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Abstract. Contingency ranking is one of the most important stages in the analysis
of power system security. In this paper, an integrated algorithm has been proposed to
address this issue. This algorithm employs neural networks method to quickly estimate
the power system parameters and Stochastic Frontier Analysis (SFA) in order to calculate
the e�ciency of each contingency. Network security indices (voltage violation and line ow
violation) and economic indices (locational marginal price and congestion cost) have been
simultaneously considered to rank the contingencies. The e�ciency of each contingency
shows its severity, and indicates that it a�ects network security and economic indices
concurrently. The proposed algorithm has been tested on IEEE 14-bus and 30-bus test
power systems. Simulation results show the high e�ciency of the algorithm. Test results
indicate that predicted quantities are estimated accurately and quickly. The proposed
method is capable of producing fast and accurate network security and economic indices,
so that it can be used for online ranking.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Investigation of security and contingency analysis in
power system is one of the most important tasks of
engineers of large power systems. The main task
of security analysis is to �nd critical contingencies
and ranking them according to their severity. The
result of contingency analysis can be used to save the
power system by preventing other cascade accidents [1].
Various methods have been developed for estimating
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the severity of contingency. In [2], a new composite
sensitivity analysis framework has been proposed for
voltage contingency evaluation and ranking. The
proposed formulation considers the voltage stability
margin/instability depth of the entire power system
as the severity index for voltage contingencies. The
proposed method has been tested on the New Zealand
test system and Iran's transmission network. Obtained
results have indicated that the proposed method can
highly reduce the computation time. In [3], a method
capable of selecting contingencies leading to voltage
insecurities has been proposed. The contingencies
are ordered according to their e�ects on the system
operating state. In [4], a new power sensitivity ranking
algorithm for voltage collapse contingency ranking has
been proposed. This new ranking algorithm considers
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the future variations in generation dispatch and the
short-term load demand forecast. In [5], a fast and
precise contingency ranking method for the power
systems security analysis has been presented. The
method proposed in [5], considers both the apparent
power overloading and voltage violations, simultane-
ously. In [6], a method as a combinatorial optimization
problem and solved by genetic algorithms has been
proposed to e�ciently perform the selection of multiple
contingencies. In [7], a contingency assessment method
has been proposed that takes into account the nature
of probability distribution of power system operating
conditions to get realistic severity and risk estimations
of contingencies. The developed contingency assess-
ment methods have been applied to SEO region of
French EHV system to estimate severities and rank
the selected contingencies based on risk of voltage
collapse. In [8], an alternative methodology has been
proposed for static contingency analyses that only used
continuation methods, and thus provided an accurate
determination of the loading margin. The applicability
and e�ectiveness of the proposed methodology has
been investigated on IEEE test systems (14, 57, and
118 buses) and compared with the continuation power
ow.

In recent years, fuzzy system applications and
arti�cial intelligence methodology have received in-
creasing attentions in various areas of power systems.
In [1], a novel approach has been proposed for con-
tingency ranking based on static security assessment.
The proposed method has been applied to IEEE 30-
bus power system, and di�erent cases have been ex-
amined. In [9], a hybrid fuzzy-neural network has
been developed for ranking of critical contingency using
pre-fault load information at selected buses. A multi-
output fuzzy-neural network has also been used for
contingency ranking. The membership values of the
loads have been categorized in lingual groups of low,
middle, and high and considered as the input for neural
network. A Fuzzy Composite Performance Index
(FCPI), formulated by combining voltage violations,
line ow violations, and voltage stability margin, has
been proposed for composite ranking of contingencies.
The performance of the proposed method has been
tested on a 69-bus practical Indian power system.
In [10], an approach based on radial basis function
neural network has been developed to estimate bus
voltage magnitudes and angles for normal operation as
well as for all possible single-line contingencies. This
methodology is extended for contingency ranking. The
e�ectiveness of the proposed method is demonstrated
on two IEEE test power systems. In [11], a super-
vised learning approach has been proposed for fast
and accurate power system security assessment and
contingency analysis. In [11], feed-forward arti�cial
neural network has been employed that uses pattern

