
Scientia Iranica D (2017) 24(3), 1363{1372

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

A new algorithm for the computation of the decimals of
the inverse

P. Sahaa;� and D. Kumarb

a. Department of Electronics and Communication Engineering, National Institute of Technology Meghalaya, Meghalaya-793003,
Shillong, India.

b. Department of Computer Science and Engineering, National Institute of Technology Meghalaya, Meghalaya-793003; Shillong,
INDIA.

Received 3 November 2014; received in revised form 4 December 2015; accepted 27 February 2016

KEYWORDS
Algorithm;
Arithmetic;
Decimal inverse;
T-Spice;
Propagation delay;
Ancient mathematics.

Abstract. Ancient mathematical formulae can be directly applied to the optimization of
the algebraic computation. A new algorithm used to compute decimals of the inverse based
on such ancient mathematics is reported in this paper. Sahayaks (auxiliary fraction) sutra
has been used for the hardware implementation of the decimals of the inverse. On account
of the ancient formulae, reciprocal approximation of numbers can generate \on the y"
either the �rst exact n decimal of inverse, n being either arbitrary large or at least � 6 in
almost all cases. The reported algorithm has been implemented, and functionality has been
checked in T-Spice. Performance parameters, like propagation delay and dynamic switching
power consumptions, are calculated through spice-spectre of 90 nm CMOS technology.
The propagation delay of the resulting 4-digit reciprocal approximation algorithm was
only � 1:8 uS and consumed � 24:7 mW power. The implementation methodology o�ered
substantial reduction of propagation delay and dynamic switching power consumption from
its counterpart (NR) based implementation.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, decimal computation plays a pivotal role
in human-centric areas such as �nancial and internet-
based applications in which exact results are expected.
Thereby, hardware implementation of Applying Spe-
ci�c Integrated Circuits (ASICs) has gained popularity
during the last decade [1-5]. Generally, hardware
implementation of the computer arithmetic circuits
is based on binary number systems due to simplic-
ity of operations from decimal number systems [6].
Moreover, lots of decimal numbers cannot be repre-
sented exactly in binary format due to �nite word-
length e�ect [6], hence appropriate representation in

*. Corresponding author.
E-mail addresses: sahaprabir1@gmail.com (P. Saha);
deepak.enc@gmail.com (D. Kumar)

binary format has been impractical. Recently, decimal
arithmetic has been presented for general-purposed
computer [7] with the help of Binary Coded Decimal
(BCD) encoding techniques.

Reciprocal approximation plays a pivotal role for
several applications such as digital signal and image
processing, computer graphics, scienti�c computing,
etc. [8]. Moreover, division operation can be com-
puted with the help of reciprocal approximation in
the following manner: the reciprocal of divisor is
computed �rst, and then it is used as the multiplier
in a subsequent multiplication with the dividend [9].
This method is particularly economical when dividend
is varying with respect to the same divisor. Nowadays,
`reciprocal approximation' methods are typically based
on the Newton-Raphson method [10]. Although, due
to its poor performance (high computation time), it
is more infrequently used than the other two basic

1364 P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372

arithmetic operations such as addition and multipli-
cation [11].

Substantial amount of algorithms and their hard-
ware implementation has been reported so far [8-12].
All of the algorithms are based on either Taylor se-
ries [12] or iterative techniques (Newton-Raphson [9,10]
or Gold-Schmidt [11]). These basic algorithms have
been amalgamated, and extensive work has been
carried out, and then reported by researchers [8-
11]. The mentioned algorithms have long latencies or
large area overhead due to its linear convergence rate,
thereby a huge number of operations are required for
computation. Moreover, the iterative methods start
with an initial approximation of the reciprocal of the
divisor, usually implemented through a look-up table,
thereby large ROM size is required to accommodate
the denominator leading to higher delay and power.
Thereby, the desired precision level of the reciprocal
unit is limited by the ROM size as the size of the lookup
table increases with the demand of precision level.

