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Abstract. This paper investigates a novel nonsingular fast terminal sliding-mode
control method for the stabilization of the uncertain time-varying and nonlinear third-
order systems. The designed disturbance observer satis�es the �nite-time convergence
of the disturbance approximation error and the suggested �nite-time stabilizer assures
the presence of the switching behavior around the switching curve in the �nite time.
Furthermore, this approach can overcome the singularity problem of the fast terminal
sliding-mode control technique. Moreover, knowledge about the upper bounds of the
disturbances is not required and the chattering problem is eliminated. Usefulness and
e�ectiveness of the o�ered procedure are con�rmed by numerical simulation results.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Background and motivations
The rigorous foundation for the theory of �nite-time
stabilization was �rst presented by Bhat and Bern-
stein [1]. Sliding-Mode Control (SMC) is e�ciently
applied for the stabilization and controller design of
various linear and nonlinear dynamical systems such
as singular systems [2], robotic manipulators [3], non-
holonomic mobile robots [4,5], fractional order sys-
tems [6], chaotic systems [7,8], under-actuated sys-
tems [9], etc. SMC is an inuential control technique,
which has access to the favorite responses in spite of the
uncertainties and disturbances [10,11]. The important
features of SMC technique are robustness against para-
metric uncertainties, superior transient performance,
quick responses, insensitivity to the bounded external
disturbances, and computational simplicity compared
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to other robust control techniques [12]. The process
of SMC design is divided into two phases: (a) the
sliding phase, and (b) the reaching phase. Firstly,
in sliding phase, a switching curve is speci�ed such
that the controlled system displays favorable dynamic
performance during the sliding mode [13]. Secondly,
in reaching phase, a sliding control law is employed
for the state trajectories of the controlled system to
converge on the sliding curve. Due to the e�ect of
the sliding curve on the stabilization and transient
response of the controlled system, the design procedure
of the switching curve is the most important subject
in the sliding method [14]. SMC utilizes a discon-
tinuous controller to drive the state trajectories to
a predesigned switching surface on which the desired
performance besides stability of the system can be
obtained [15]. Young et al. [13] proposed SMC observer
scheme with only the discontinuous term being fed back
through a suitable gain. Generally, traditional SMC
has some important problems, such as discontinuous
control, which often yields chattering phenomenon [16].
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Also, it is required in [14] that the external disturbance
should be matched, that is, act in the channels of the
inputs. To cope with these problems and attain higher
accuracy, some new forms of SMC have been proposed.
Moreover, SMC cannot guarantee the converging per-
formance of the state trajectories to the origin in
the �nite time. To tackle the mentioned problem,
the Terminal Sliding-Mode Control (TSMC) procedure
has been suggested and performed in several control
systems. TSMC technique proposes some excellent
speci�cations such as rapid response and �nite-time
stability in comparison with linear SMC [17]. TSMC
is principally suitable for high-precision stabilization
and control as it precipitates the convergence rate near
the origin [18]. However, when the state trajectories
of the system are far away from the origin, TSMC
cannot present appropriate convergence e�ciency like
SMC [19]. The Fast Terminal Sliding-Mode Control
(FTSMC) idea guarantees fast transient convergence
and strong robustness [20]. In the last decade, there has
been more attention to the utilization of the mentioned
technique for various control problems [21]. Neverthe-
less, it should be mentioned that the FTSMC technique
still requires to be further considered in robustness
performances to tackle the system disturbances.

1.2. Literature review
In most of the considered research, the boundaries
of the perturbations are directly employed in the
design of the TSMC law [22,23]. To estimate the
disturbances, various design procedures based on the
disturbance observer have been planned in the recent
years [24]. In [25], SMC has been established for the
control and stabilization of uncertain and nonlinear
dynamical systems using the disturbance observers.
In [26], a novel multiple-surface SMC is recommended
for the uncertain nonlinear systems and a disturbance-
observer-based approach is de�ned to estimate the
mismatched uncertainties of the system. In [27], the
design procedure of the adaptive �nite reaching time
controllers for the �rst- and second-order dynamical
systems with perturbations is investigated, where the
suggested controllers are continuous and retain robust-
ness to the disturbances. The combination of FTSMC
and Global Sliding-Mode (GSM) surface for the robust
tracking control of nonlinear second-order systems with
time-varying uncertainties is investigated in [28]. A
recursive FTSMC technique for tracking control of non-
holonomic systems in the chained form is proposed
in [29], where the tracking errors are allowed to decay
to the origin in the �nite time with an exponential
decay rate. A disturbance-observer-based recursive
TSMC tracker is presented in [30] for the �nite-time
tracking control of third-order non-holonomic systems
with unknown external disturbances. An adaptive
FTSMC technique combined with GSM scheme is