recognition methodology for security assessment and
contingency analysis. In [12], a process of deriving
decision trees for security assessment of multiple con-
tingency in power system has been proposed. In [12],
a newly developed graphical index has been proposed
for group contingencies in order to obtain e�cient
decision trees for multiple contingences. The method
has been illustrated on the Brittany region of French
power system to derive decision rules against voltage
collapse problems. In [13], a fast contingency algorithm
for transient stability monitoring has been proposed
and implemented in the KEPCO system. In [13],
for screening stable cases, a new generator-grouping
index has been proposed to identify critical generators.
The test results showed that the proposed method can
evaluate the �rst swing stability in a short time with
reliable accuracy.

In this paper, three neural networks are
represented to estimate LMPs, bus voltage magnitudes,
and angles in normal conditions and di�erent
contingencies in the power system. The training of
neural networks is carried o�-line using simulated data.
Results on two IEEE test systems show that predicted
quantity comparable in accuracy to actual values
and maximum absolute error is 10�3. In this paper,
in order to rank the contingencies, network security
indices (voltage violation and line ow violation)
and economic indices (locational marginal price and
congestion cost) have been considered simultaneously.
Network security and economic indices are calculated
easily making use of estimated quantities (LMPs, bus
voltage magnitudes, and angles). The e�ciency of each
of these contingencies was calculated using Stochastic
Frontier Analysis (SFA), and this index was employed
for ranking. Considering the proposed formulation
for stochastic frontier analysis, the e�ciency of a
contingency will be higher if the calculated indices
for that contingency are higher. More e�ciency
leads to increased severity of the contingency, and
shows that the contingency has concurrently more
a�ected network security and economic indices.
The proposed algorithm can be applied to on-line
contingency ranking as it is una�ected for any change
in load/generation. To the best of authors' knowledge,
these methods (neural network and SFA) have not
been used to rank the power system contingency.

This paper is organized as follows. Section 2
presents the performance indices for contingency rank-
ing. Section 3 presents the proposed algorithm. Sec-
tion 4 details the application and presents the obtained
results. Finally, Section 5 presents the concluding
remarks.

2. Performance indices for contingency ranking

By experience, it is known that the ranking results
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depend highly on the operating index de�nition used
to measure the severity of a contingency. Also,
the choice of parameters in operating index de�ni-
tion depends on the usage of ranking results. As
an example, if the ranking results are to be used
for voltage stability issue, it is necessary to employ
bus voltage and voltage stability margin parameters
in index de�nition. In power transmission network
management and planning, the line ow parameter is
generally used. While bus voltage angles and critical
clearing time are used to de�ne index in transient
stability problem, voltage violations [9,10,14] and line
ow violations [9,10,15] are proposed as indicators of
network security. The network security and economical
indices should be considered when dealing with market
environment. Locational Marginal Price (LMP) is
the best economical signal to completely illustrate the
market operation. Using LMP, the power consumers
and producers experience real energy price in their
location, and hence, LMP plays a signi�cant role in
system management.

In this paper, in order to evaluate the severity
of important contingencies in the deregulated network,
the network security and economic indices are consid-
ered together. The de�nitions related to these indices
are as follows:

2.1. Voltage violation index
The most common index for voltage violation is [10]:

PIV =
nbX
j=1

wj

������VjKV
j

�����2m ; (1)

KV
j =

�
V Max
j � V Min

j
�
=2; (2)

�Vj =
�
Vj � V norm

j
�
; (3)

where PIV is performance index of voltage violation,
V Max
j (V) and V Min

j (V) are over-voltage and under-
voltage limits, respectively. V norm

j (V) is a user
speci�ed for bus j, and Vj (V) is post-contingency
voltage magnitude for bus j. Also, Wj is a weighting
factor for bus j, nb is the number of load buses, and m
is a positive integer to reduce masking e�ects.

