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Abstract. In this paper, we propose a threshold increasing algorithm for a (t; n) lattice-
based Threshold Multi-Stage Secret Sharing (TMSSS) scheme. To realize the changeability
feature, we use the zero addition protocol to construct a new (t0; n) TMSSS scheme.
Therefore, the new scheme enjoys the signi�cant feature of threshold changeability along
with the inherited features of being multi-stage, multi-use, and veri�able derived from
our previously proposed lattice-based TMSSS scheme. Furthermore, we use the improved
TMSSS scheme to propose a threshold decryption algorithm for the Learning With Error
(LWE) based public key encryption scheme based on the study of Lindner and Peikert.
For threshold decryption, each authorized subset of participants decrypts the ciphertext
partially and sends the result to the combiner. The combiner can decrypt the ciphertext
using the partial decryptions. The security of both schemes is based on hardness of lattice
problems, i.e. LWE and Inhomogeneous Small Integer Solution (ISIS) problems, which are
believed to resist against the quantum algorithms. The proposed schemes are e�cient,
especially on the participants' side, making them suitable for the applications in which the
participants have limited processing capacities.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Secret sharing is a cryptographic primitive with many
applications such as key management in sensor net-
works [1], electronic cash [2], electronic voting [3], and
cloud computing [4]. A secret sharing scheme splits a
secret among a set of parties, called participants, in
such a way that some authorized subsets of the partic-
ipants can reconstruct the secret using their assigned
values, called shares, by a trusted third party named
dealer. A (t; n) Threshold Secret-Sharing Scheme
(TSSS) is a special case of secret sharing schemes, in
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which at least t participants are required to recover the
secret. The �rst of such a scheme was introduced by
Blakley and Shamir, independently, in 1979 [5,6]. Since
then, some new features have been added to the secret
sharing schemes such as veri�ability of the shares [7,8],
resistance of the scheme in the presence of a number
of cheaters [9,10], and dynamic change of the threshold
and/or the number of participants [11,12].

To share more than one secret, multi-secret
sharing schemes have been introduced, which is a
generalization of the secret sharing schemes [13]. In
these schemes, each participant is given one share to
recover all the secrets, the size of which is the same
as the size of the secrets. These schemes only provide
computational security [14]. Pang et al. [15] proposed a
multi-secret sharing scheme for general access structure
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in 2006. In this scheme, when an authorized subset
of participants pulls their shares together, all of the
secrets are revealed at the same time. In 1994, He and
Dawson [16] proposed a (t; n) TMSSS scheme. A multi-
secret sharing scheme is called multi-stage if the secrets
are not revealed at the same time, i.e. in recovering a
number of secrets, the recovered secrets do not leak any
information about the unrecovered secrets. In 2007,
Geng et al. [17] showed that the He-Dawson's scheme
is actually one-time-use and vulnerable to collusion
attacks. They proposed a multi-use threshold secret
sharing scheme using a one-way hash function. The
term \multi-use" in this paper implies that the same
shares are used by some technical measures when a
new set of secrets is to be shared. For this purpose, the
following two security requirements are to be realized:

1. While recovering the secret(s), the participants
must not reveal the original shares;

2. The secrecy of the other unrecovered secrets should
be computationally independent from the recovered
secrets.

For constructing a TMSSS scheme, the partici-
pants should send the pseudo-secret shares instead of
the original ones to the combiner, in which the pseudo-
secret shares depend on the original shares and the
desired secret which is to be recovered. All the existing
TMSSS schemes are based on one-way (hash) func-
tions [14,18,19], two-variable one-way functions [20,21],
and assumptions such as di�culty of solving discrete
logarithm problem [22], which can now be threatened
by quantum algorithms.