suggested in [31] for the tracking problem of uncer-
tain nonlinear third-order systems. A Linear Matrix
Inequalities (LMI)-based second-order FTSMC method
is investigated in [32] for the tracking control of non-
linear uncertain systems with matched and mismatched
uncertainties. However, the singularity problem is
not fully resolved in [26-30]. In [33], the robust
synchronization problem of disturbed chaotic systems
is investigated, where, using an LMI-based disturbance
observer, the boundedness conditions of disturbance
errors are satis�ed. In [22,34], the disturbance ob-
servers are applied to estimate the disturbances and
some robust control approaches are considered using
the outputs of the disturbance observers. To satisfy
the approach of the approximation errors to the origin
in the �nite time, TSMC disturbance observer has been
established in [20,35,36]. In [33,34], composite control
design procedures of the disturbance-observer-based
controller and TSMC are o�ered for the uncertain
structural and nonlinear systems where the proposed
disturbance observers are based on the regional pole
placement and D-stability theories. In [37], by com-
bining TSMC and second-order SMC approaches, a
nonlinear robust control technique and a disturbance
observer are designed for the longitudinal dynamics
of hypersonic vehicles with uncertainties and distur-
bances, which can provide high-precision and fast
convergence.

1.3. Contributions
To the best of our knowledge, there are two disadvan-
tages of TSMC and FTSMC, which are the singularity
problem and the requirement of the bounds of the
disturbances. In the recent years, very little attention
has been paid to both these problems, which is still
open in the literature. In this study, based on the
disturbance observer presented in [20], we apply a
new Nonsingular Fast Terminal Sliding-Mode Control
(NFTSMC) approach for the �nite-time control of un-
certain and nonlinear third-order systems with external
disturbances. The singularity problem of FTSMC
method is solved by the designed NFTSMC and the
disturbance observer is developed to quickly force the
disturbance approximation errors to converge to the
origin in a �nite time.

1.4. Paper organization
The structure of the paper is as follows: The for-
mulation of the problem is described in Section 2.
In Section 3, the proposed control mechanism and
stability analysis are introduced. Simulation results
of the application of the o�ered disturbance-observer-
based NFTSMC method on an uncertain nonlinear
third-order system and an uncertain chaotic system are
obtained in Section 4. Finally, Section 5 draws the
concluding remarks of this research.
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2. Problem description

Consider the uncertain nonlinear system as follows:
_x1 = x2;

_x2 = x3;

_x3 =f(x; t) + �f(x; t) + (b(x; t) + �b(x; t))u

+ d0(x; t);

y = x1; (1)

where x = [x1; x2; x3]T is the state vector; u is the
control signal; y is the system output; b(x; t) and f(x; t)
are the bounded nonlinear functions; and �b(x; t),
�f(x; t), and d0(x; t) are the nonlinear functions rep-
resenting the uncertainties and external disturbances.
Furthermore, it is supposed that a positive constant
value �, which is the lower bound of b(x; t), is de�ned,
that is, � = inf(jb(x; t)j). De�ning d(x; t) = �f(x; t) +
�b(x; t)u+ d0(x; t), one can obtain System (1) as:

_x1 = x2;

_x2 = x3;

_x3 = f(x; t) + b(x; t)u+ d(x; t);

y = x1: (2)

In order to examine the stabilization problem of the
uncertain system, we can rewrite Dynamics (2) in the
following form:

_x = Ax+B ff(x; t) + b(x; t)u+ d(x; t)g ; (3)

where:

A =

240 1 0
0 0 1
0 0 0

35 ; B

240
0
1

35 :
Now, based on the pole-placement procedure, a

term �kx with �k = b�k0; �k1; �k2c is considered, where �ki's
are selected such that the deterministic equation S3 +
�k2S2 + �k1S + �k0 = 0 is stable system. Hence, the
exponentially stable dynamics are achieved as:

...x + �k2�x+ �k1 _x+ �k0x = 0; (4)

which designates that x converges to zero. Conse-
quently, System (3) is modi�ed as:

_x=(A�B�k)x+B
�

�kx+f(x; t)+b(x; t)u+d(x; t)
�
;
(5)

where the control input can be considered by the
following transformation:

u = b(x; t)�1 f�v � f(x; t)g ; (6)

where �v is a new control input. The control sig-
nal (Eq. (6)) contains two portions: one portion is

�b(x; t)�1f(x; t), which is employed to remove the sys-
tem nonlinearities, and the other portion is b(x; t)�1�v,
which is used to weaken the impacts of the perturba-
tions. Substituting Eq. (6) into Eq. (5) gives:

_x = (A�B�k)x+B(�v + �H); (7)

where �H = �kx + d(x; t). The function d(x; t) is a
continuous function and, hence, �H is also continuous.
Then, System (7) is completely controllable and can be
controlled by several robust control procedures.