In algorithmic and structural levels, a signi�cant
number of algorithms and hardware implementation
methodologies have been developed to reduce the
propagation delay (latency), which was based on the
reduction of the iteration leading to latency reduction,
but the principle behind the algorithms are same.
In this paper, reciprocal algorithm and its hardware
architecture based on ancient mathematics has been
addressed. Sahayaks (auxiliary fraction), a Sanskrit
term from Vedas, is encountered to realize the recip-
rocal circuitry. This paper extends the previous paper
of the same authors [13] and two others, where the
inversion algorithm was introduced for the �rst time
to discuss circuit implementation of a division unit
that uses this algorithm. With the help of the ancient
methodology, reciprocal algorithm has been realized by
algebraic transformation of the digits to smaller ones,
and the overall division has been carried out through
the transformed digits; thereby, circuit complexity
has been reduced substantially due to reduction in
propagation delay.

To carry out the transistor level implementa-
tion of decimal reciprocal unit, optimized 4221 BCD
recording techniques [14,15] have been adopted in this
study. The reciprocal unit is fully optimized in terms of

calculations; thereby, any con�guration of input could
be elaborated. Transistor-level implementation of such
reciprocal circuitry has been carried out by the combi-
nation of BCD arithmetic with ancient mathematics.
Performance parameters, such as propagation delay
and dynamic switching power consumption of the re-
ported method, have been calculated by spice/spectre
models through 90 nm CMOS technology and been
compared with the other design like Newton-Raphson
(NR) [7] based implementation. The calculated results
revealed that 4-digit reciprocal units have propagation
delay of only � 1:8 uS with � 24:7 mW dynamic
switching power consumption.

2. Ancient methodology for reciprocal
computation

The gifts of the ancient Indian mathematics in the
�eld of mathematical science are not well recognized.
Ancient books o�ered the mathematical operations
which can be carried out mentally to produce fast
answers using the sutras. In this paper, sahayaks
(auxiliary fraction) for implementing the reciprocal
algorithm is presented.

2.1. Examples
To fully understand the algorithm, take an example of
1
a9 , where a = 1; 2; � � � ; 9. In the conversion of such
an irregular fraction into recurring decimal, ekadhika
(by one more than the previous) process can be used.
Assume a = 5; thus, we want to calculate the value
of 1

59 . Hence, ekadhika purva (one more than the
previous) is 5 + 1 = 6. The method of the division
has been described in Figure 1. The description of the
chart implementation procedure is described in Table 1.
One more example is given in Appendix A.

2.2. Algebraic proof of sutra
Let x = q0

10 + q1
100 + q2

1000 + q3
10000 + � � � be an unknown

inverse of number N .
If N = 59, we are going to verify that 6 is

the appropriate divisor in the `avalanche' of Euclidean
divisions, a = bq + r, where the new dividend is
obtained by concatenating the previous rest, rk, with
the previous quotient, qk, (or a function f(qk) of the

Figure 1. Example of reciprocal algorithm: (a) Number is 59 and (b) number is 61.

P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372 1365

Table 1. Chart implementation procedure of the examples, shown in Figure 1.

Steps
Number

N = 59 N = 61

1
Dividing numerator 1 by 60 that is,
1=60 = 0:1=6 gives quotient 0 and
remainder 1.

Subtract 1 from numerator and denominator.
Thereby, numerator comes to `0' and denominator
comes to 60. That is, 0/60 gives 0.0/6, gives 0
quotient and remainder 0.

2
Dividing 10 by 6 (1 time, remainder 4)
gives the quotient 1 and remainder 4.

Subtract the quotient from 9 and concatenate
it with the remainder, which gives us 9.
Dividing 9 by 6 (1 time, remainder 3)
gives quotient 1 and remainder 3.

3
Dividing 41 by 6 (6 times, remainder 5)
gives quotient 6 and remainder 5.

Dividing 38 by 6 (6 times, remainder 2)
gives quotient 6 and remainder 2.

4
Dividing 56 by 6 (9 times, remainder 2)
gives quotient 9 and remainder 2.

Dividing 23 by 6 (3 times, remainder 5)
gives quotient 3 and remainder 5.

5
Dividing 29 by 6 (4 times, remainder 5)
gives quotient 4 and remainder 5.

Dividing 56 by 6 (9 times, remainder 2)
gives quotient 9 and remainder 2.

6
Dividing 54 by 6 (9 times, no remainder)
gives quotient 9 and remainder 0.

Dividing 20 by 6 (3 times, remainder 2)
gives quotient 3 and remainder 2.