In a TSSS, the importance of the secret as well
as the mutual trust between the participants or the
organizational structure of the participants may vary.
Hence, it might be required that the TSSS be changed
in such a way that the larger number of participants are
needed to recover the secret. Therefore, the threshold
should be increased. A Changeable TSSS (CTSSS)
is a TSSS in which the shares generated initially by
the dealer should be changed in such a way that the
secret can be recovered with a larger threshold t0 (i.e.,
t < t0). In 1999, Martin et al. proposed the �rst
CTSSS [11]. Later on, di�erent CTSSSs have been
proposed. Such schemes are classi�ed into three types:
The schemes based on a linear polynomial [23,24],
the hyperplane geometrical based schemes [11], and
the schemes based on the Chinese Reminder Theorem
(CRT) [25,26]. In 2004, Steinfeld et al. [23] proposed
a lattice-based CTSSS to increase the threshold in
the standard Shamir's secret sharing scheme. Their
scheme is dealer-free which does not need any secure
channel. However, their scheme uses a lattice-based
method to recover the secret instead of the conventional

polynomial interpolation used in the Shamir's TSSS.
The security of the currently used public key

cryptosystems based on \integer factorization" and
\discrete logarithm" has been threatened since inven-
tion of Shor's quantum algorithm in 1994 [27]. Ever
since Ajtai's introduction of the lattice-based one-way
functions [28], the �eld of lattice-based cryptography
plays a signi�cant role in the world of post-quantum
cryptography. Ajtai proposed a family of one-way
functions whose security is based on the worst-case
hardness of the lattice problems such as Shortest
Vector Problem (SVP) known to be NP-hard [29].
Lattice-based cryptosystems enjoy provable security
based on the worst-case hardness of lattice problems.
Furthermore, they only need linear computations on
relatively small integers.

In 2005, Regev proposed a public key cryptosys-
tem based on the LWE problem [30]. Regev and Peikert
independently showed that, for certain parameters,
LWE is as hard as classical lattice problems, such as
the Shortest Independent Vector Problem (SIVP), in
the worst case. It follows that LWE-based schemes
are provably secure assuming the worst-case hardness
of classical lattice problems. The LWE problem has
been the source of great progress in the lattice-based
cryptography. In 2010, Lindner and Peikert proposed
an LWE-based cryptosystem enjoying the advantages
of having substantially smaller key and ciphertext
sizes than those of the more well-known cryptosystems
proposed in the literature [31].

In recent years, some lattice-based TSSSs have
been proposed. Georgescu [32] proposed an (n; n) TSSS
based on the hardness of the LWE problem. In
2012, Bansarkhani et al. [33] proposed a veri�able
(n; n) TSSS using linear lattice-based hash functions
to enable each participant to verify their share as well
as the recovered secret. The security of this scheme
relies on the hardness of nc-approximate SVP. Amini
et al. [34] and Asaad et al. [35] proposed the �rst
(t; n) TSSSs with asymptotic security in 2014. Later,
we have proposed an e�cient lattice-based veri�able
TMSSS using Ajtai's one-way function in 2015 [36].

In a threshold cryptosystem, the private key is
shared among the participants in which at least a
certain number of them are required to decrypt or sign
the message. Bendlin et al. proposed the �rst lattice-
based threshold cryptographic scheme in threshold de-
cryption of one-bit message [37] based on Regev's LWE
public key encryption scheme. Frederiksen extended
this scheme for multi-bit messages [38]. Singh et al. [39]
proposed an e�cient lattice-based threshold public key
encryption scheme based on Lindner's work [31]. In
2013, Bendlin et al. [40] proposed a threshold signature
and an identity-based encryption scheme. The above-
mentioned schemes have used Shamir's TSSS to share
the private key as an array. Hence, each entry of the
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private key is shared independently in these schemes.
However, this method seems to be ine�cient.

Contributions. In this paper, the authors' con-
tribution is twofold. First, we propose a thresh-
old increasing algorithm for our previously-introduced
lattice-based TMSSS scheme [36]. It should be
noted that the already supported features, such as
being multi-stage, multi-use and veri�able remain un-
changed. For realization of the changeability feature,
we share the zero secret with the new threshold and
combine the new parameter arrays with the previous
ones. Second, using the improved TMSSS scheme,
we introduce a threshold decryption algorithm for the
LWE-based public key encryption scheme based on
Lindner and Peikert's. Here, we consider the column
vectors of the private key matrix as the secrets and
share them using the proposed lattice-based TMSSS
scheme. For threshold decryption, the participants
do partial decryption on the ciphertext using their
shares and send the results to the combiner. Using
additive homomorphic property of the TSSS and linear
property of the decryption, the combiner can decrypt
the ciphertext using the partial decryptions.

