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Abstract. In this paper, it is shown that repeating average �lter increases the uniform
patterns of noisy textures and, consequently, increases the classi�cation accuracy of
textures. In other words, for noisy textures, �rst, an average �lter, such as 3 � 3 mean
�lter, is applied to each image; then, a feature extraction method, such as LBP, is used
to extract features of the �ltered image. The more value of noise, the more repeating of
average �lter should be applied to textures. Moreover, it is shown that by repeating the
3 � 3 average �lter for textures, the variance of texture decreases, then increases. Thus,
average �lter must be repeated while the variance of image decreases and when the variance
starts increasing, it must be stopped. Using convolution to apply average �lter for an image
takes so much time; therefore, a simple technique is proposed in this paper that increases
the speed of average �ltering signi�cantly. After noise reduction, by using LBP operator,
features of texture are extracted for classi�cation. Implementations on Outex, CUReT,
and UIUC datasets determine that the performance of the proposed method is better than
that of some advanced noise-resistant LBP variants such as BRINT and CRLBP.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Texture analysis plays important roles in image pro-
cessing and computer vision. There are many applica-
tions that use texture classi�cation and segmentation.
Some applications such as fabric defect detection [1,2],
medical image analyzing [3], remote sensing [4], face
detection [5], and image retrieval [6] are related to
texture analysis. The main point of texture analyzing
and classi�cation is feature extraction. In the last
decades, many types of texture features extraction have
been proposed. One of the �rst and important types
of texture features extraction is statistical, including
some methods such as co-occurrence matrix [7] and
local binary patterns [8]. The second type includes
model-based methods such as hidden Markova [9],
autocorrelation [10], and autoregressive [11] models.
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Anisotropic Circular Gaussian MRF (ACGMRF) [12]
is an improved version of the Gaussian Markov ran-
dom �eld method [13]. It is rotation-invariant and
sensitive to directional features. The third group of
these methods is related to structural methods such as
topological texture descriptors [14] and morphological
methods [15]. Finally, the fourth analyzing methods
are frequency-based or �lter-based, such as some Ga-
bor and wavelet methods. These methods capture
visual properties such as spatial localization, spatial
frequency, and orientation of the structures present in
the image. Widely employed for object recognition,
Gabor �lters present illumination invariance since they
detect invariant spatial frequency [16]. There are some
Gabor techniques such as Traditional Gabor Filters
(TGF) [17], Circular Gabor Filters (CGF) [18], and
Normal Gabor Filters (NGF) [19]. Some wavelet-
based algorithms [20-22], such as Daubechies wavelet
transform features (DBWP) [23], are related to the
frequency-based method.

One of the statistical methods of texture descrip-
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tors is Gray Level Co-occurrence Matrices (GLCM)
[24]. Besides the original version of the GLCM,
several variations have been proposed. Focusing on
optimization, Clausi and Jernigan [25] used linked lists
exploiting the scarcity of the co-occurrence matrices
to reduce the computation time. Some extensions
of the GLCM have been proposed. For increasing
the discriminability of the descriptors, Gelzinis et
al. [26] extracted descriptors considering simultane-
ously di�erent values for parameter d. Walker et
al. [27] proposed co-occurrence matrix-based features
by weighted summation of GLCM elements from areas
presenting high discrimination. Furthermore, addi-
tion of color information has been considered for co-
occurrence matrices [28]. Multi-scale analysis has also
been performed using the GLCM. Hu [29] and Paci�ci
et al. [30] consider multiple scales by changing the
window size from which the GLCM descriptors are
extracted. Rakwatin et al. [31] proposed that the
image be rescaled to di�erent sizes, extracting co-
occurrence descriptors from each size. Nguyen-Duc
et al. [32] obtained improved results for content-based
image retrieval employing a combination of contourlet
transform [33] and GLCM. First, the contourlet trans-
form was performed for four sub-bands of the image;
then, the GLCM features were extracted from each one.

The development and analysis of low-level fea-
ture descriptors have been widely considered in the
past years. Among the vastly employed methods are
the Scale-Invariant Feature Transform (SIFT) [34],
Speeded Up Robust Feature (SURF) [35], Histogram of
Oriented Gradients (HOG) [36], and Gradient Location
and Orientation Histogram (GLOH) [37].

One of the most popular and simple methods
for texture features extraction is Local Binary Pattern
(LBP). This method is a statistical one that extracts
uniform properties of each texture. For the �rst time,
Ojala et al. proposed LBP [38]. It is an operator
to describe local patterns and it has achieved high
performance for classi�cation results on many kinds of
texture datasets [39]. LBP is a method that is not
sensitive to monotonic gray scale change.

The �rst goal of LBP is related to texture
classi�cation, however it has been used for some
applications such as face recognition [40], dynamic
texture recognition [41], and shape localization [42].
Before introducing LBP, a similar method, i.e. Census
Transform (CT), was proposed by Zabih et al. [43].
The �rst version of LBP provided too many features
and was sensitive to rotation. Therefore, Ojala [44]
o�ered two rotation-invariant LBP methods. LBPri(P;R)
is a rotation-invariant type of LBP; however, it also
extracts too many features from each texture. Further-
more, Ojala proposed LBPu2

P;R that was not rotation-
invariant and prepared too many features, but it was
robust to noise. One of the most important methods

proposed by Ojala et al. was LBPriu2
(P;R) [45]. This

method not only extracted smaller numbers and high
discriminative features, but also was rotation-invariant
and became the most popular since it decreased num-
ber of the features signi�cantly and obtained high
discriminative ability.

There are some drawbacks in LBP. It is a lo-
cal operator, so it is sensitive to noise. Therefore,
some noise-robust LBP methods are introduced. Jin
et al. introduced Improved Local Binary Pattern
(ILBP) [46]. It is similar to simple LBP, but in ILBP
the mean value of the neighborhood and center points
is used instead of the center point. One of the most
important and simple noise-resistant LBP methods
is LTP. Tan and Triggs [47] proposed Local Ternary
Pattern (LTP) to quantize the di�erence between a
pixel and its neighbors into three levels. Dominant
LBP (DLBP) [19] was introduced by Liao et al. It
used the most frequently occurred patterns to capture
descriptive textural features. It selected 80% of the
most frequently appeared patterns from histogram of
LBP and the other 20% of patterns that contained
almost non-uniform noise were removed from features.
Another noise-robust LBP is fuzzy local binary pattern
FLBP [48] or soft LBP [49]. In this method, each pixel
position may contribute to several bins in the histogram
of possible patterns by di�erent membership p values.
The FLBP is a very time consuming method. Ha�ane
et al. proposed Median Binary Patterns (MBP) [50].
MBP used median gray value of the neighborhood
points instead of the center point. Fathi et al. [51]
proposed a noise-tolerant method (NTLBP) that used
circular majority voting. This method regrouped the
non-uniform LBP patterns to obtain better perfor-
mance. Ren et al. [52] proposed an e�cient Noise-
Resistant Local Binary Pattern (NRLBP) approach.
The NRLBP method restored some local structures of
the image that were cropped by noise; however, it was
very time consuming and could not be generalized to
neighborhoods with larger scales. Therefore, it was
e�cient only for small neighborhoods such as R = 1
and P = 8. Lui et al. [53] proposed Binary Rota-
tion Invariant and Noise Tolerant (BRINT) texture
classi�cation method that used mean of the neighbor
points for LBP. This method decreased the e�ects
of noise by using the mean value of some sequential
neighbor points on the circular patch. In other words,
it reduced the noise value of the neighbor points.
BRINT used average of angular points (points on the
circle of neighborhood) instead of neighbor points of
LBP. Some methods, such as Completed Robust Local
Binary Pattern (CRLBP) [54], used average �lter and
Weighted Local Gray level (WLG) to reduce the noise.
In CRLBP, the value of each center point in a 3 � 3
local patch is replaced by its average local grey value.
CRLBP used a weight value for the center point when
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it calculated the mean of the points. These methods
are some of the most popular LBPs that are resistant
to noise. Kylberg et al. reviewed and compared most
of them in [55].