Remark 1. In the case that b(x; t) is not invert-
ible, similar to the methods planned in control pa-
pers such as [38], one can use the term b(x; t)+ =�
b(x; t)T b(x; t)

��1 b(x; t)T as the pseudo-inverse of
b(x; t).

Lemma 1. Consider the candidate positive-de�nite
functional V (t), which ful�lls a di�erential inequality,
as [19]:

_V (t) ���V (t)��V(t)� 8t� t0; V (t0) � 0; (8)

where � and � are two positive coe�cients, and � is a
fraction of two odd positive numbers with 1 > � > 0.
As a result, for certain time, t0, the above-mentioned
function, V (t), approaches the origin in the �nite time
as [29]:

ts = t0 +
1

�(1� �)
ln
�
�V (t0)1�� + �

�

�
: (9)

Proof. If two sides of Inequality (8) are divided to
V �(t), we obtain:

V (t)�� _V (t) � ��V (t)1�� � �; (10)

and thus:

dt �
� �V (t)��
�V (t)1�� + �

�
dV (t): (11)

Integrating two sides of Relation (11) from t0 to ts
yields:

ts � t0 �
Z 0

V (t0)

�
V (t)��

�V (t)1�� + �

�
dV (t)

= � 1
�(1� �)

�
ln(�)� ln

�
�V (t0)1�� + �

��
=

1
�(1� �)

ln
�
�V (t0)1�� + �

�

�
; (12)

which completes the proof of the lemma.
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3. Main results

The auxiliary variable of the sliding disturbance ob-
server can be described as:

s = z � x3; (13)

with z, which is speci�ed by:

_z =� ks� �sgn(s)� "sp0=q0 � jf(x; t)jsgn(s)

+ b(x; t)u; (14)

where q0 and p0 are odd positive integers with p0 < q0.
The design coe�cients k, �, and " are some positive
constants and the condition � � jd(x; t)j is obtained.
The TSMC disturbance estimator d̂ is speci�ed as:

d̂=�ks� �sgn(s)�"sp0=q0�jf(x; t)jsgn(s)�f(x; t):
(15)

Theorem 1. Consider the disturbed third-order sys-
tem (Eq. (1)) and TSMC disturbance observer given
by Eqs. (13)-(15). Then, the disturbance approxima-
tion error of the suggested TSM disturbance observer
converges to the origin in the �nite time.

Proof. Considering Eqs. (1) and (14) and di�erenti-
ating Eq. (13), one achieves:

_s = _z � _x3 = �ks� �sgn(s)� "sp0=q0

� jf(x; t)jsgn(s)� f(x; t)� d(x; t): (16)

Construct the candidate Lyapunov function as:

V (s) =
1
2
s2: (17)

The time derivative of V (s) is given by:

_V (s)=s _s=s
�
�ks��sgn(s)�"sp0=q0�jf(x; t)jsgn(s)

� f(x; t)� d(x; t)
�
� �ks2 � "s(p0+q0)=q0

� �jsj+ jsjjd(x; t)j � jf(x; t)jjsj � sf(x; t)

� �ks2 � "s(p0+q0)=q0

��2kV(s)�2(p0+q0)=2q0

"V(s)(p0+q0)=2q0 ; (18)

where based on Lemma 1 and Eq. (18), one obtains
that the auxiliary variable s can converge to the origin
in the �nite time. Consequently, the error ~d is obtained
using Eqs. (1), (13), and (15) as:

~d =d̂� d(x; t) = �ks� �sgn(s)� "sp0=q0

� jf(x; t)jsgn(s)� f(x; t)� d(x; t) = �ks
� �sgn(s)� "sp0=q0 � jf(x)jsgn(s)� _x3

+ b(x; t)u = _z � _x3 = _s: (19)

It clari�es that according to the �nite-time convergence
of the switching surface, s, to the origin, the approxi-
mation error, ~d, reaches zero in the �nite time.�

In order to develop FTSMC stabilizer using the
disturbance observer, the following switching surface is
proposed:

� = _s+ �s+ �s�; (20)

where � and � are two positive coe�cients and � is
a fraction of two odd positive integer numbers with
1 > � > 1

2 .
In order to assure that FTSMC curve approaches

zero in the �nite time and system states quickly
converge to zero, the following theorem is proposed.