The security of the proposed schemes is based on
the hardness of lattice problems which are believed
to resist against the quantum algorithms [41]. The
proposed threshold public key decryption algorithm
inherits the desired features from the improved TMSSS
scheme. In the context of threshold public key cryptog-
raphy, multi-stage feature implies that the participants
can decrypt each bit of the message in di�erent stages,
where the other bits remain undisclosed. Moreover,
both schemes are e�cient, especially on the partic-
ipants' side, because simple matrix operations are
used in the secret sharing and threshold decryption
protocols. Hence, they are suitable for the mobile
applications such as smart cards and sensor networks,
in which low processing capability is a dominant factor.

This paper is organized as follows: Section 2
provides a brief review of lattices, our previous multi-
stage secret sharing scheme, and the LWE-based pub-
lic key encryption scheme proposed by Lindner and
Peikert. Section 3 presents the proposed lattice-based
changeable TMSSS scheme including the algorithm.
Section 4 provides the proposed threshold decryption
algorithm for Lindner and Peikert's scheme. Sections 5
and 6 discuss the security and e�ciency of the proposed
schemes, respectively. Finally, a brief conclusion draws
all the points together.

2. Preliminaries

In this section, we introduce some basic concepts of
lattice, our previous multi-stage secret sharing scheme,

and the LWE-based public key encryption scheme
proposed by Lindner and Peikert [31].

2.1. Notations
In this paper, we assume column vectors for our case.
Lowercase and uppercase letters denote vectors and
matrices, respectively. Matrix In refers to n�n identity
matrix, and matrix 0m�n represents zero matrix of
size m � n. The transpose of a rectangular matrix
is denoted by (�)T . Also, R, Z, and Zq denote the
sets of reals, integers, and the �nite �eld modulo q,
respectively. If S is a set of numbers, Sn denotes
the set of vectors of size n, and Sm�n denotes the
set of m � n matrices, whose entries are chosen from
S. The operator b�e denotes rounding operation to
the nearest integer. The operator k � k denotes an
arbitrary norm. The most important class of norms is
`p norms, de�ned for any p � 1 and a vector x 2 Rn as
kxkp =

�Pn
i=1 jxijp�1=p. The standard big-O and little-

o notations are used to classify the growth of functions.
Function negl(n) denotes a negligible function which is
de�ned as f(n) = o(n�c) for every �xed constant c.

2.2. Lattices
Here, a lattice is a regular array of points in m-
dimensional real vector space.

De�nition 1. [29] Let b1; b2; � � � ; bn be n linearly
independent vectors in vector space Rm. L(b1; � � � ; bn)
is de�ned to be the set of all integer linear combinations
of b1; b2; � � � ; bn as follows:

� = L(b1; � � � ; bn) =

(
nX
i=1

xibi : xi 2 Z
)
: (1)

The set of vectors fb1; � � � ; bng is called a basis for
lattice �, and n is called the rank of the lattice.

Lattice-based cryptosystems are based on the
hardness of lattice problems, SVP and Closest Vector
Problem (CVP) are the most popular ones among
them [29]. In the lattice-based cryptography, we
usually use the approximate version of these problems,
denoted by approximation factor, . For example, in
-approximate SVP, we want to �nd a vector in the
lattice whose length is within factor  of the shortest
vector; in -approximate CVP, we seek a vector in the
lattice whose distance from the target vector is at most
 times that of the closest vector.

De�nition 2. [41] A q-ary lattice is lattice � satis-
fying qZn � � � Zn for some (possibly prime) integer
q.