There is no explicit indication of how to select
weighting factors and value of exponent (m). These
factors are selected on the basis of experience with the
system and on the relative importance placed on the
various kinds of limit violation [16]. Masking e�ect
can be avoided by using higher order performance
indices (m > 1). In [17], an algorithm has been
proposed for selecting the set of weighting factors using
decision theory in order to improve the e�ectiveness
of contingency ranking method. In [1], a novel ap-
proach called fuzzy logic-based analytical hierarchy
process has been applied to adjust the appropriate

and unequal values for weighting factors in contingency
ranking.

2.2. Line ow violation index
The most common operating index for line ow viola-
tion is [10]:

PIMVA =
nlX
j=1

Wi

�
Si
Sni

�2m

; (4)

where PIMVA is performance index of line ow viola-
tion, Si (MVA) and Sni (MVA) denote the apparent
load and apparent power overload limits of line i,
respectively. Wi is a weighting factor for line i, and
nl is the total number of lines, respectively. m is a
positive integer number used to avoid masking e�ect
by increasing its value.

2.3. Locational Marginal Price (LMP) index
By de�nition, Locational Marginal Price (LMP) index
for a bus is the minimum excess production cost needed
to feed 1 MW extra load in the bus without violating
transmission constraints; hence, it depends on the cost
suggested by producers, market rules, and transmission
constraints. LMP is one of the most important indica-
tions of market price which sheds light on the matter of
the power market. One of the measures of competition
level of the market based on LMP is to investigate the
distribution of LMP. In a fully competitive market,
all producers and consumers sell/buy electricity with
the same price, meaning that in all buses, the price
is the same and price pro�le is completely uniform,
and there is no limitation for consumers on buying
electricity from any desired producer. In practice,
however, due to the transmission constraints and line
losses, the LMPs of the buses cannot be the same,
but still a more uniform LMP pro�le indicates more
competition in market. Here, this index is used to
evaluate contingencies, such that a more important
contingency is de�ned to be the one which increases
LMPs standard deviation. The distribution of bus
prices is calculated as:

PILMP = Std(LMPi); (5)

where LMPi ($/MWh) and Std represent the LMP
($/MWh) of bus i and standard deviation, respectively.

2.4. Congestion cost index
Congestion cost is another economic index based on
LMP. Transmission congestion occurs when there is not
enough transmission capability to support all requests
for transmission services. The congestion cost of the
whole system is the summation of all congestion costs
of lines. It can be calculated as:

PICON =
nlX
j=1

(LMPj1 � LMPj2)� Pj ; (6)
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where LMPj1 ($/MWh) and LMPj2 ($/MWh) are the
LMPs at the two ends of the line j, and Pj (MW) is
the active power in line j.

3. The proposed algorithm

The algorithm is proposed through the following steps:

1. A large number of load patterns (active and reactive
powers at all buses) are generated randomly;

2. AC load ows are performed for all load patterns,
and all the single-line outage contingencies and the
performance indices are calculated;

3. Three neutral networks are trained to predict LMP,
voltage magnitude, and voltage angle;

4. During testing, the e�ciency of each contingency is
evaluated using the stochastic frontier analysis;

5. The contingencies are ranked based on e�ciency
values.

3.1. Stochastic frontier analysis
Stochastic frontier analysis is a parametric method
used to estimate the e�cient frontier and e�ciency
scores. The theory of stochastic frontier production
functions was originally proposed by Aigner et al. [18]
as well as Meeusen and van den Broeck [19]. This
approach requires the de�nition of an explicit produc-
tion or cost function and recognizes the possibility of
stochastic errors. This is caused by an underlying
assumption splitting the error term into a stochastic
residuum (noise) and an ine�ciency term. The statis-
tical noise is assumed to follow a normal distribution,
and the ine�ciency term, ui, is generally assumed
to follow either a half-normal or truncated normal
distribution. Hence, the mathematical expression of
the production process is [20]:

Yi = xi� + (vi � ui)::: ::: ::: ::: i = 1; :::; n; (7)

where:
Yi Output (or the logarithm of output) of

the ith �rm,
xi k � 1 vector of input quantities of the

ith �rm,
� Vector of parameters to be estimated,
vi Random variables, which are assumed

to be i.i.d. N(0; �2
v), independent of ui,

ui Non-negative random variables, usually
assumed to be half normal distributed,
thereby accounting for individual
technical ine�ciency.

The SFA technique can be used to predict e�-
ciency scores of models involving multiple outputs by

estimating input distance functions (see [21]). Translog
form of input distance function is shown in Eq. (8):
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2
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�kl ln
�
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�
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�
+
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MX
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�
xki
xKi

�
ln ymi�lnDIi;

(8)

M(m = 1; :::;M) and K(k = 1; :::;K) are the number
of outputs and inputs, respectively. � lnDIi can be
interpreted as error term which reects the di�erence
between the observed data realizations and the pre-
dicted points of the estimated function. � lnDIi is re-
written as vi � ui. The relationship between technical
e�ciency and �ui is de�ned as TEi = exp(�ui) [22]
where TEi represents the technical e�ciency. The
e�ciency scores are bounded between 0 and 1; a value
of 1 indicates relative e�ciency.

In this paper, the voltage violation index (PIV )
and line ow violation index (PIMVA) are considered as
the inputs, while outputs are the LMP index (PILMP)
and congestion cost index (PICON). The e�ciency
of each contingency, illustrating its severity, is then
calculated based on these values.

3.2. Neutral network
The generic diagram of the Radial Basis Function
(RBF) neutral network employed in this paper is shown
in Figure 1 [10]. The RBF model used here is composed
of an input array and two layers (one hidden and one
output layers). Also, in this network, a Gaussian
function is employed, which has the highest output
when the input variables are closest to the center
position and decreases monotonically as the distance
from the center increases. Let Xp be the input array
with component x1p; x2p; :::; xrp. The output of the ith
RBF unit in the hidden layer, which is yi(Xp), can be
calculated using Eq. (9):

yi(Xp) = exp

 
�
Pr
j=1[Xjp � X̂ji]2

�2
i

!
: (9)

In Eq. (9), Xjp is jth input pattern, p, and X̂ji is the
center of ith RBF unit, Ui for the jth input variable.
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Figure 1. The diagram of the RBF neutral network [10].

Also, �i is the width of ith RBF unit, Ui. The output
layer consists of a linear combiner whose output is
presented in Eq. (10):

Omp =
HX
i=1

Wmiyi(Xp) +WmB ; (10)

where H is the number of hidden RBF units, Omp is the
output of the mth node of output layer for pth input
pattern, Wmi is the weight between ith RBF unit, Ui
and mth output node, and WmB relates to the bias in
mth output node in the linear output layer.

In this paper, the Orthogonal Least Squares
(OLS) algorithm is used to train and build an RBF
neutral network. OLS algorithm is a structure iden-
ti�cation algorithm and builds a suitable network
structure in an intelligent way during learning. It
chooses appropriate RBF centers as neurons and trains
the patterns one after the other until it reaches a
speci�ed error.