Theorem 2. The uncertain third-order system
(Eq. (2)) is considered. If the control law is employed
as:

_u =b(x; t)�1
�
�sgn(�)j�j� + � + (�+ ��s��1) _s

+ �z � _f(x; t)� _b(x; t)u+ �s� _̂d
�
; (21)

where  and � are two arbitrary positive coe�cients,
then the trajectories of Eq. (2) are enforced to move to
the switching curve (Eq. (13)) in the �nite time and to
stay on it.

Proof. The candidate Lyapunov function is given as:

V (�) =
1
2
�T�: (22)

From Eqs. (2), (13), and (20), the derivative of � can
be obtained as:

_� =�s+ � _s+ ��s��1 _s = (�+ ��s��1) _s+ �z � _f(x; t)

� _b(x; t)u� b(x; t) _u� _d(x; t): (23)

Di�erentiating V (�) and using Eq. (23), one can �nd:

_V (�) =�T _� = �T
�

(�+ ��s��1) _s+ �z � _f(x; t)

� _b(x; t)u� b(x; t) _u+ �s� _̂d
�
; (24)

where, substituting Eq. (21) in Eq. (24), we obtain:
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_V (�) = ��T�sgn(�)j�j� � �T �
= �j�j2 � �j�j�+1

= ��V (�)� �V ��(�); (25)

where �� = (� + 1)=2 < 1, � = 2 > 0 and � = 2��� >
0. Then, the Lyapunov function (Eq. (22)) converges
gradually to zero and the switching curve approaches
zero in the �nite time.�

Now, considering the FTSMC law demonstrated
in Eq. (21), the term ��s��1 _s may lead to a singularity
problem if _s 6= 0 when s = 0 due to the negative power
of s. Thus, the FTSMC cannot satisfy a bounded
control action if _s 6= 0 when s = 0. Then, the NFTSMC
is suggested to overcome the singularity phenomenon
of the FTSMC.

De�ne the NFTSMC stabilizer based on the dis-
turbance observer as follows:

� = s+
1
�

( _s+ �s)
1
� : (26)

In order to dominate the singularity phenomenon
of the FTSMC and guarantee the �nite-time conver-
gence of the state trajectories to zero, the following
theorem is proposed.

Theorem 3. The uncertain and nonlinear third-
order system (Eq. (2)) is considered. Applying the
NFTSMC law:

_u =b(x; t)�1
�
��( _s+ �s)1� 1

� (�sgn(�)j�j� + �)

+ �z � _f(x; t)� _b(x; t)u+ � _s+ �s� _̂d
�
; (27)

with some positive coe�cients  and �, the states of
Eq. (2) are forced to move from the initial conditions
to the switching curve (Eq. (13)) in the �nite time and
to stay on it.

Proof. The Lyapunov function is considered as:

V (�) =
1
2
�T�: (28)

From Eqs. (2), (13), and (26), the derivative of � can
be found as:

_� = _s+
1
��

(�s+ � _s)( _s+ �s)
1
��1 = _s

+
1
��

�
�z � _f(x; t)� _b(x; t)u� b(x; t) _u

� _d(x; t) + � _s
�

( _s+ �s)
1
��1: (29)

Di�erentiating V (�) and using Eq. (29), we obtain:

_V (�) = �T _� = �T
�

_s+
1
��

�
�z � _f(x; t)u

� _b(x; t) _u+ � _s+ �s� _̂d
�

( _s+ �s)
1
��1

�
; (30)

where, substituting Eq. (27) in Eq. (30), one can
achieve:

_V (�) = ��T�sgn(�)j�j� � �T � = �j�j2 � �j�j�+1

= ��V (�)� �V ��(�); (31)

where �� = (�+1)=2 < 1, � = 2 > 0, and � = 2��� > 0.
Thus, the NFTSMC surface converges to the origin in
the �nite time and the states of the system quickly
converge to zero.�

Since the discontinuous switching function sgn(:)
shown in Eqs. (21) and (27) can result in chatter-
ing problem, undesired responses can occur in the
nonlinear third-order system. To avoid this problem,
the function sgn(:) can be replaced by the following
continuous saturation function:

sat(�) =

(
sgn(�); j�j > �
�
� ; j�j � �

(32)

where � is the boundary-layer thickness. Furthermore,
although the existence of the proposed NFTSMC can
be guaranteed outside �, it cannot be satis�ed inside
�. In the worst situation, the state trajectories of the
system would only reach �. This will considerably
inuence the steady-state characteristics of the system.