For instance, given integer matrix A 2 Zn�mq
and modulus q, the set of vectors x 2 Zm satisfying
equation Ax = 0 mod q forms a lattice of dimension
m, which is closed under congruence modulo q. This
lattice is denoted by �?q (A).
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In [28], Ajtai introduced one-way function
fA(x) = Ax mod q, where A 2 Zn�mq and x 2
f0; 1gm. To invert this function, the following problem
is concluded:

Parameters: n, m, q 2 N, such that m > n log q, and
q = O(nc) for some constant c;

Input: A uniformly random matrix A 2 Zn�mq and
vector y = Ax for some random vector x 2 f0; 1gm;

Output: A vector x 2 f0; 1gm, such that Ax = y
mod q.

Ajtai proved that solving this problem with non-
negligible probability leads to an algorithm which
solves any instance of nc-approximate SVP and is not
vulnerable to quantum algorithms in polynomial time.

This problem is a special case of the ISIS problem,
in which condition x 2 f0; 1gm is replaced by kxk �
� for real parameter �. Solving ISIS is equivalent to
decoding arbitrary integer target point, t 2 Zm, within
distance � on q-ary lattice �?q (A) = fx 2 ZmjAx = 0
mod qg, where the syndrome of the target point is u =
At mod q [42].

2.3. Lindner and Peikert's LWE-based public
key encryption scheme

Here, we explain the LWE-based public key encryp-
tion scheme proposed by Lindner and Peikert [31].
The scheme uses uniformly random public matrix,
Q 2 Zn1�n2

q . The cryptosystem uses the following
algorithms for the key generation, encryption, and
decryption, respectively:

- Gen(Q; 1l): Choose R1  Dn1�lZ;sk and R2  Dn2�lZ;sk
and let P = R1�QR2 2 Zn1�l

q . DZ;sk is the discrete
Gaussian distribution on integer numbers with zero
mean and standard deviation of sk. l is the number
of bits in message m. Parameters fP;Qg and R2
represent the public and private keys, respectively.
The relation between the public and private keys can
be written as:�

Q P
� �R2

I

�
= R1 mod q: (2)

- Enc(Q;P;m 2 f0; 1gl): Choose e = (e1; e2; e3) 2
Zn1 �Zn2 �Zl whose entries are chosen from DZ;se .
The ciphertext can be obtained by:

cT =
�
cT1 cT2

�
=
�
eT1 eT2 eT3 +mT bq=2e� :24 Q P

In2 0
0 Il

35
2 Z1�(n2+l)

q : (3)

- Dec(cT ; R2): output decode(cT1 R2 + cT2 ) 2 f0; 1gl,
where decode(x) returns 0 if jxj < bq=4e, else
returns 1:

cT1 R2+cT2 =
�
cT1 cT2

�
:
�
R2
I

�
=eTR+mT bq=2e; (4)

where R =

24R1
R2
I

35 and e =

24e1
e2
e3

35.

The decryption will be correct as long as the
absolute value of each entry of eTR is smaller than
bq=4e.

2.4. Secret sharing
In a secret sharing scheme, the goal is to share a secret
among a set of parties, called participants, denoted
by P. A trusted third party, named dealer, assigns
a private value, called share, to each participant.

Only the authorized subsets of participants can
recover the secret by running a pre-speci�ed algorithm.
The set of all authorized subsets is called an access
structure. In general, an access structure is a subset
of the power set of P. A speci�c instance of general
access structure is the threshold structure, which, for
given t, consists of all subsets of at least t elements of
the power set of P.

A secret sharing scheme usually consists of two
phases:

� Share distribution: In this phase, the shares are
computed by a dealer using a pre-speci�ed algorithm
and are sent securely to the participants;

� Secret reconstruction: In this phase, the authorized
subset of participants send their shares to a com-
biner to obtain the secret by running the algorithm.

The above-de�ned protocol is simple and cannot be
used in real application directly. Depending on the
features, TSSSs can be extended as follows:

- Veri�able secret sharing: In a veri�able secret
sharing scheme, the dealer commits the distributed
shares to each participant, and the participants can
verify the validity of the recovered secrets by the
combiner [19];

- Multi-secret sharing: In a multi-secret sharing
scheme, more than one secret is shared among
the participants, and it is desirable to give the
participants only one share for recovering all the
secrets [13];

- Multi-stage secret sharing: A multi-stage secret shar-
ing scheme is a special case of multi-secret sharing
schemes in which the secrets can be recovered at
di�erent stages, and the reconstructed secrets do
not leak any information about the unrecovered
secrets [18,43];
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- Multi-use secret sharing: For sharing a new set of
secrets, the old shares and the old public information
can be used, such that sending the new shares to
the participants through a secure channel is not
required [18,43];

- Changeable threshold secret sharing: The scheme is
capable of increasing the threshold in such a way
that resharing the secret is not necessary by using
the new threshold.