In this paper, three RBF neutral networks are
designed for normal conditions and every contingency.
Each input pattern includes active injection, P , in all
buses except the slack bus and reactive injection, Q, in
all load buses. Also, the patterns consisting of zero or
constant values are excluded from the input patterns.
Each input pattern, [x], is represented as:

[x] = [PG1; :::; PGg; PL1; :::; PLn; QL1; :::; QLn] : (11)

For the voltage predictor, the output vector, [V ],
includes all the load bus voltage magnitudes:

[V ] = [VL1; :::; VLn] : (12)

The angle predictor builds the voltage angles, [�], in all
buses except the slack bus as:

[�] = [�G1; :::; �Gg; �L1; :::; �Ln] : (13)

Finally, in the LMP predictor, the LMP values in all
buses form the output vector [LMP]:

[LMP] =
�
LMPsk;LMPG1; :::;LMPGg;LMPL1;

:::;LMPLn
�
; (14)

where G is the generator bus, g is the number of
generators in the power system, L is the load bus, n
is the number of load buses, and sk is the slack bus in
the power system.

4. Simulation test results and discussion

In this paper, MATLAB coding is developed to validate
the proposed algorithm. Load ow analysis has been
carried out using MATPOWER [23], and the estimated
parameters of the distance function (for calculating e�-
ciency) are calculated by using the Frontier 4.1 software
by Coelli (1994) [24]. The proposed algorithm is tested
on IEEE 14-bus and 30-bus power systems. In this
paper, only the single-line outages are considered, and
the RBF neutral networks are designed to estimate the
post-contingency LMP, voltage magnitude, bus angles
for every possible contingency in the test systems. In
normal operating conditions, for each bus, 1000 load
patterns are randomly generated by perturbing the
load on each bus in the ranges of �80% to 120% of the
base case. Similarly, for each line outage, 1000 patterns
of bus injection (in the range �80% to 120% of the
base case) are randomly generated for 1000 di�erent
operating conditions in both systems. Among the
1000 produced patterns for each system, 750 patterns
are randomly chosen and saved for training, and the
remaining 250 ones are marked to be used as test
patterns.

In this paper, all weighting factors are assumed
to be equal. It is observed from simulation that for
m = 4 (the value of exponent), masking e�ect has
been removed for IEEE 14-bus and 30-bus test power
systems. We use three training algorithms, such as
Levenberg-Marquardt, quasi-Newton, and orthogonal
least squares, for the two case studies. The LM
algorithm is found to be faster than other algorithms in
training period. Results have shown that we obtain a
lower absolute error for orthogonal least squares than
for other algorithms. As mentioned in the paper, in
the proposed method, the training of neural networks
is carried out o�-line. In summary, orthogonal least
squares algorithm can be used as the best algorithm for
the modeling and prediction of quantities for the two
case studies. Therefore, in this paper, the Orthogonal
Least Squares (OLS) algorithm is used to train and
build an RBF neutral network.
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4.1. IEEE 14-bus system
The IEEE 14-bus system consists of 9 PQ buses, 4 PV
buses, a slack bus, and 20 lines. Three neural networks
are designed for this system to predict angle, LMP,
and voltage magnitude. In these networks, the LMP,
voltage magnitude, and angle predictors predict the
LMP at all buses, voltage magnitude at all 9 PQ buses,
and voltage angle at all buses except the slack bus,
respectively. The inputs are active powers in buses 2
to 14, and reactive power in buses 4, 5, 7, 9, 10, 11,
12, 13, and 14 results in 22 elements in the input
patterns. There is no input reactive power in buses 2,
3, 6, and 8 as they are considered as PV bus. Also, the
active and reactive powers at bus 1 are not considered
as input since it is a slack bus. Therefore, the LMP
predictor consists of 22 neurons in input layer and 14
neurons in output layer, showing LMP values for all
buses. Similarly, the voltage magnitude predictor is
composed of 22 and 9 neurons in input and output
layers, respectively, to present voltage magnitudes in
9 PQ (load) buses, while the angle predictor uses
the same 22 input neurons and 13 output neurons
representing 13 PV and PQ buses. Maximum absolute