There are many applications for texture clas-
si�cation. Zhang and Wu proposed a method for
fruits classi�cation [56]. They proposed a hybrid
classi�cation method based on Fitness-Scaled Chaotic
Arti�cial Bee Colony (FSCABC) algorithm and feed
Forward Neural Network (FNN). Classi�cation of fruits
is a di�cult challenge due to the numerous types of
fruits. In this method, the color histogram, texture,
and shape features of each fruit image are extracted to
compose a feature space. Zhang and Wu showed that
the combination of color histogram, Unser's texture,
and shape features is more e�ective than any single
kind of feature in classi�cation of fruits. Zhang and Wu
used Unser method [57] to describe the texture features
for classi�cation. Unser described a new approach [57]
to the characterization of texture properties at multiple
scales using the wavelet transform. The analysis used
an over-complete wavelet decomposition, which yielded
a description that was translation-invariant. Unser
proved that the sum and di�erence of two random
variables with the same variances are de-correlated and
the principal axes of their associated joint probability
function are de�ned. The use of the wavelet transform
in texture classi�cation processes can contribute to
improving the results, but it seems to be dependent
on the area and the texture types.

As it is mentioned before, CRLBP uses the
average �lter during LBP operations. In this paper,
some average �lters are used as preprocessing operation
for noise reduction. Moreover, the main motivation
of this paper is to repeat average �ltering for more
noise reduction. Average �lter is used more than one
time to increase the percentage of uniform patterns
and decrease the noise e�ects. Implementation shows
that repeating average �lter for low SNR textures
increases the classi�cation accuracy signi�cantly and
provides performance that is better than that of some
advanced and state-of-the-art noise-robust LBP vari-
ants. Repeating average �lter by convolving it with
noisy image takes so much time; therefore, in this
paper, a simple technique is proposed that increases
the speed of average �ltering noticeably and increases
the speed of preprocessing around 30 times.

This paper is organized as follows: In Section
2, LBP and some of the last versions of LBP are
explained. Section 3 presents the proposed methods.
Experimental results and conclusion are reported in
Sections 4 and 5, respectively.

2. Brief review of some LBPs

In this section, a brief review of Local Binary Pat-

tern (LBP), CLBP, and CRLBP is prepared. These
methods are related to the implementation part of the
proposed method.

2.1. Local Binary Pattern (LBP)
LBP provides binary codes by comparing P points
of the neighboring pixels with respect to the center
point. It generates a binary code 0 if the value of the
neighboring pixel is smaller than the center value of
patch. Otherwise, it generates a binary code 1. Then,
the binary codes are multiplied by the corresponding
weights and the results are outlined to generate an LBP
code. This value is calculated as follows:

LBPP;R(x;y) =
P�1X
i=0

s(gi � gc)2i; (1)

where gc is the pixel value of the center point and gi is
the pixel value of the ith neighboring pixel, P , is the
number of neighboring pixels, and R is the radius.

s(gi � gc) =

(
1 gi � gc
0 gi < gc

(2)

If the square neighborhood is used, LBP provides
features that are not rotation-invariant. The circu-
lar neighborhood must be used for rotation-invariant
methods. To obtain rotation invariance, the original
LBP is extended to a circular symmetric neighbor set
of P members on a circular region with radius R using
uniform patterns [8]. For circular neighboring points, it
is necessary to interpolate some neighbor points. The
rotation-invariant uniform LBP (LBPriu2) [45] can be
obtained by Eqs. (3)-(5). In these equations, riu2
re
ects the rotation-invariant uniform patterns that
have a U value of at most 2. U is used to estimate the
uniformity that corresponds to the number of spatial
transitions, i.e. bitwise 0=1 changes between successive
bits in the circle. Furthermore, LBPri and LBPu2 [44]
are two other types of LBP that are used for texture
classi�cation. LBPri is a rotation-invariant method but
LBPu2 is not. Because of the high number of features,
both of these methods are very time consuming and are
not used for real-time and fast texture processing:

LBPriu2
P;R (x; y)=

8<:P�1P
i=0

s(gi�gc) if U(LBPP;R)�2

P + 1 otherwise (3)

s(gi � gc) =

(
1 gi � gc
0 gi < gc

(4)

U(LBPP;R) =js(gP�1 � gc)� s(g0 � gc)j

+
PX
i=1

js(gi � gc)� s(gi�1 � gc)j: (5)
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2.2. Completed Local Binary Pattern (CLBP),
Completed Robust Local Binary Count
(CRLBP)

Gue et al. proposed CLBP [58] method. CLBP
combines the sign and magnitude codes of LBP. In
CLBP, the local di�erence is divided into the sign (S)
and magnitude (M) so that CLBP S and CLBP M
are made. Also, the center point of each patch is
compared with the average of the entire image and
CLBP C is made. Both CLBP S and CLBP M produce
binary strings so that they can be combined for texture
classi�cation. The most accurate result is provided
by CLBP S/M/C. In most papers [53,54] and in this
paper, CLBP refers to CLBP S/M/C. A noise-resistant
CRLBP method is same as the CLBP, but it uses
average value of 3 � 3 patch instead of each point.
CRLBP uses � = 1 and 8 as weights of center point
when it calculates the average value of each patch.
In this paper, some average �lters that use circular
and square neighborhoods are used. These �lters are
applied to noisy textures before feature extraction.