2.5. Threshold multi-stage secret sharing
scheme

In this section, we introduce the lattice-based (t; n)
TMSSS scheme [36], where t participants are required
to recover each of the secrets. This scheme enables the
participants to recover each secret independently, and
it is computationally di�cult to use them for obtaining
any information about unrecovered secrets. In this
scheme, there are m secrets si 2 Ztq, i = 1; � � � ;m,
where q is a prime number and t is the threshold. The
dealer randomly selects vector v 2 Ztq and publishes it.
Then, for each secret si, he �nds private lattice-basis
Bi, such that:

si = Biv; i = 1; � � � ;m; (5)

where Bi 2 Zt�tq is a basis for the t-dimensional lattice.
After computing the private lattice basis, Bi,

i = 1; � � � ;m, the dealer chooses n public vectors
�j 2 Ztq, j = 1; � � � ; n, such that every t of these vectors
is linearly independent. Then, the dealer must �nd
public matrices, Ai 2 Zt�rq , i = 1; � � � ;m, and private
shares sj 2 f0; 1gr, j = 1; � � � ; n, such that equality
Aisj = Bi�j holds for i = 1; � � � ;m and j = 1; � � � ; n,
where r � max (t log t; n). Hence, the dealer �rst
randomly chooses n items of shares sj from f0; 1gr,
and then solves a system of linear equations to �nd
matrices Ai; i = 1; � � � ;m for each secret.

For veri�cation of the shares by the participants,
the dealer chooses random matrix F 2 Zt�rq and
publishes it along with the hash values of the shares
as the vectors of hj = Fsj , j = 1; � � � ; n. In addition,
the dealer publishes H(si), i = 1; � � � ;m for veri�cation
of the recovered secrets by the participants, where H(�)
is a public hash function.

Distribution phase
� The dealer distributes share vector, sj , to partic-

ipant Pj through a secure channel and publishes
matrices Ai, i = 1; � � � ;m, and vectors �j , j =
1; � � � ; n, on the bulletin board;

� Participant Pj veri�es whether the hash value of the
received share from the dealer is the same as that
on the bulletin board, i.e. Fsj

?= hj .

Combination phase
Here, di�erent secrets are reconstructed independently.
Suppose that subset fj1; � � � ; jtg � f1; � � � ; ng of the

participants intend to recover secret si, i 2 f1; � � � ;mg.
For this purpose, participant jl, l = 1; � � � ; t, computes
vector dijl = Aisjl , l = 1; � � � ; t, as his pseudo-
secret share and sends the result to the combiner in
a secure manner. The combiner constructs matrix
Di =

�
dj1 � � � djt

�
, and then recovers secret si by

computing si = Di��1v, where � =
�
�j1 � � � �jt

�
.

The participants can verify the recovered secret using
the corresponding hash value, H(si), published on the
bulletin board.

3. Threshold increasing algorithm

In this section, we improve our previously introduced
lattice-based (t; n) TMSSS scheme [36] by proposing an
algorithm for increasing the threshold from t to t0 > t.
It should be noted that a trusted party, who might not
know the secret, runs the threshold increase protocol.
For the realization of this purpose, we use the zero
addition protocol [44], in which we share the zero secret
among the participants using the new threshold, t0, and
combine the temporary results with the corresponding
parameters of the (t; n) TMSSS scheme in such a way
that the new scheme is (t0; n) TMSSS scheme. The
algorithm consists of the following phases.