errors in the estimated voltage magnitude and angle in
each outage case are presented in Table 1. The errors
in estimated LMPs, voltage magnitudes, and angles
of buses have been tested for all 250 cases, yielding
a maximum error of 10�3. In this network, only 19 line
outages are feasible. Table 2 shows calculated network
security and economical indices for each contingency.
The contingency e�ciencies have been calculated by
the stochastic frontier analysis, presented in column 6
of the Table 2. The minimum and maximum e�ciencies
correspond to contingencies 10 and 1, respectively. The
last column of the Table 2 presents the ranking of
each contingency. The more e�cient a contingency
is, the stronger and higher ranked it will be. Since
no temperature limitation on transmission lines is
considered in this network, the line ow violation index
for all contingencies is zero, and it is not presented in
Table 2. For example, consider contingency 1 where the
line between buses 1 and 2 is out of the network. The
calculated values for voltage, LMP, and congestion cost
indices are 9.28, 1.97, and 1137, respectively. The e�-
ciency of this contingency is calculated to be 0.96, and
since it has higher e�ciency than other contingencies, it

Table 1. Summary of voltage magnitude and angle maximum absolute errors for all test cases (IEEE 14-bus system).

Contingency no. Voltage magnitude Voltage angle

1 6.58E-04 3.36E-04

2 5.72E-04 1.13E-03

3 1.15E-03 3.83E-04

4 1.19E-03 7.59E-04

5 2.80E-04 1.05E-03

6 7.35E-04 1.34E-03

7 6.68E-04 1.44E-03

8 9.69E-04 8.21E-04

9 1.06E-03 2.08E-04

10 1.13E-03 2.24E-04

11 4.14E-04 3.86E-04

12 1.02E-03 1.26E-03

13 9.83E-04 3.81E-04

14 2.44E-04 1.22E-03

15 1.78E-04 3.65E-04

16 7.48E-04 1.39E-03

17 1.44E-03 5.25E-04

18 5.11E-04 2.95E-04

19 8.78E-04 3.77E-04



M. Simab et al./Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1373{1383 1379

Table 2. Summarizing the results of the proposed algorithm on IEEE 14-bus system.

Contingency no. LOa PIV PILMP PICON E�ciency Rank

1 1-2 9.2792 1.9739 1137.00 0.9618 1

2 1-5 6.9086 1.5745 956.28 0.6637 18

3 2-3 9.7076 1.4151 786.00 0.8011 11

4 2-4 9.8271 1.3008 815.58 0.8566 9

5 2-5 10.1780 1.2288 782.18 0.9027 5

6 3-4 10.0960 1.0954 729.72 0.8713 8

7 4-5 9.2019 1.3287 796.90 0.7732 13

8 4-7 10.2670 1.1428 739.08 0.9343 3

9 4-9 9.6720 1.1134 737.81 0.7802 12

10 5-6 5.9353 1.3873 757.15 0.6207 19

11 6-11 8.5242 1.1480 740.92 0.7187 16

12 6-12 9.1877 1.2607 749.98 0.7431 15

13 6-13 8.2285 1.5301 803.96 0.6956 17

14 7-9 8.7871 1.2341 800.53 0.7525 14

15 9-10 10.0690 1.1905 752.19 0.8827 7

16 9-14 10.8540 1.4938 791.84 0.9494 2

17 10-11 10.1750 1.1084 732.12 0.8979 6

18 12-13 10.3600 1.1075 734.89 0.9159 4

19 13-14 9.9044 1.1652 739.16 0.8179 10

aLO: Line outage from bus number to bus number.

is ranked 1st. indeed, this contingency is the strongest
and worst one in the network regarding security and
economical indices. The voltage violation index for
contingency 16 (outage of the line between buses 9 and
14) is 10.85, which is the worst contingency based on
voltage violation index (as one of the network security
indices), but since economic indices are also considered
here, it is ranked 2nd. In this system, the contingency
10 (outage of the line between buses 5 and 6) has the
lowest e�ciency, and therefore, is ranked last. In this
contingency, the voltage violation index is 5.93, LMP
index is 1.39, and congestion cost index is 757.