7
Dividing 09 by 6 (1 time, remainder 3)
gives quotient 1 and remainder 3.

Dividing 26 by 6 (4 times, remainder 2)
gives quotient 4 and remainder 2.

8
Dividing 31 by 6 (5 times and remainder 1)
gives quotient 5 and remainder 1, and so on.

Dividing 25 by 6 (4 times, remainder 1)
gives quotient 4 and remainder 1, and so on.

previous quotient, in the general case):8>>>>>><>>>>>>:
r0 = 6q0 + r0

10r0 + q0 = 6q1 + r1

10r1 + q1 = 6q2 + r2

10r2 + q2 = 6q3 + r3

etc.

)

8>>>>>><>>>>>>:
r0
10 = 6 q010 + r0

10
r0
10 + q0

100 = 6 q1
100 + r1

100
r1
100 + q1

1000 = 6 q2
1000 + r2

1000
r2

1000 + q2
10000 = 6 q3

10000 + r3
10000

etc:

(1)

Considering q0 = 0, the right-hand side equations
are obtained by dividing the left-hand side equations,
especially by 10, 100, 1000,� � � . Then, adding together
all these equations, except the �rst one by canceling
and factoring, one obtains:
r0

10
+

x
10

= 6x, 59x = r0:

This equality proves that if we take r0 = 1, x is the
desired inverse of 59 with qks as its decimals as long as
all these qks are less than 10, which is the case here.
The general proof is along the same lines with:8>>>>>>>><>>>>>>>>:

r0 = dq0 + r0

10r0 + f(q0) = dq1 + r1

10r1 + f(q1) = dq2 + r2

10r2 + f(q2) = dq3 + r3

10r3 + f(q3) = dq4 + r4

etc:

(2)

(here also, q0 = 0).
Function f(::) is to be replaced by one of the

appropriate rules; for example, if fqk = 2qk, one
obtains the following by the operation having been
done before (division by 10, 100, 1000, � � � and then
adding):

r0

10
+ 2

x
10

= dx, (10d+ 2)x = r0:

1366 P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372

Taking r0 = 2, one has (5d + 1)x = 1; thus, we have
obtained a recipe for getting all the decimals of the
inverse of integers of the form 5d + 1. Here, qk � 10.
The ancient rule for recipe implementation is given in
Appendix B.

2.3. Implementation of reciprocal algorithm
Pseudo-code for the implementation of the reciprocal
algorithm has been given hereunder. As seen in the
pseudo-code, the last digit of the denominator has been
calculated through mod-10 operation. If the last digits
are 2, 4, and 6, then it is multiplied by 5; if the last
digit is 5, then it is multiplied by 2. If the last digit
is 3, then it is multiplied by 4. If the last digit is 0,
then the right-shift operation is directly performed. If
the last digit is 1 or \7, 8, and 9", then the direct
implementation of the algorithm is performed. The
multiplication process is carried out for digit reduction
from denominator. The algorithm will continue until
16 oating point number:

N //reciprocal number
X = 10 //Base 10
NoD = Number of digits in Number N
Num = 1 //Numerator
p = 0
Result = 0 //i.e. reciprocal of N
Flag=0 ; F1 = F2 = 1 //ags
while (F1 AND F2)

LSD=MoD(N ,X)
while ismember(LSD, [2,3,4,5,6])

LSD = MoD(N,X)
Flag =1
switch LSD

case f2,4,6g: m = 5
case 3: m = 4
case 5: m = 2

end
Num = Num �m
N = N �m

end
switch LSD

case f7,8,9g: N = N +X � LSD
case 0: Flag=0

N = N +X
case 1 : N = N � 1

Num=Flag �Num
end
N = N=X
p = p+ 1
F1 = (Flag == 1)
F2 = Number of digits in N � NoD

end
if (NOT F1)

for d = 1 : 16
q = Num=N //integer division

Figure 2. Block level architecture of the reciprocal
architecture implementation.

r = MoD(Num; N)
Result = Result �X + q
q = MoD(q;X) //keep single digit
if LSD==1

Num = r �X � 1� q
else

Num = r �X + q � (X � LSD)
end

end
p = d

end
Result = Result �X�p //multiply by 10�p

3. Circuit modules

The proposed reciprocal algorithm technique, shown
in Figure 2, is used to implement the hardware archi-
tecture. Here, basic block diagram is included. First,
the input numbers (i.e., dividend) are taken, and they
are forwarded to the divisor adjustment unit. The
division adjustment unit consists of comparator, adder,
subtractor, and multiplier block. When dividend digits
are reduced, then division adjustment unit is promoted
for the division circuitry. The block level architecture is
shown in Figure 2. Likewise, the reciprocal calculation
algorithm is implemented.