3. Average �ltering

In this paper, some types of average �lters are used for
noise reduction. Figure 1 illustrates the performance
when using four types of average �lter for Outex
(TC10) dataset. In this �gure, the classi�cation
accuracy of noisy textures for SNR = 3, 5, 10, and 20
is shown. Also, the results of some �lters are shown.
Square mean �lter (s-mean) uses a square 3 � 3 mask

for �ltering. S-median uses a similar mask, but it
calculates the median of 9 points. C-mean is a mean
�lter that calculates the mean of points on a circular
neighborhood (R = 1). It calculates the mean of 9
points that include 8 points on the circle and the center
point. It uses the weights � = 1 and 8 for the center
point. The results are determined for LBP S, LBP M,
LTP, and CLBP. The best accuracy is obtained for
CLBP. Therefore, in his paper, the results of repeating
of the average �lter for CLBP are used and they are
named Repeat Filter CLBP or RF CLBP.

The plots in Figure 1 indicate that some �lters,
such as c-mean (� = 1) and s-mean, perform better
than c-mean (� = 8) and S-median. The performance
of c-mean (� = 1) is similar to that of s-mean.
However, for some cases, the performance of c-mean
(� = 1) is slightly better than that of s-mean. C-mean
requires interpolation step to calculate some points on
the circle. Thus, in this paper, s-mean �lter is used.

3.1. Repeating average �lter
In some methods such as CRLBP [54] mean �lter of
3� 3 is applied one time to all points of noisy texture
to decrease the noise. In this paper, it is shown that
if average �lter is applied more than one time to a
noisy texture, better accuracy of classi�cation can be
obtained. In other words, the more value of noise the
more number of average �lters should be applied to
noisy texture. Some feature extraction methods such
as LBP use uniform patterns to extract discriminative
features of textures. The proposed algorithm is shown

Figure 1. Comparison of the performances of some average �lters for noisy Outex (TC10) textures with four variants of
LBP (R = 1 and P = 8) and di�erent SNR values.
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Figure 2. Pseudo code of estimation of optimum number
for repeating the average �lter.

in Figure 2. When a texture is corrupted by noise, the
percentage of uniform patterns decreases signi�cantly.
However, by using average �lter, it is possible to
increase this percentage. If average �lter is applied
to a noisy texture, the percentage of uniform patterns
increases. Therefore, by repeating this �ltering opera-
tion, it is possible to extract more e�cient features by
LBP operator.

The implementation shows that for low SNR or
very noisy textures, the number of repeats of average
�lter must be high, such as 5 or 6, and for low noise
or high SNR, it must be used only one or two. If the
number of repeats of using average �lter is small, it may
not reduce the noise e�ciently. On the other hand, if
this number is too large, it corrupts the texture edges
and leads to worse results. Therefore, it is necessary
to �nd the best number of repetitions. Moreover, it is
necessary to use small mask for average �lter to save
the local edge and contrast of textures. Therefore, in
this paper, a 3� 3 average mask is used.

Figures 3 and 4 determine the percentage of
uniform patterns of LBP versus the number of repeats
of the average mask for Outex and CUReT datasets,
respectively. In both of these �gures, R = 1 and
P = 8. In Figure 3, the percentage of uniform patterns
is around 90% without noise. In this �gure, SNR =
5. It shows that the percentage of uniform patterns
of noisy textures is around 75% and this percentage
reaches 88% after the �rst time of applying average
�lter. After the second use of average �lter, it reaches
95% and after that, it increases slightly. In addition,
Figure 4 shows the similar trend for texture of CUReT.

Figures 3 and 4 indicate the uniform percentage

Figure 3. Uniform percentage of LBP S versus number of
repeats of average �lter for noisy Outex textures (SNR=5).

Figure 4. Uniform percentage of LBP S versus number of
repeats of average �lter for noisy CUReT textures
(SNR=3).

for a value of SNR. Figure 5 determines the uniform
percentage for Outex dataset for di�erent values of
SNR. In this �gure, the uniform percentage for noisy,
normal, and �ltered textures is shown. The �ltered
textures are �ltered by using average �lter for 3, 7, and
10 times. According to this �gure, the more number
of repeats of average �lters, the more percentage of
uniform patterns can be obtained.

3.2. Optimum number of repeats for average
�lter

One of the important points is the optimal number
of repeats for the average mask. In addition, average
mask decreases the noise in a noisy texture and in-
creases the uniform patterns of texture; also, it corrupts
some edge and local texture information. Therefore, it
is necessary to obtain the optimum or best number for
repeating of the average mask. According to Figures 3
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Figure 5. Uniform percentage of Outex for di�erent
values of SNR.

and 4, the percentage of uniform patterns increases
signi�cantly at the �rst, second, and third times of
using average mask, but after that it reaches a plateau.
Table 1 indicates the summary of implementation for
repeating of average mask. It shows the optimum
numbers of repeats of average mask for Outex (TC10
and TC13), CUReT, and UIUC datasets. In other
words, in this table, the number of repeats to reach the
highest accuracy (Max. Acc.) is shown for each SNR
value and dataset. In addition, the number of repeats
to record the lowest variance of image is determined in
Min. Var. columns. It is important to note that the
numbers in Table 1 may change for a di�erent run of
implementation. It is because of random behavior of
noise. However, the changes are not large and they
may be 1 or 2.

Noise increases the variance of image. On the
other hand, using average �lter reduces variance. Re-
peating average �lter decreases the variance of image.
In this paper, it is shown that for texture images by
repeating average �lter the variance decreases, then it
increases. Therefore, the average �ltering operation
should continue until the average variance of each
image reaches the minimum value. In other words, the
optimum value for repeating average �lter is obtained

Figure 6. Variance of �ltered noisy image of CUReT
dataset versus number of the applications of the �lter for
SNR = 5.

Figure 7. Variance of �ltered noisy image of CUReT
dataset versus number of the applications of the �lter for
SNR = 30.

when variance reaches the lowest values. Figures 6 to
9 show the variance (mean variance of all textures) of
�ltered textures after applying the average �lter for
0 to 13 times. These �gures indicate that variance
of noisy textures decreases, then increases by using

Table 1. The relation between max accuracy and min variance of noisy textures and number of repeats of average �lter
for di�erent SNR values for Outex, CUReT, and UIUC datasets.

SNR
Outex (TC10) Outex (TC13) CUReT UIUC
Max
Acc

Min
Var

Max
Acc

Min
Var

Max
Acc.

Min
Var

Max
Acc

Min
Var

2 20 5 6 6 14 6 21 90
3 6 5 5 5 7 5 15 105
5 4 3 3 3 5 4 5 115
10 3 2 4 3 2 3 4 110
30 3 2 2 2 2 2 4 110
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Figure 8. Variance of �ltered noisy image of Outex
(TC10) dataset versus number of the applications of the
�lter for SNR = 5.