Phase 1. Extending the dimensions from t to t0
First, we increase the size of the arrays of parameters
of the original scheme from t to t0 in such a way that
the original equations remain correct.

sit�1 = Bit�tvt�1 )
�

si
0(t0�t)�1

�
t0�1

=
�
Bi 0
0 0

� �
v
v00
�
t0�1

;

Ait�rsjr�1 = Bit�t�jt�1 )
�
Ai 0
0 0

�
t0�r0

�
sj
s00j

�
r0�1

=
�
Bi 0
0 0

�
t0�t0

�
�j
�00j

�
t0�1

; (6)

where v00 and �00j , j = 1; � � � ; n, are chosen randomly
from Z(t0�t)�1

q and s00j , j = 1; � � � ; n, is chosen randomly
from f0; 1g(r0�r)�1, where r0 = max (t0 log t0; n).

Phase 2. Sharing zero secret
Now, we share the zero secret according to the original
scheme using the new threshold t0. Here, the di�erence
is that vectors v, v00, sj , s00j , �j , and �00j are the same
as those used in the current (t; n) TMSSS scheme, i.e.
Eq. (6):
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0t0�1 = B00t0�1

�
v
v00
�
t0�1

;

A00t0�r0
�
sj
s00j

�
r0�1

=B00t0�t0
�
�j
�00j

�
t0�1

; j=1; � � � ; n; (7)

where B00 is obtained from the �rst equation, and then
A00 is obtained from the second equation in Eq. (7)
using computed B00.
Phase 3. Parameter combination
By adding the corresponding equations of (6) and (7)
together, Eq. (8) is obtained as follows:�

si
0(t0�t)�1

�
t0�1

=
�
B00+

�
Bi 0
0 0

��
t0�t0

�
v
v00
�
t0�1

; 
A00 +

�
Ai 0
0 0

�!
t0�r0

�
sj
s00j

�
r0�1

=
�
B00 +

�
Bi 0
0 0

��
t0�t0

�
�j
�00j

�
t0�1

: (8)

Let us de�ne:

s0it0�1
=
�

si
0(t0�t)�1

�
; i = 1; � � � ;m;

B0it0�t0 = B00 +
�
Bi 0
0 0

�
; i = 1; ::;m;

v0t0�1 =
�
v
v00
�
;

A0it0�r0 = A00 +
�
Ai 0
0 0

�
; i = 1; ::;m;

s0jr0�1
=
�
sj
s00j

�
; j = 1; � � � ; n;

�0jt0�1
=
�
�j
�00j

�
; j = 1; � � � ; n: (9)

Using the new de�ned parameters, the following equa-
tions hold:

s0i = B0iv0; i = 1; � � � ;m;
A0is0j = B0i�0j ; i = 1; � � � ;m; j = 1; � � � ; n: (10)

The above equation illustrates the new TMSSS scheme
using new threshold, t0. Vectors s0j , j = 1; � � � ; n,
are the new shares and array parameters v0, �0j ,
j = 1; � � � ; n, and A0i, i = 1; � � � ;m, are the public
information published on the bulletin board. �

It is worth mentioning that all features of the
original scheme, such as veri�ability, being multi-use
and multi-stage, remain unchanged under the threshold
increase.

4. Threshold decryption algorithm

In this section, we introduce a threshold decryption
algorithm for LWE-based public key encryption scheme
of Lindner and Peikert, described in Section 2.3. The
algorithm consists of the following phases:

Phase 1. Sharing the private key
First, we share the private key by sharing columns of
R2, i.e. ri2, i = 1; � � � ; l, according to [36], described in
Section 2.5., as follows. Let n1 = n2 = t, where t is the
threshold.

ri2 = Biv; i = 1; � � � ; l;
Aisj = Bi�j ; i = 1; � � � ; l; j = 1; � � � ; n; (11)

where vectors sj , j = 1; � � � ; n, are the shares, sent
securely to the participants. Parameters Ai, i =
1; � � � ; l, and v are published on the bulletin board.