3.1. Divisor adjustment unit
Divisor adjustment unit is shown in Figure 3, where the
input is the divisor and the last digit of the divisor is
propagated to the comparator. When the last digit of
the divisor is 9, then ignore the last digit and increment
the previous digit by one. When the last digit of
the divisor is eight, then ignore the digit and send a

Figure 3. Architecture for divisor adjustment unit.

P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372 1367

signal to a new dividend generation unit for the next
iteration. Likewise, when the last digit is 3, then
multiply the numerator and denominator by 4. When
the last digit is equal to 5, then multiply the numerator
and denominator by 2, then ignore the last digit of the
denominator and perform the division.

3.2. Division
In this section, divider and hardware implementation
algorithms are described to increase the speed of the
operation. Where input of the algorithm is initialized
as divisor (dvs) and dividend (dvd), and output is given
as quotient and remainder. `n' is the number of the
digits in dividend and `i' is the number of iteration.
The ow chart for the algorithm is shown in Figure 4.
The example of the algorithm is shown in Appendix C
for this algorithm.

The divider implementation technique is shown
in Figure 5. The dividend is assumed to have larger
length than the divisor length for simplicity. First, the
input numbers of the divisor and dividend are taken
from the Most Signi�cant Digit (MSD) side. If the
MSD of dividend is greater than MSD of divisor, then

Figure 4. High-speed division implementation of ow
chart diagram.

divide the dividend MSD by divisor MSD; otherwise,
the two most signi�cant digits taken from the dividend
side are considered and divided by the divisor. After
division, quotient and remainder are generated. The
remainder is concatenation of the next MSD of the
dividend and subtracted from the multiplication result
of the quotient digit and the least signi�cant digit of
divisor. If the result is negative, the quotient is reduced
by 1 and set the new quotient digit; else it is promoted
to the next stage. Likewise, the division algorithm is
implemented.

3.3. BCD computation
In this paper, we consider the optimized 4221 coding
technique for decimal digit representation. As we
have mentioned, the use of BCD-8421 to represent
decimal digits is expensive because decimal corrections
in the partial product reduction binary CSA tree are
required to obtain the correct decimal carry and sum.
Mathematical representation for the addition technique
can be represented as in the following:

Ai +Bi + Ci =
3X
i=0

(ai;j + bi;j + ci;j)ri =
3X
j=0

si;jrj

+ 2�
3X
j=0

hi;jrj = Si + 2Hi; (3)

where
�
r3 r2 r1 r0

� 2 f(4221); (5211)g, si;j , and
hi;j are the sum and carry bits of full adders, respec-
tively. Hi; Si 2 [0; 9] are the decimal carry and sum
digits, respectively. Decimal correction is not required
for this 4-bit vector expressions of Hi, Si because of
coding (4221 and 5211) techniques. Moreover, decimal
multiplication by 2 is required for further usage of carry
digit, Hi. The implementation procedure (algorithmic
level) for the usage of the carry bit is shown in Figure 6.

4. Results and discussions

The functionality of the proposed algorithm is ex-
amined using spice-spectre simulator. Transistor-
level simulation was performed through spice spectre
simulator of 90 nm CMOS technology with `1' volt
node voltage, operated at 250 MHz. First, all the
circuit modules of full-custom cells are used, and
�nally the complete architecture that combines all the
modules is simulated, so that the decoding performance
can be considered and reected in the results. The
simulations have been conducted for all possible bit
combinations. The performances, shown in the result
section, are the worst-case scenarios when delay and
consumed power are maximized for any speci�c bit
combinations. More examples for the calculation of the
reciprocal of numbers are given in Appendix C. The
reported methodology revealed that the application of

1368 P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372

Figure 5. Hardware implementation of divider .

Figure 6. Calculation of carry digit (Hi) based on 4221
coding schemes.

the ancient mathematics for reciprocal implementation
reduces the number of iterations. Thereby, hardware
usage decreases; as a result, propagation delay and
dynamic switching power consumptions decrease.