4.2. IEEE 30-bus system
The IEEE 30-bus system consists of 24 PQ buses,
5 PV buses, a slack bus, and 41 lines. The three
aforementioned neural networks for prediction of angle,
LMP, and voltage magnitude are designed for this
system. Here, the LMP, voltage magnitude, and
angle predictors predict the LMP for all buses, voltage
magnitude for all 24 PQ buses, and voltage angle for
all buses except the slack bus, respectively. The inputs

are active power for buses 2 to 30 and reactive power
for all PQ buses, meaning that there are 44 elements in
input patterns. If the power injection of some buses is
zero, they are not considered in the input pattern. The
active and reactive powers in bus 1 are not considered
as input, since it is the slack bus. Hence, the LMP
predictor includes 44 and 30 neurons in the input and
output layers, respectively, showing the LMP values for
all buses. The voltage magnitude predictor consists of
44 neurons in input layer and 24 ones in the output
layer, presenting the voltage magnitudes for 24 PQ
(load) buses. Similarly, the angle predictor is composed
of 44 input neurons and 29 output neurons (standing
for total number of 29 PV and PQ buses, except the
slack bus). Maximum absolute errors in the estimated
voltage magnitude and angle in each outage case are
presented in Table 3. The errors in estimated voltage
magnitudes and angles for each bus are tested on all 250
cases, resulting in a maximum error of 10�3. In this
case, the retrained RBF neural networks in 250 test
patterns are performed for each of 34 feasible outages
in this case.
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Table 3. Summary of voltage magnitude and angle
maximum absolute errors for all test cases (IEEE 30-bus
system).

Contingency
no.

Voltage
magnitude

Voltage
angle

1 2.29E-03 2.40E-03

2 9.13E-03 1.23E-03

3 1.52E-03 1.84E-03

4 8.26E-03 2.40E-03

5 5.38E-03 4.17E-03

6 9.96E-03 4.97E-04

7 7.82E-04 9.03E-03

8 4.43E-03 9.45E-03

9 1.07E-03 4.91E-03

10 9.62E-03 4.89E-03

11 4.63E-05 3.38E-03

12 7.75E-03 9.00E-03

13 8.17E-03 3.69E-03

14 8.69E-03 1.11E-03

15 8.44E-04 7.80E-03

16 4.00E-03 3.90E-03

17 2.60E-03 2.42E-03

18 8.00E-03 4.04E-03

19 4.31E-03 9.65E-04

20 9.11E-03 1.32E-03

21 1.82E-03 9.42E-03

22 2.64E-03 9.56E-03

23 1.46E-03 5.75E-03

24 1.36E-03 5.98E-04

25 8.69E-03 2.35E-03

26 5.80E-03 3.53E-03

27 5.50E-03 8.21E-03

28 1.45E-03 1.54E-04

29 8.53E-03 4.30E-04

30 6.22E-03 1.69E-03

31 3.51E-03 6.49E-03

32 5.13E-03 7.32E-03

33 4.02E-03 6.48E-03

34 7.60E-04 4.51E-03

Table 4 represents the network security and eco-
nomical indices calculated for each contingency in the
30-bus system. The e�ciencies of the contingencies are
calculated using the stochastic frontier analysis, which
is shown in column 6 of the Table 4. The lowest and
highest e�ciencies correspond to the contingencies 29
(outage of the line between buses 24 and 25) and 9
(outage of the line between buses 6 and 7), respectively.
The last column of this table represents the ranking
of all contingencies. The minimum and maximum
e�ciencies are 0.496 and 0.953, respectively. The
average e�ciency for the 30-bus network is calculated
to be 0.818. In the 30-bus network, contingency 9 is the
worst one. For this contingency, the voltage violation
index is 15.84, line ow violation index is 237, LMP
index is 0.786, and the congestion cost index is 183.3.
The e�ciency of this contingency is 0.953, and it is
ranked 1st, meaning that it is the strongest and worst
contingency in the network based on network security
and economical indices. Contingency 29 (outage of the
line between buses 24 and 25) is ranked last, where the
voltage violation index is 8.41, the line ow violation
index is 55.6, the LMP index is 0.12, and the congestion
cost index is 23.1, which are much less than the ones
of contingency 9.