Figure 9. Variance of �ltered noisy image of UIUC
dataset versus number of the applications of the �lter for
SNR = 15.

average mask. Figure 6 shows the variance of all noisy
textures of CUReT (SNR = 5) versus the number of
repeats of average �lter. It also determines the variance
of normal textures (no noise). According to this �gure,
the minimum value of variance is obtained when the
number of repeats of the �lter is four (or may be
three or �ve). In other words, the best accuracy is
obtained when the average �lter is applied 4 times to
noisy textures. Another example is shown in Figure 7.
This �gure is same as the previous �gure, but SNR
is 30. Therefore, the number of repeats should be lower
than that in the previous example. Figure 7 indicates
that the repeat number 2 or 3 is the best because it
provides minimum variance. Also, Figure 8 indicates
the same trend for Outex dataset. For some datasets
such as Outex and CUReT, the variance decreases

by repeating average �lter and after a small number
of repeats, it increases. However, for some datasets
such as UIUC, it decreases at �rst and increases after
applying the average �lter for more than 200 times.
It is indicated in Figure 8. One of the di�erences of
UIUC and other datasets relates to high variance of
UIUC textures. The mean variance of UIUC dataset
without noise is around 1480, while it is around 400 for
Outex and CUReT. In other words, for some textures
such as UIUC that have high variance (without noise),
the highest accuracy is not reachable when variance is
minimum. For these types of textures, the optimum
number for repeating the average �lter is obtained
when the change of variance is lower than a threshold.

Table 1 determines that if the minimum variance
is obtained after applying the average �lter for k times,
the highest accuracy is achieved when the number of
repeats is around k. Only for UIUC dataset, this
relation is not true. As it is shown in Figure 9,
after a large number of repeats, variance increases.
However, the maximum accuracy is obtained for lower
numbers of repeats. Figures 10 to 12 determine the
relation between change of variance and accuracy of
RF CLBP (repeating �lter CLBP) for Outex (TC10
and TC13) and CUReT datasets for some SNR values.
These �gures indicate that the accuracy of classi�cation
reaches a peak when variance reaches the lowest value.
In Figure 10, the max accuracy for TC10 is obtained
when n = 6 and variance reaches the lowest value
when n = 5. In Figures 10 and 11, the highest
accuracy is achieved when n is 4 and 5. In these
�gures, the minimum value of variance is achieved
when n is 4 and 7, respectively. In these �gures, the
min value of variance is recorded when n is 3 and 5,
respectively. However, as it is shown in Figure 13, the

Figure 10. Standard deviation of image and accuracy of
RF CLBP of the �ltered noisy image of Outex (TC10)
dataset versus number of the applications of the �lter for
SNR = 3.
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Figure 11. Standard deviation of image and accuracy of
RF CLBP of the �ltered noisy image of Outex (TC13)
dataset versus number of the applications of the �lter for
SNR = 10.

Figure 12. Standard deviation of image and accuracy of
RF CLBP of the �ltered noisy image of CUReT dataset
versus number of the applications of the �lter for SNR=3.

trend of change of variance and accuracy for UIUC
textures does not follow this relation; UIUC is a
dataset that includes high-variance images. For this
type of datasets, the optimum number of repeats for
the average mask is determined when the change of
variance is negligible.

The pseudo code in Figure 2 estimates the optimal
number of repeats of the average �lter for noisy textures
to reach the best accuracy. As it is mentioned in this
code, for some textures such as Outex and CUReT
of which the average variances are lower than T1 (T1
is around 1000), the average �lter should be repeated

Figure 13. Standard deviation of image and accuracy of
RF CLBP of the �ltered noisy image of UIUC dataset
versus number of the applications of the �lter for SNR=10.

until the variance of image reaches the lowest value. As
illustrated in Figures 6, 7, and 8, the average variance
of these textures (without noise) is around 400 (< T1).
For some textures such as UIUC, this value is around
1480 (> T1). It is shown in Figure 9. Therefore,
the optimum number of repeats for average �ltering is
determined when the change of variance is lower than
T2. The value of this threshold depends on V0; V0 is
average variance of all normal textures (without noise).

3.3. Fast average �ltering method
In this section, a simple technique is introduced to
increase the average �ltering. The circular mean �lter
requires interpolating neighbor points on the circular
patch. For the 3 � 3 area, 4 point values should
be interpolated from neighbor points. Therefore, to
increase the speed of �ltering, square mean �lter is used
instead of circular mean �lter [59] to remove the time
of interpolation. It does not have negative e�ects on
the performance, because, as it is shown in Figure 1,
the performance of circular mean �lter is only slightly
better than that of square mean �lter.

Here, a simple technique is proposed that in-
creases the speed of applying of square �lter to an
image. If image size is M �N , a 3� 3 mask should be
convolved (M�1)�(N�1) times with the image, which
takes too much time. To decrease this time, the noisy
image I0 should be shifted one pixel to eight directions,
by which eight shifted images of I1 to I8 are provided.
Then, as in Eq. (6), by calculating the average of all
of the 9 images, the �ltered image is provided. Iavg
is same as the noisy image that is �ltered by 3 � 3
square mean �lter. This method increases the speed
of average �ltering. The increase in speed depends on
the size of each texture. For datasets that are used in
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this paper, using this technique increases the speed of
average �ltering around 30 times:

Iavg =
1
9

8X
i=0

Ii: (6)

4. Experimental results

To determine the performance when repeating average
�lter, some comprehensive texture datasets are used in
this section: the Outex [39], the UIUC [60], and the
CUReT [61]. For all noisy textures, Gaussian noise is
used.

4.1. Dissimilarity metric method
For comparing two textures, the LBP histograms of
them must be compared. There are many methods for
comparing two histograms, such as histogram intersec-
tion, log-likelihood ratio, and chi-square method [8]. In
this paper, chi-square method is used for classi�cation.
Eq. (8) shows chi-square method. A test sample, T , is
assigned to the class of model, L, that minimizes the
chi-square value:

D(T; L) =
NX
i=1

(Ti � Li)2

Ti + Li
; (7)

where N is the number of bins of each histogram,
and Ti and Li are the values of the sample and the
model image at the ith bin, respectively. The nearest
neighborhood (K-NN with K = 1) classi�er with the
chi-square distance is used to measure the dissimilarity
between two textures.

4.2. Experimental results of the Outex dataset
The Outex dataset includes many test suites [39].
These suites have been collected under di�er-
ent illumination, rotation, and scaling conditions.
Outex TC 00010 (TC10) and two groups of Ou-
tex TC 00012(TC12(`t') and TC12(`h')) are considered
as some famous test suites in this dataset. They can
be used for rotation-invariant tests. These two suites
have the same 24 classes of textures, which are collected
under three di�erent illuminates (horizon, inca, and
t184) and nine di�erent rotation angles (00, 50, 100,
150, 300, 450, 600, 750, and 900).

