (A.11)

which represents minimal possible cost for each value
of F. Note that T'C(F) is continuous; thus, on the
compact interval [0, 1], it has one or more local minima,
the smallest of which will be the global minimum of the
cost function [37]. To find these minima, take the first
and second derivatives of TC(F') with respect to F,
yielding:

TC'(F) = V3o ) 4 (), (A.12)
r(F)z
renpy - YR RIERE) S @EF]
2r(F)2

Note that TC'(F'), which is, with the change in
notation, same as %fﬂ given in Eqs. (19) and (32),
is continuous and satisfies TC'(0) < 0.

’I“I(F) = 2)\1F — 2/\2, (A].?)
¢'(F) = =23, (A.18)
P (F) =2\, (A.19)
¢"(F) =0, (A.20)
TC'(0) = — (mj% + Ag) <0. (A.21)

The second derivative, TC"(F'), given in Eq. (A.13) is
as below:

TC"(F)

VA (AL FZ=2)0 F+ o) — (20 F —2),)?]
B 2 (F)3

VA[=8M AL F + 4XM Ay — 4A2 + 8\ \, F
2r(F)2

~ VA0[4A e — 403]
2r(F)2

>0, (A.22)

which is positive for all F's, because A; = w

and Ay = #, meaning 4\ Ay > 4\2.

Appendix B

Deriving the optimal value of period length
shown in Eqs. (81) and (33)
To proof Eq. (21), from Eq. (18), we know:

w2 2AE
Ty = . B.1
N7 (h 4 COFE + 7pd(1 — Fi)? (B-1)
Moreover, from Eq. (20) we have:
. 1y
Fy = My + (1= ) (B.2)

(h+CO+pun)Tn~
Replacing Fy and 1 — Fy in Eq. (B.1) by:

7 _opATN + 7' (1 — )
N7+ CO+ p) Ty

and:

(h+COHTN — 7' (1 — )

1—Fy=
N (h+CO+ puit)Ty

respectively yields in Egs. (B.3) and (B.4) as shown in
Box B.1. Finally, we have:

TN:\/2AE(h+ce+uﬁ)—d(w'u_u)){ (B5)

(u7)(h + CO)d

Appendix C

Deriwving lower limit of partial backordering
rate

Since T for the partial backordering model must be at
least as large as T* for the basic EOQ model, firstly, we
should determine T* for the basic EOQ model. Thus,
if we consider F' = 1, then Eq. (14) (the total cost when
there is no shortage) will change to:

Ap  (BC + h)dTy

TCEN = — + —n——— C.1
and we will have:
dTCEyN A  hd CoOd
==+ — + — C.2
ATy 722 T (€2)
2
d*TCEyN _ 2AE >0 (C.3)

2Ty T3 =

Since the second derivative is positive for all
values of T > 0, the objective function shown in
Eq. (C.1) is convex and setting the first derivative equal
to zero will yield the optimal period length shown in
Eq. (CA4).

. 24g
In= d(h+C8)’ (C4)

Now, considering T, for the partial backordering
model greater than T3 for the basic EOQ model, we
have:

24p(h+CO+ pi) —d(x'(1= ) | 24
(u7)(h + CO)d =d(h+C8)’




24p(h+CO+pus)  2unAgp (r'(1—p))?
1A(h 1 COd  prd(h+C8) ~ (u7)(h+CB)’

24p(h+C8) _ d(x'(1= p))?
pi(h+ CO)d = pi(h+ CO)d’

245 _ (x'(1 =)
prd =~ pw(h+ CH)’

245  (7'(1—p)*
d — (h+0C8) "’
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Ty = AT+ (1 >22AE (h+00) Ty /(1) \* )
(h+Co)d (W) + 7pd ( (17,+00]\4T»;L%)TN = )
Then:
Tt 2Ap(h+ CO + ua )T
N (b4 COYd(pui Ty + 7' (1 — )2 + 7pd((h+ COTn — 7'(1 — p))?
B 2Ap(h + CO + p#)?Ty
(W COA(pATN + 7' (1 — )2 + #pd((h+ COHTy — 7' (1 — p))?
B 2Ap(h + CO + p#)?Ty
~ (h+ CO((uATN)? + (7' (1 = p))? + 2677 (1 — p)Tw)
+ itpd(((h+ COTN)* + (7' (1 = p))* = 2(h + CO)x' (1 — p)T)
B 24p(h + CO + p#)2T3
(R +CO)d((uiTn)* + (7' (1 = p)?) + 2uin’ (h + COYA(1 — )Ty
+ 7pd((h+ COTN)? + (2 (1 — p))?) — 277’ u(h + COA(1 — )Ty
B 245 (h + CO + pa)2T3
" (ur)(h+ CO)d(ui + h+ COTZ + (h+ CO + pa)d(n' (1 — )2
B 2Ap(h + CO + p#) T3 _ 2Ap(h+ CO + pi) — d(7' (1 — p))> (B.4)
" (ur)(h+ COYTZ +d(x'(1 — )2 () (h + CH)d ‘ ‘
Box B.1
2Ap(h+CO+ k)  2Ag . 2A5(h+ CO)d o
(i) (h+COd  dh+CH)~ p2l- o : (C.5)
(7' (1= p))? Biography
(uit)(h+CO)’
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