5. Conclusion

In this paper, the combination of neural networks
and stochastic frontier analysis is employed to rank
the contingencies of the system. The neural network
method is used to estimate magnitudes and angles of
all system buses in order to determine line ow and
LMP. Hence, three neural networks are represented to
estimate LMPs, bus voltage magnitudes and angles
in normal conditions and di�erent contingencies in
the power system. Here, the network security indices
(voltage violation and line ow violation indices) and
economical indices (LMP and congestion cost indices)
are simultaneously considered to rank the contingen-
cies. The e�ciencies of each of these contingencies
were calculated using stochastic frontier analysis, which
was used in their ranking. The proposed algorithm
for contingency ranking was performed on IEEE 14-
bus and 30-bus power test systems, where the simu-
lation results show the high performance of the algo-
rithm.
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Table 4. Summarizing the results of the proposed algorithm on IEEE 30-bus system.

Contingency no. LOa PIV PIMVA PILMP PICON E�ciency Rank

1 1-2 9.599 188.58 0.2835 64.312 0.7978 24

2 1-3 9.131 206.05 0.3197 73.909 0.8909 12

3 2-4 9.4075 200.75 0.3264 73.562 0.8288 19

4 2-4 8.98 204.32 0.3302 74.585 0.8964 11

5 2-5 10.271 191.8 0.2795 64.464 0.8533 16

6 2-6 8.947 193.48 0.2854 65.002 0.8035 23

7 4-6 10.578 161.52 0.2468 56.687 0.7718 27

8 5-7 10.248 190.47 0.28 64.021 0.8304 18

9 6-7 15.842 237.03 0.7862 183.3 0.9535 1

10 6-9 12.123 202.42 0.2503 57.802 0.7794 26

11 6-10 13.517 194.07 0.2685 60.494 0.5897 32

12 9-10 12.706 202.42 0.2528 57.803 0.7849 25

13 4-12 14.333 241.59 0.5324 121.07 0.9274 4

14 12-14 10.544 200.28 0.3185 71.257 0.8769 13

15 12-15 12.63 213.66 0.3817 85.347 0.9098 8

16 12-16 19.713 208.58 0.5354 123.46 0.9460 2

17 14-15 9.3161 189.38 0.2893 63.968 0.8248 20

18 16-17 13.022 195.67 0.4055 91.332 0.9109 7

19 15-18 16.495 194.3 0.4155 95.966 0.9139 6

20 18-19 12.636 186.2 0.366 82.658 0.9016 9

21 19-20 10.59 257.66 0.2972 66.245 0.8701 14

22 10-17 11.117 202.02 0.2855 64.301 0.8494 17

23 10-21 9.2113 179.55 0.2826 62.672 0.8187 21

24 10-22 17.234 228.73 0.7217 167.13 0.9319 3

25 21-22 10.093 198.3 0.2645 62.296 0.7416 29

26 15-23 10.716 190.12 0.2558 62.945 0.6784 30

27 22-24 8.7469 169.3 0.2048 47.973 0.5238 33

28 23-24 19.838 203.75 0.4485 100.69 0.9247 5

29 24-25 8.4129 55.619 0.1208 23.122 0.4959 34

30 25-27 14.412 55.89 0.1601 16.149 0.6581 31

31 27-29 10.941 231.85 0.3115 69.935 0.8701 15

32 27-30 11.132 254.49 0.3126 71.068 0.8965 10

33 29-30 8.4816 208.59 0.3249 72.224 0.8116 22

34 6-28 15.436 101.66 0.1516 16.554 0.7653 28

aLO: Line outage from bus number to bus number.
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