There are 20 non-overlapping 128�128 texture im-
ages for each class under each condition. Furthermore,
in this paper, Outex TC 00013 is used. This suite
includes 68 texture classes with the size of 128 � 128
and inca illumination. Figure 14 shows the 24 images
of each class of Outex dataset. Table 2 compares
the results of the proposed method and some state-of-
the-art noise-robust LBPs. This table and all other
tables of this paper compare the results for noisy
textures with SNR = 100, 30, 15, 10, 5, 3, and 2.

Figure 14. All 24 classes of Outex dataset.

Table 2 indicates that the RF CLBP with optimal
n (number of repeats of the average �lter), R = 3,
and P = 24 provides the best performance for all
values of SNR for TC10. Only for SNR = 3, the
accuracy of BRINT1 CS CM is slightly better than
that of RF CLBP. The table shows that RF CLBP
with n = 1 is same as CRLBP. Therefore, for low
noise values, the performance of RF CLBP is same as
that of CRLBP, but it is noticeably better than that
of BRINT. On the other hand, for low SNR values,
the accuracy of RF CLBP with optimum value of n
is signi�cantly higher than that of CRLBP, but the
accuracy of BRINT is close to that of RF CLBP. In
other words, accuracy of the proposed method is higher
than those of both CRLBP and BRINT and other types
of noise-robust LBPs for low- and high-noise textures.

Tables 3 and 4 show the results of TC12(`t')
and TC12(`h'). They also indicate that RF CLBP
outperforms all the other methods such as LTP,
NTLBP, CRLBP, and BRINT. For very highly noisy
textures, only BRINT method provides the accuracy
near RF CLBP. For low-noise textures, the accuracy
of the proposed method is same as that of CRLBP. In
both tables, the best accuracy for all SNR values is
obtained by using RF CLBP with optimum number of
repeats of �lter for R = 3 and P = 24. Only for SNR =
3 and 2, in Table 3, the accuracy of BRINT1 is slightly
better than that of RF CLBP.

Figures 15 and 16 show the accuracy of RF CLBP
for 2 suites of Outex dataset. In these �gures, R = 1
and P = 8. Figure 15(a) shows that the best accuracies
of RF CLBP for TC10 when SNR = 30, 10, 5, 3, and 2
are around 3, 3, 4, 5, and 19, respectively. Figure 15(b)
determines the performance of RF CLBP for TC12(`t')
suites. According to this �gure, the highest accuracies
for SNR = 30, 10, 5, 3, and 2 are obtained when n
(number of repeats of �lter) is equal to 2, 2, 3, 4,
and 25, respectively. Figure 16(a) determines the same
trend for TC13 when R = 1 and P = 8. In this suite,
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Table 2. Classi�cation rates for noisy Outex (TC10) textures using di�erent SNR values.

TC10 SNR = 100 SNR = 30 SNR = 15 SNR = 10 SNR = 5 SNR = 3 SNR = 2

LBP 81.09 74.66 64.66 48.78 22.40 10.63 5.55

CLBP S/M/C (R = 1; P = 8) 97.55 96.07 93.65 88.39 51.98 17.79 8.28

CRLBP (R = 1; P = 8) � = 1 98.10 97.40 96.43 94.92 83.67 46.09 17.26

CRLBP (R = 1; P = 8) � = 8 97.92 97.37 95.91 93.46 74.11 32.03 13.25

CRLBP (R = 3; P = 24) � = 1 99.43 99.35 98.93 97.76 92.27 71.96 29.12

CRLBP (R = 3; P = 24) � = 8 99.27 98.96 98.26 96.12 85.81 64.23 20.18

NTLBP (MS9) 98.65 96.12 88.85 80.23 51.09 30.34 12.78

LTP 95.91 95.05 88.91 69.01 25.89 12.08 9.32

NRLBP (MS9) 87.40 85.73 80.16 72.42 51.02 32.63 14.01

LBP (MS3) 95.03 86.93 67.24 49.79 24.06 12.97 8.77

BRINT1 CS CM (MS9) 94.74 94.04 92.21 92.42 89.24 77.50 41.38

BRINT2 CS CM (MS9) 97.76 96.48 95.47 92.97 88.31 71.51 38.52

RF CLBP (R = 1; P = 8; n = 1) 97.14 96.80 95.63 93.46 79.87 44.27 15.00

RF CLBP (R = 1; P = 8; n = 2) 98.20 97.55 96.64 96.61 87.81 59.43 23.57

RF CLBP (R = 1; P = 8; n = opt) 98.49 98.33 97.97 96.82 91.90 76.49 40.12

RF CLBP (R = 3; P = 24; n = 1) 99.43 99.40 98.98 98.54 92.71 70.95 28.59

RF CLBP (R = 3; P = 24; n = 2) 99.19 99.22 98.96 98.75 94.58 76.16 31.30

RF CLBP (R = 3; P = 24; n = opt) 99.43 99.40 98.98 98.78 94.58 77.48 43.35

Table 3. Classi�cation rates for noisy Outex (TC12(`t')) textures using di�erent SNR values.

TC12t SNR = 100 SNR = 30 SNR = 15 SNR = 10 SNR = 5 SNR = 3 SNR = 2

LBP 71.27 64.56 53.38 42.18 20.86 9.88 5.63

CLBP S/M/C (R = 1; P = 8) 90.93 87.41 84.05 79.77 48.73 18.19 8.19

CRLBP (R = 1; P = 8) � = 1 93.84 91.71 90.56 87.29 75.39 42.89 13.98

CRLBP (R = 1; P = 8) � = 8 92.57 91.06 89.44 83.47 65.16 27.41 28.02

CRLBP (R = 3; P = 24; N = 46) � = 1 97.34 97.08 96.50 94.91 87.97 66.34 27.01

CRLBP (R = 3; P = 24; N = 46) � = 8 96.46 96.41 95.28 92.69 79.61 52.92 21.54

NTLBP (MS9) 92.15 89.35 83.77 74.47 49.84 31.27 12.01

LTP 80.76 80.30 75.42 60.14 24.93 11.09 6.5

NRLBP (MS9) 84.49 81.16 77.52 70.16 50.88 33.31 13.87

LBP (MS3) 91.30 82.55 60.25 47.31 24.07 13.63 8.55

BRINT1 CS CM (MS9) 92.87 90.63 89.72 88.12 83.84 74.47 38.55

BRINT2 CS CM (MS9) 95.95 93.59 91.32 90.49 83.68 69.70 35.01

RF CLBP (R = 1; P = 8; n = 1) 92.38 91.67 90.69 87.25 75.26 44.68 14.44

RF CLBP (R = 1; P = 8; n = 2) 94.33 94.24 93.91 92.69 83.22 58.38 23.38

RF CLBP (R = 1; P = 8; n = opt) 94.33 94.24 94.12 92.80 87.01 71.53 34.47

RF CLBP (R = 3; P = 24; n = 1) 97.48 97.27 96.92 95.76 88.66 66.11 27.78

RF CLBP (R = 3; P = 24; n = 2) 97.50 97.45 96.67 95.44 91.18 70.51 34.21

RF CLBP (R = 3; P = 24; n = opt) 97.62 97.45 96.92 95.76 91.50 74.33 38.41
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Table 4. Classi�cation rates for noisy Outex (TC12(`h')) textures using di�erent SNR values.