Remark 2. From Eq. (31), the derivative of
the Lyapunov function is negative semi-de�nite
and guarantees that V (�) and � are bounded. It
is deduced from Eq. (20) that s and _s are two
bounded functions. Since V (0) is a bounded scalar
and V (�) is non-increasing, it can be concluded
that limt!1

R t
0 jj�jjdt and limt!1

R t
0 jjsjjdt are also

bounded. Thus, according to Barbalat's lemma and
based on the boundedness of limt!1

R t
0 jjsjjdt and _s,

the auxiliary variable s converges asymptotically to
zero, that is, limt!1

R t
0 sdt = 0.

Remark 3. In the situations that some of the vari-
ables such as:

�z; �s; _̂d; and _f(x; t)

are not measurable, one can employ the delayed-
feedback control method to model these variables.
Specially, the delay term in the form of Euler approx-
imation of the derivative function can be applied for
the derivatives of the variables [31]. The variable �z is
replaced by a delay function, �z = 1

h [ _z(t)� _z(t� h)], if
the delay h > 0 is su�ciently small.
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4. Simulation results

Example 1. Consider the following uncertain non-
linear third-order system [39]:

_x1 = x2;

_x2 = x3;

_x3 =�3x3�4x2�2x1+x1x2+�f(x; t)+u+d(x; t);
(33)

where �f(x; t) = 0:39 sin(x1x2 + x3
p
t) and d(x; t) =

0:6 sin(10t). The initial conditions are chosen as:
x(0) = [�1 1:5 1]T . The constant parameters are
chosen as: k = 2, � = 1, � = 1, � = 10, � = 2,  = 3,
" = 1, p0 = 3, q0 = 5, and � = 3

5 . The trajectories of
the states x1, x2, and x3 are demonstrated in Figure 1.
The time response of the control signal is demonstrated
in Figure 2. It is shown that the suggested method
can obtain superior performance and high robustness
and is capable to control the parametric uncertainties
and system nonlinearities. The time responses of
the auxiliary variable s and the NFTSMC surface �
are demonstrated in Figure 3. Clearly, in can be
seen that these sliding curves approach zero quickly.
These numerical simulations approve the proposed
technique.

Figure 1. State trajectories

Figure 2. Control input u.

Figure 3. Sliding surfaces s and �.

Example 2. Consider the Lur'e-like chaotic system
with an additive control input de�ned by [40]:

_x1 = x2;

_x2 = x3;

_x3 =�6:8x1�3:9x2�x3+12X (x1)�0:8 cos(5t) + u;
(34)

where:

X (x1) =

(
Px1 if jx1j < 1

P
sgn(x1) if jx1j � 1

P
(35)

System (34) represents a chaotic behavior for P = 1:5.
This chaotic system is numerically simulated using the
o�ered control law with the following initial parameters
and initial conditions:

k = 2; � = 1:5; � = 2; � = 8; � = 2; " = 1;

p0 = 3; q0 = 5; � =
3
5
; x(0) = [0:5 1 1]T :

The tracking trajectories of states x1, x2, and x3 are
shown in Figure 4. It is demonstrated in these �gures
that all of the states are stabilized. The dynamic

Figure 4. State trajectories.
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Figure 5. Control input u.

Figure 6. Sliding surfaces s and �.

control input, u, is demonstrated in Figure 5. The
time responses of s and � are shown in Figure 6.
Obviously, it can be found that the switching surface
and NFTSMC surface converge to the origin quickly.
Therefore, the uncertain chaotic system is stabilized
by applying the planned controller.

5. Conclusions

A new disturbance-observer-based �nite-time stabilizer
for the uncertain and nonlinear third-order systems
is considered in this work. A novel reaching law
is suggested to assure the presence of the switching
behavior around the designed NFTSMC curve in the
�nite time. Moreover, in order to dominate the singu-
larity phenomenon of FTSMC, a nonsingular control
approach is proposed. Intensive numerical simulation
results are displayed to con�rm the e�ectiveness of
the suggested technique and acceptable results are
obtained. It is pointed out that the suggested approach
can be employed for the tracking control and stabiliza-
tion of higher-order uncertain and nonlinear dynamical
systems.
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