4.1. Error analysis
The computational error can be de�ned as:

Er =
exact value� assumed value

exact value
� 100:

The reciprocal of the divisor, 1
N , is calculated using the

Newton-Raphson iterative method. The �rst iteration
uses an initial seed, herein obtained using a piecewise
linear approximation based on minimax polynomials.
The method converges quadratically, that is, the error

of the approximation decreases quadratically with the
number of iterations. Calculation of the error in the
proposed algorithm is described here:

X
Y +k

�=X
Y
�X
Y

�
k
Y

�
+
X
Y

�
k
Y

�2

�X
Y

�
k
Y

�3

+ � � �
(4)

Here, the error is:

Er =
X

Y + k
� X
Y

�= �XY
(�

k
Y

�
�
�
k
Y

�2

+
�
k
Y

�3

+ � � �
)
; (5)

=�X
Y

�
k
Y

�(
1�
�
k
Y

�1

+
�
k
Y

�2

�
�
k
Y

�3

+� � �
)
;

(6)

�= �
X
Y

� k
Y

��
1� � kY�	 : (7)

Percentage of error is equal to:

Er(%) =
Er
X
Y
� 100 =

X
Y+k � X

Y
X
Y

� 100

�= �
X
Y

� k
Y

�
X
Y

�
1�� kY �	�100 = �

k
Y

1�� kY ��100:
(8)

P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372 1369

Figure 7. Error analysis chart as a function of input
number of digit.

Figure 8. Histogram analysis as a function of input
numbers.

Computational error, Er, can be minimized if (XY (kY)+
X
Y (kY)2 � X

Y (kY)3) is added to or subtracted from the
approximated result. The comparison chart based
on the proposed methodology is given in Figure 7.
In Figure 7, comparison of the errors and the N-R
methodology are described. MATLAB programming
has been implemented using IEEE single precision
format, and the value has been calculated for di�erent
digits. The error graph shows the approximate and
average errors. We have taken the algorithm (N-R) [10]
from references and computed it in the same environ-
ment for calculation. The number of exact decimals
provided by the algorithm is shown in Figure 8. The
histogram analysis, shown in Figure 8, reveals that
above (approximately) 400, at least 5 decimals are
exact, i.e. the error is under 10�6.

4.2. Comparison
The performance parameters, such as propagation
delay and dynamic switching power consumption, are
shown in Table 2 as a function of input number of
digits. Input data are taken as possible digit combina-
tion for experimental purposes. We have kept our main
concentration on reducing the performance parameters
such as propagation delay, dynamic switching power
consumption, thereby energy delay product.

Proper modi�cations for device, circuit, and ar-

Table 2. Performance parameters' comparison graph as a
function of input number of digits: Propagation delay (uS)
and dynamic switching power consumption (mW).

Algorithm No. of
digits

Propagation
delay
(uS)

Power
(mW)

N-R
2-D 0.52 9.63
3-D 1.07 14.97
4-D 2.45 27.34

Proposed
2-D 0.38 7.81
3-D 0.79 12.52
4-D 1.83 24.76

chitectural levels of design hierarchy have been ana-
lyzed properly for reducing propagation delay and av-
erage dynamic power consumption. The values of delay
and power of di�erent architectures are measured. Pass
transistor/Transmission Gates (TG) are used for the
design of di�erent modules for faster operation and
better logic transformation. The basic di�erence of
pass-transistor logic compared to the CMOS logic style
is that the source side of the logic transistor networks
is connected to some input signals instead of the power
lines. The advantage is that one pass-transistor net-
work (either NMOS or PMOS) is su�cient to perform
the logic operation, which results in a smaller number
of transistors and smaller input loads, demonstrated in
high speed and less power consumption [16]. For each
transition, the delay is computed by 50% of the input
voltage swing to 50% of the output voltage swing.

The propagation delay and the power consump-
tion have been measured with the assumption of
the worst-case pattern and from the output where
the delay is maximized. Individual circuit module
has been simulated, and �nally the complete circuit
module has been carried out in a similar approach.
For comparison purposes, the architectures have been
taken from di�erent references [9,10] and implemented
using technological environment.