TC12h SNR = 100SNR = 30SNR = 15SNR = 10SNR = 5SNR = 3SNR = 2

LBP 68.06 64.03 55.58 45.02 21.37 10.37 6.09

CLBP S/M/C (R = 1; P = 8) 92.52 90.53 86.90 81.78 50.60 17.87 7.31

CRLBP (R = 1; P = 8) � = 1 94.12 92.66 90.44 88.40 77.45 43.17 12.08

CRLBP (R = 1; P = 8) � = 8 93.91 93.50 90.35 85.93 70.56 29.56 22.50

CRLBP (R = 3; P = 24; N = 46) � = 1 96.44 97.04 96.57 95.49 88,06 63.22 23.88

CRLBP (R = 3; P = 24; N = 46) � = 8 95.63 95.88 94.98 93.59 79.68 42.88 19.87

NTLBP (MS9) 94.35 90.81 84.95 75.49 47.04 30.38 12.04

LTP 80.84 79.23 75.28 64.68 25.42 10.74 7.23

NRLBP (MS9) 85.76 82.69 77.38 69.68 49.07 32.06 11.44

LBP (MS3) 90.72 79.17 60.74 45.81 25.02 12.55 9.87

BRINT1 CS CM (MS9) 94.10 92.31 90.95 89.84 85.83 76.04 34.15

BRINT2 CS CM (MS9) 96.92 95.14 93.66 92.29 84.77 71.02 32.56

RF CLBP (R = 1; P = 8; n = 1) 93.36 92.80 91.19 89.00 76.02 45.67 13.96

RF CLBP (R = 1; P = 8; n = 2) 95.83 95.58 94.91 94.95 84.70 59.24 23.33

RF CLBP (R = 1; P = 8; n = opt) 95.83 95.58 94.91 94.95 89.54 71.27 33.59

RF CLBP (R = 3; P = 24; n = 1) 97.13 97.36 96.62 95.07 88.63 66.13 25.69

RF CLBP (R = 3; P = 24; n = 2) 97.66 97.57 97.11 96.11 91.16 70.81 32.50

RF CLBP (R = 3; P = 24; n = opt) 97.66 97.57 97.11 96.11 91.16 76.12 34.17

Figure 15. The performance of RF CLBP (R = 1, P = 8) for di�erent numbers of repeats of average �lter for noisy
Outex Dataset: (a) TC10 and (b) TC12(t).

Figure 16. The performance of RF CLBP for di�erent numbers of repeats of average �lter for noisy Outex (TC13): (a)
R = 1, P = 8 and (b) R = 3, P = 24.
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when SNR = 30, the highest accuracy is obtained for
n = 1, but it is 4 for SNR = 10. Furthermore, the
best performances for SNR = 5, 3, and 2 are achieved
when n = 4, 4, and, 19 respectively. All of the plots
in Figures 15 and 16(a) use RF CLBP with R = 1
and P = 8. The performance of RF CLBP improves
for larger neighborhoods with the similar trend. The
performance of RF CLBP for R = 3 and P = 24
is shown in Figure 16(b). This plot indicates that
the best numbers of repeats for SNR = 30, 10, 5,
3, and 2 are achieved when n is 3, 1, 2, 2, and 3,
respectively. Figures 15 and 16 show that for large
values of SNR, the best performance is achieved after
1, 2, or at max, 3 times of using average �lter while for
high noisy textures, it is necessary to repeat the �lter
more times. Furthermore, after some special number of
using average �lter, the accuracy decreases. However,
this reduction is moderate for large neighborhood.

Some methods such as GLCM that use co-
occurrence matrix are not rotation-invariant and they
are sensitive to noise. Therefore, if they are used
for these textures, the classi�cation accuracy decreases
signi�cantly [55].

4.3. Experimental results of the UIUC dataset
The UIUC dataset [60] contains 25 classes with 40
images in each class. Resolution of each texture image
is 640�480. Figure 17 shows one image for each class of
UIUC dataset. For implementation, each time, N = 20
images of each class are selected randomly for train
and the rest of them (40 � N) are used for test. This
operation is run 100 times and the average of the results
is shown in Table 5. This table compares the accuracy
of the proposed method with those of LBP, LTP, CLBP,
and CRLBP. In this table, for all values of SNR, the
highest performance is achieved by using RF CLBP
when R = 3 and P = 24 for optimum value of n. Also,

Figure 17. All 25 classes of UIUC dataset.

RF CLBP with R = 1 and P = 8 has the second best
performance in this table.

As it is mentioned before, CRLBP is same as
RF CLBP with n = 1. Therefore, these two methods
are almost the same considering accuracy for low-
noise textures; however, for highly noisy textures, the
accuracy of RF CLBP is higher by far than those of all
CRLBP and all other LBP variants such as LTP, LBP,
and CLBP. Also, the results of LBP-based and non-
LBP methods when used for UIUC textures are shown
in Table 6 in the next sections.

4.4. Experimental results of the CUReT
dataset

The CUReT dataset [61] contains 61 classes of tex-
tures. They are shown in Figure 18. These images
are captured in di�erent viewpoints and illumination
orientations. For each class, 92 images are selected
from the images that have a viewing angle of less
than 60�. Each time, N = 46 images are randomly

Table 5. Classi�cation rates for noisy UIUC textures using di�erent SNR values. (N = 20).

UIUC SNR = 100SNR = 30SNR = 15SNR = 10SNR = 5SNR = 3SNR = 2

LBP (R = 1) 54.40 57.30 54.35 48.16 44.08 41.15 42.18
LTP (R = 1) 76.88 77.44 73.00 66.14 62.47 60.24 59.12
CLBP S/M/C (R = 1; P = 8; N = 20) 87.42 87.68 84.68 81.44 72.48 71.76 66.47
CLBP S/M/C (R = 3; P = 24; N = 20) 90.74 90.38 87.56 81.64 74.54 73.85 68.23
CRLBP (R = 3; P = 24; N = 20) � = 1 93.49 93.08 92.74 88.57 80.20 76.55 70.55
CRLBP (R = 3; P = 24; N = 20) � = 8 92.51 92.28 91.11 85.90 77.16 73.12 68.85
RF CLBP (R = 1; P = 8; n = 1) 89.55 89.38 88.20 87.91 81.78 75.12 68.51
RF CLBP (R = 1; P = 8; n = 2) 89.84 89.77 90.00 89.41 85.31 78.03 70.24
RF CLBP (R = 1; P = 8; n = opt) 90.21 90.03 90.17 90.19 87.13 82.72 75.70
RF CLBP (R = 3; P = 24; n = 1) 93.73 93.15 92.82 89.81 81.27 76.93 70.40
RF CLBP (R = 3; P = 24; n = 2) 94.52 94.44 94.64 94.10 89.87 81.85 75.01
RF CLBP (R = 3; P = 24; n = opt) 94.82 94.80 94.64 94.28 92.32 87.19 82.77
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Table 6. Classi�cation rates for 3 datasets of textures.