Phase 2. Threshold decryption
TDec(cT ; sj1 ; � � � ; sjt): To decrypt ciphertext cT =�
cT1 cT2

�
using t shares sj1 ; � � � ; sjt , each of t par-

ticipants applies partial decryption to the ciphertext
and sends the result to the combiner. The partial
decryption for participant jk, k = 1; � � � ; t, is described
by:

djk =

264d1
jk
...
dljk

375 =

264cT1 A1sjk + w1
jk

...
cT1 Alsjk + wljk

375
=

264cT1 B1�jk + w1
jk

...
cT1 Bl�jk + wljk

375 ; (12)

where wijk , k = 1; � � � ; t, i = 1; � � � ; l, is a discrete
Gaussian noise chosen from DZ;sw . The combiner
computes:

m0=
�
dj1 � � � djt

�
��1v + c2 = RT2 c1+c2+W��1v;

where:

� =
�
�j1 � � � �jt

�
;

and:

W =

264w1
j1 � � � w1

jt
...

...
...

wlj1 � � � wljt

375 :
According to Section 2.3., decode(m0T ) outputs mes-
sage m if the error and kW��1vk1 are small compared
to bq=4e. �
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5. Security analysis

In this section, we investigate the security of the
proposed schemes in the standard model.

5.1. Threshold increase
In changing the threshold from t to t0, we �rst share
the zero secret using threshold t0. By exploiting the
additive homomorphic property of the original TMSSS
scheme, we add its parameter arrays with those of the
zero secret sharing scheme and obtain a new (t0; n)
TMSSS scheme sharing the original secrets. Since the
new TMSSS scheme is an extension of the original
scheme using t0 dimensional lattices, it inherits the
security of the original scheme which has been proven
in [36]. However, it is required that the new parameters
ful�ll the security requirements of the cryptographic
primitives used in the new scheme.

The de�nition of Ajtai's one-way function f(x) =
Ax implies that matrix A is chosen uniformly at
random. Hence, we show that matrices A0i, i =
1; � � � ;m, obtained by Eq. (9) have uniform distribution
on Zt0�r0q . From the proof of Lemma 1 in [36], we
know that adding or multiplying a uniformly random
matrix to/by a matrix with independently arbitrary
distribution results in a matrix with a uniform distri-
bution. Furthermore, A00, obtained when sharing the
zero secret, has a uniform distribution on Zt0�r0q by
Lemma 1 in [36]. Therefore:

A0it0�r0 = A00 +
�
Ai 0
0 0

�
has a uniform distribution on Zt0�r0q .

5.2. Threshold decryption
In this section, we analyze the security of the pro-
posed threshold decryption algorithm for the LWE-
based public key encryption scheme by Lindner and
Peikert. The security of the TMSSS scheme and
the above-mentioned encryption scheme are proven
in Section 5.1. [31,36], respectively. In a threshold
decryption algorithm, it is desired that no information
about the private key is leaked, i.e. no one using the
results of partial decryption djk , k = 1; � � � ; t, can

obtain any information about private key R2. We prove
this assertion in the following theorem:

Theorem 1. Let s1; � � � ; sn be the shares corre-
sponding to private key R2. Using:

djk =
�
d1
jk � � � dljk

�T ; k = 1; � � � ; t;
private key R2 cannot be revealed in polynomial time,
where:

dijk = cT1 Aisjk + wijk ; i = 1; � � � ; l; j = 1; � � � ; t:
Proof. Assume that yijk = Aisjk , i = 1; � � � ; l and
k = 1; � � � ; t. Solving equation dijk = cT1 Aisjk + wijk =
cT1 yijk + wijk with respect to yijk leads to an LWE
problem. Furthermore, solving equation yijk = Aisjk
with respect to sjk leads to an ISIS problem. Since
both problems cannot be solved in polynomial time,
one cannot obtain any information about the shares in
polynomial time using partial decryption dijk .

On the other hand, obtaining private key R2
from expression

�
dj1 � � � djt

�
��1v = RT2 c1+W��1v

computed during the threshold decryption process,
leads to an LWE problem which is hard to solve in
polynomial time. �

6. Performance analysis

In this section, we investigate the performance of the
proposed schemes.

6.1. Threshold increase
We consider the changeable TMSSS scheme in which
we deal with two phases:

1. Sharing the secret using threshold t;
2. Changing the threshold from t to t0.

In the �rst phase, matrices Ai, i = 1; � � � ;m, published
on the bulletin board, are dominant from memory
consumption point of view. On the other hand, the
memory consumption of shares sj , j = 1; � � � ; n, should
be taken into account. In Table 1, the memory

Table 1. Memory requirements for di�erent schemes.

Scheme Size of public values
per secret size

Size of each share
per secret size

He & Dawson [16] m� n 1
Harn [45] m� (n� t) 1
Chang [18] m� n 1
Das [19] m� t� n 1
Harn [46] m2(n+1)

t m
The proposed TMSSS scheme m� r r=(t log q)
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requirements for Ai, i = 1; � � � ;m, and sj , j = 1; � � � ; n,
per secret size, i.e. log2(q), are given. Table 1 illustrates
that in the proposed scheme, the size of each share per
secret size is r

t log q , which equals 0.5 if we let q = t2
and r = t log t. In the second phase, matrices Ai,
i = 1; � � � ;m, are changed to A0i, i = 1; � � � ;m, where
the size of public values per secret size is changed to
m � r0 � t0

t . When increasing the threshold from t to
t0, shares sj , j = 1; � � � ; n, are changed to:

s0j =
�
sj
s00j

�
; j = 1; � � � ; n:

In this case, we only need to send vectors s00j , j =
1; � � � ; n, to the participants. In this way, the protocol
needs less data communication to the participants over
a secure channel.

From complexity's point of view, in the share
distribution phase of the (t; n) threshold scheme, the
computational complexity of public matrices Ai, i =
1; � � � ;m, is of O(t2n)+O(tn(r�n))+O(n3)+O(tn2) �
O(n3) for each secret and consists of three matrix
multiplications and one matrix inversion [36]. Each
secret recovery consists of two steps:

1. The participants' side: In computing the pseudo-
secret shares, since the shares are binary arrays,
computing the pseudo-secret shares only requires
simple column addition in matrix Ai, which has
the complexity of O(tr) for each participant. This
makes the scheme suitable for the applications with
low complexity requirements on the participants'
side;

2. The combiner's side: This step has the complexity
ofO(t3), which consists of one matrix multiplication
and one matrix inversion.

In changing the threshold from t to t0, the dominant
part is sharing the zero secret among the participants,
which is of O(t02n)+O(t0n(r0�n0))+O(n3)+O(t0n2) �
O(n3) for the zero secret and consists of three matrix
multiplications and one matrix inversion. The remain-
ing parts only use additions which can be ignored when
compared to the zero secret sharing.

6.2. Threshold decryption algorithm
In view of computational complexity, the proposed
threshold decryption algorithm consists of two parts:

1. The partial decryption by the participants has the
computational complexity of O(lt2r);

2. The �nal decryption by the combiner using the
output of the partial decryption has the complexity
of O(lt2).

Both parts only use matrix operations which are
more e�cient than the exponentiations used in the
traditional schemes.

7. Conclusions

In a TSSS, when the secret is threatened by some
corrupted participants, or the organizational structure
of the participants is to be changed, it might be
required that the threshold be increased. In this paper,
we have proposed a threshold increasing algorithm for
our previously proposed lattice-based (t; n) TMSSS
scheme which supports the threshold changeability
feature, in addition to the inherited features of being
multi-stage, multi-use, and veri�able. For realization of
the new feature, we share the zero secret with the new
threshold and combine the new array parameters with
those of the original scheme. Furthermore, based on
Lindner and Peikert's public key encryption scheme, we
have introduced a lattice-based threshold decryption
algorithm using the improved TMSSS scheme. For
threshold decryption, the participants partially decrypt
the ciphertext using their shares and send the results
to the combiner, who can then decrypt the ciphertext
using the partial decryption results. We have discussed
the security of both schemes based on the hardness
of lattice problems, i.e. the LWE and ISIS problems,
which are believed to resist against the quantum
algorithms. Moreover, both schemes are e�cient,
especially in the participants' side, because of simple
matrix operations used in the computations of the
changeable TMSSS and threshold decryption protocols.
Hence, they are suitable for the mobile applications,
such as smart cards and sensor networks, in which low
processing capability of the used devices is a dominant
factor.
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