Methods Outex UIUC (N = 20) CUReT (N = 46)
LBP 81.19 54.51 77.54
CLBP S/M/C (R = 1; P = 8) 97.66 87.52 95.56
CRLBP (R = 1; P = 8) � = 1 98.12 93.54 94.70
CRLBP (R = 1; P = 8) � = 8 97.97 92.58 95.58
CRLBP (R = 3; P = 24) � = 1 99.42 93.65 96.21
CRLBP (R = 3; P = 24) � = 8 99.34 92.57 96.42
NTLBP (MS9) 98.77 | 91.64
LTP 95.98 76.94 84.92
BRINT1 CS CM (MS9) 94.80 | 96.85
BRINT2 CS CM (MS9) 97.87 | 96.80
RF CLBP (R = 1; P = 8; n = 1) 97.24 89.57 96.07
RF CLBP (R = 1; P = 8; n = 2) 98.21 89.88 95.28
RF CLBP (R = 1; P = 8; n = opt) 98.54 90.26 96.06
RF CLBP (R = 3; P = 24; n = 1) 99.44 93.75 95.99
RF CLBP (R = 3; P = 24; n = 2) 99.21 94.62 95.15
RF CLBP (R = 3; P = 24; n = opt) 99.45 94.83 96.11
GLCM 83.02 75.67 |
GLCM, pyramid decomposition 84.61 73.99 |
GLCM, Gaussian smoothing 81.79 81.88 |
Multi scale GLCM 89.40 81.76 |
Gabor 84.90 69.90 87.50
VZ Joint 98.51 80.20 96.59
VZ MR8 94.06 92.14 95.75
Lazebnik (H + L)(S +R) | 95.42 72.50
HA+SIFT | 97.50 89.10

Figure 18. All 61 classes of CUReT dataset.

chosen for train from each class. The remaining
(92�N) images are used as test samples. The average
classi�cation rates over 100 random tests are shown in
Table 7.

In Table 7, the comparison between the proposed
methods and some LBP noise-resistant methods such
as BRINT, CRLBP, LTP, DLBP, and NTLBP is illus-
trated. The wavelet transform features (DBWP) [23]
and Circular Gaussian MRFs (ACGMRF) [12] are
other two methods that are illustrated in the table.
The results of some Gabor �lter methods such as

TGF [17], CGF [18], and NGF [19] are shown in
this table. Furthermore, DLBP+NGF is a method
that uses Dominant LBP (DLBP) [19] with normal
Gabor �lter. It can be seen in the table that for all
SNR < 100 values, the proposed method provides the
best accuracy. Only for SNR = 100, the performance
of BRINT1 CS CM (MS9) is slightly higher than that
of RF CLBP. Similar to Outex dataset, in CUReT
dataset, the accuracy of RF CLBP is slightly better
than that of CRLBP for low noise. Also, this accuracy
is slightly better than that of BRINT for highly noisy
textures. However, for high SNR values, accuracy of
the proposed method is signi�cantly higher than that
of BRINT. On the other hand, this performance is
noticeably more accurate than that of CRLBP for very
noisy textures.

As it is mentioned in some papers [55], the
performance of Gabor �lter and co-occurrence matrix
methods signi�cantly declines for noisy textures. Ta-
ble 7 shows some of these results.

4.5. Comparison for normal textures (without
noise)

In this section, the comparison between accuracy of
the proposed method and accuracy of some LBP-
based, co-occurrence, Gabor Filter, patch based, and
general descriptor approaches is shown. Table 6 shows
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Table 7. Classi�cation rates for noisy CUReT textures using di�erent SNR values (N = 46).

CUReT SNR = 100SNR = 30SNR = 15SNR = 10SNR = 5SNR = 3SNR = 2

LBP 77.47 73.25 67.50 62.72 50.25 39.72 25.78
CLBP S/M/C (R = 1; P = 8; N = 46) 95.49 94.42 91.97 88.11 77.91 66.30 50.34
CLBP S/M/C (R = 3; P = 24; N = 46) 95.51 95.87 87.23 72.77 61.35 57.77 54.20
CRLBP (R = 3; P = 24; N = 46) � = 1 96.06 95.90 93.56 85.58 79.67 74.55 61.22
CRLBP (R = 3; P = 24; N = 46) � = 8 96.34 96.18 92.30 82.88 74.97 69.98 57.55
NTLBP (MS9) 91.56 85.99 78.98 74.90 65.74 56.31 39.45
LTP 84.82 84.06 79.60 72.89 57.62 47.13 37.27
LTP (MS9) 92.22 90.15 86.66 84.55 77.48 70.67 41.05
BRINT1 CS CM (MS9) 96.81 95.39 93.69 90.92 86.11 80.45 64.87
BRINT2 CS CM (MS9) 96.78 94.90 92.83 90.46 84.48 78.33 63.21
RF CLBP (R = 1; P = 8; n = 1) 96.01 95.83 95.35 92.77 83.99 74.31 58.05
RF CLBP (R = 1; P = 8; n = 2) 95.22 95.94 96.24 95.21 88.05 80.66 63.63
RF CLBP (R = 1; P = 8; n = opt) 96.01 95.94 96.24 95.21 87.12 81.99 64.63
RF CLBP (R = 3; P = 24; n = 1) 95.97 96.14 95.24 95.90 86.56 74.71 60.80
RF CLBP (R = 3; P = 24; n = 2) 95.14 95.97 95.73 95.20 87.44 77.12 64.91
RF CLBP (R = 3; P = 24; n = opt) 96.07 96.19 96.24 95.90 90.72 81.93 65.63
DBWP 88.37 85.33 80.38 71.40 63.40 | |
TGF 60.79 62.69 51.80 43.67 46.41 | |
CGF 52.94 53.39 52.36 46.39 46.74 | |
ACGMRF 66.90 57.54 51.36 47.05 47.08 | |
NGF 47.86 45.49 43.14 41.63 40.06 | |
DLBP 87.82 85.28 79.44 68.73 47.72 | |
DLBP+NGF 96.17 95.78 92.81 86.06 71.28 | |

the results of the proposed method and some other
methods for 3 datasets. In this table, the methods
which are related to 4 groups of texture classi�cation
are shown: GLCM method, a Gabor method, two
scale-invariant and patch-based methods of VZ Joint
and VZ MR8 [62,63], and general descriptor methods
that include Lazebnik [64] and SIFT [34]. This table
shows the results of texture classi�cation without noise.
If noise is added to the texture, the accuracy of
classi�cation of some methods considerably decreases.
According to this table, the best accuracy for Outext is
obtained by the proposed method. HA+SIFT provides
the best accuracy for UIUC. However, the SIFT-based
methods are very time consuming approaches. For
CUReT textures, BRINT1 CS CM (MS9) achieves the
best classi�cation accuracy. This method uses multi
resolution parameters for an especial version of LBP.
MS9 refers to the 9 di�erent combinations of R and P
(LBP parameters). This table shows that the accuracy
of the proposed method is noticeably higher than that
of Gabor and co-occurrence based methods (GLCM).

General descriptors such as SIFT and Lazeb-
nik [64] achieve high accuracy only for UIUC textures.
These types of textures have large numbers of key

points; therefore, their accuracy is high. The accuracy
of general descriptors such as SIFT decreases for some
textures such as CUReT. This dataset contains some
textures that have low contrast. Therefore, number of
key points of some CUReT textures is very low. For
the default threshold of SIFT, the number of key points
of some CUReT textures is zero.

4.6. Comparison with other average �ltering
methods

In this paper, it is shown that repeating the mean
�lter decreases the noise and increases the classi�cation
accuracy of textures. A 3 � 3 square mean �lter is
used in the proposed method. The size of window
must be small for better description of edge details and
avoidance of corruption of edge and details of textures.
The smallest size of window that is symmetric is 3� 3.
Thus, it was selected for this paper. If a larger size
had been selected, it would have corrupted the edge
and local details of textures. There are some other
average �ltering methods that remove noise from im-
age. Nagao [65] and improved Nagao [66] are two types
of these methods. These methods preserve edge and
textures details better than simple mean method. If
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they had been used instead of the proposed method, the
classi�cation accuracy would have slightly increased,
but the computational time would have been very high.
In this section, the computational times of the proposed
method and these two methods are compared.

Table 8 determines that the proposed fast mean
method increases the speed of mean square method
around 30 times. Table 9 shows the time of feature ex-
traction for some methods [24]. This table determines
the time of feature extraction for 2 datasets. According
to this table, the proposed method (RF CLBP with the
proposed fast mean) is considerably faster than other
methods.

Some average spatial �lters have been proposed
for noise reduction. Nagao [65] is one of these methods.
The idea of Nagao �lter is as follows: �rstly, a rectangle
template around the central pixel is rotated and the
position of minimum variance as the default direction
template is chosen; then, the value of the central pixel
is replaced by the average value of the default template.
Such processes are iterated until the pixels do not vary.
The performance of Nagao �lter depends on the shape
of its template. The computational time of Nagao
�lter is also very high. The e�ect of Nagao �lter is
not satisfying for its mean �lter style [66]. Therefore,
Zhang and Wu proposed the improved Nagao �lter or
window-length Nagao �lter (AWN) method [66]. They

Table 8. Average time of mean and the proposed fast
mean for a texture (msec).

Mean Proposed
fast mean

Ratio

UIUC 2562.5 72.6 35.29
Outex (TC10) 78.71 2.57 30.62
CUReT 52.33 1.84 28.44

showed that by using median �lter instead of mean
�lter and some techniques, the edge and some other
details of image were preserved and better performance
than that of Nagao method could be obtained.

Both Nagao and AWN methods can preserve edge
and textures details better than simple mean method.
But, the computational times of theme are considerably
higher than that of mean method. As it is shown
in Table 8, the proposed fast mean method increases
the speed of square mean method around 30 times in
comparison with the traditional mean �lter. Nagao
�lter is slower than simple mean �lter at least 10
times. In other words, speed of the proposed fast
mean method is higher than that of Nagao around 300
times. For improved Nagao (AWN) method, median
or complex templates are used; therefore, the speed of
AWN is lower than that of Nagao and the ratio is higher
than 300 for AWN method.

4.7. Comparison with other methods
considering LBP speci�cations

Table 10 compares speci�cations of some texture fea-
tures extraction methods. In this paper, the LBP with
riu2 mapping is used. It is shown in the table that local
binary pattern (riu2) is a rotation-invariant and gray-
scale-invariant method [67]. The computational time
of this method is low and it extracts a small number
of features. However, LBP is not scale-invariant and
sensitive to noise. The proposed method and some
advanced LBPs [55] provide noise robustness for LBP.
It is a simple method that can be combined with
other methods and it has achieved high performance
in classi�cation results for many kinds of texture
datasets [39]. It has been extensively exploited in many
applications, e.g. face image analysis, image and video
retrieval, environment modeling, visual inspection, mo-

Table 9. Computational time (sec) required for feature extraction.

Dataset LBP CLBP RF CLBP
(n = 1)

RF CLBP
fast mean
(n = 1)

Gabor GLCM
Multi
scale

GLCM
UIUC 24.95 37.20 284.50 44.70 1371.59 39.35 183.10
Outex 1.89 4.93 21.56 5.45 297.94 41.66 180.49

Table 10. Comparison between LBP and other approaches.

Simple LBP LBPriu2 CLBPriu2 Proposed SIFT GLCM Gabor

Gray-scale-invariant Yes Yes Yes Yes Yes No Yes
Rotate-invariant No Yes Yes Yes Yes No Yes
Scale-invariant No No No No Yes No Yes
Noise robustness No No No Yes Yes No No
Computational time Medium Low Low Low Very high Medium High
Number of features High Low Medium Medium High Medium Low
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tion analysis, biomedical and aerial image analysis, and
remote sensing [68]. Some methods such as [69] extract
features which are robust not only to the noise but also
to the change of noise.

5. Conclusion

In this paper, it is shown that repeating average �lter
for noisy texture increases the classi�cation accuracy
signi�cantly. The more value of noise, the more number
of repeats of average �lter should be used for noisy
textures. The optimal value for repeating the average
�lter is obtained when variance of texture reaches the
lowest values or the change of it is smaller than a
threshold value. The performance of the proposed
method is better than that of some novel and advanced
noise-robust LBP methods. Some state-of-the-art
methods such as CRLBP provide good performance
only for highly SNR noisy textures. On the other hand,
some advanced methods such as BRINT provide high
accuracy for low SNR values. The proposed method
provides the best performance for both low and high
SNR values. Furthermore, by using the fast technique
that is proposed in this paper, the speed of applying
average �lter increases signi�cantly. Therefore, the
speed of the proposed method is by far higher than
those of almost all the noise-robust LBP methods
that are used in this paper. The proposed method is
used as a preprocessing operation for noisy textures.
After this pre-processing operation, CLBP is used for
feature extraction. It is possible to use any other types
of feature extraction methods to extract features of
textures.
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