A comparison between di�erent architectures in
terms of propagation delay and dynamic switching
power consumption is also shown in Table 2. Simu-
lation results for 4-digit reciprocal of a number o�ered
� 25% speed compared with N-R iteration-based [10]
architecture. Moreover, the improvement in terms of
switching power is � 9% in the same environment.

5. Conclusions

In this paper, a new algorithm for the computation
of the decimals of the inverse based on ancient math-
ematics is reported. By employing such an ancient
methodology, decimal reciprocal has been implemented
by the transformation of the digits into a smaller

1370 P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372

one. Moreover, division has been carried out through
smaller (transformed) digits. Transformation o�ered
the reduction of circuit-level complexity, owing to
the substantial reduction in propagation delay. The
functionality of these circuits is checked, and the per-
formance parameters, such as propagation delay and
dynamic power consumptions, are calculated through
spice spectre of standard 90nm CMOS technology.
Simulation results for 4 digits reciprocal of a number
o�ered � 25% reduction in terms of propagation delay
compared with N-R iteration-based [10] architecture,
whereas the corresponding improvement in terms of
switching power is equal to � 9% in the same envi-
ronment.

References

1. James, R.K., Shahana, T.K., Jacob, K.P. and Sasi,
S. \Decimal multiplication using compact BCD mul-
tiplier", Proc. IEEE Int. Conf. Electronics Design,
Penang, pp. 1-6 (2008).

2. Gorgin, S. and Jaberpur, G. \Comment on high speed
parallel decimal multiplication with redundant inter-
nal encodings", ", IEEE Transactions on Computers,
64(1), pp. 293-294 (2015).

3. James, R.K., Jacob, K.P. and Sasi, S. \Performance
analysis of double digit decimal multiplier on various
FPGA logic families", Proc. IEEE Int. Conf. on
Programmable Logic, Sao Carlos, pp. 165-170 (2009).

4. Sutter, G., Todorovich, E., Bioul, G., Vazquez, M.
and Deschamps, J.P. \FPGA implementations of BCD
multipliers", Proc. IEEE Int. Conf. on Recon�gurable
Computing and FPGAs (ReConFig '09), Quintana
Roo, pp. 36-41 (2009).

5. Zhu, M. and Jiang, Y. \An area-time e�cient archi-
tecture for 16 � 16 decimal multiplications", Proc. of
Information Technology: New Generations (ITNG),
Las Vegas, pp. 210-216 (2013).

6. Ve�estias, M.P. and Neto, H.C. \Parallel decimal
multipliers using binary multiplier", Proc. IEEE VI
Southern Programmable Logic Conf. (SPL), Ipojuca,
pp. 73-78 (2010).

7. Jaberipur, G. and Kaivani, A. \Binary-coded decimal
digit multipliers", IET J. on Computer & Digital
Techniques, 1(4), pp. 377-381 (2004).

8. Schulte, M.J., Stine, J.E. and Wires, K.E. \High-speed
reciprocal approximations", Proc. of the Thirty-First
Asilomar Conf. on Signals, Systems & Computers,
Paci�c Grove, pp. 1183-1187 (1997).

9. Chen, D. and Ko, S.B. \Design and implementation
of decimal reciprocal unit", Proc. Canadian Conf. on
Electrical and Computer Engineering, Vancouver, pp.
1094-1097 (2007).

10. Fowler, D.L. and Smith, J.E. \An accurate, high speed
implementation of division by reciprocal approxima-
tion", Proc. 9th Symp. on Computer Arithmetic, Santa
Monica, pp. 60-67 (1989).

11. Pineiro, J.A. and Bruguera, J.D. \High-speed double-
precision computation of reciprocal, division, square
root, and inverse square root", IEEE Trans. on Com-
puters, 52(12), pp. 1377-1388 (2002).

12. Farmwald, P.M. \High bandwidth evaluation of ele-
mentary functions", Proc. Fifth IEEE Symp. Com-
puter Arithmetic, Ann Arbor, pp. 139-142 (1981).

13. Saha, P., Kumar, D., Bhattacharyya, P. and Danda-
pat, A. \Reciprocal unit based on Vedic mathematics
for signal processing applications", Proc. of the IEEE,
Int. Symp. Electronics Design (ISED), Singapore, pp.
41-45 (2013).

14. Bhattacharya, J., Gupta, A. and Singh, A. \A high
performance binary to BCD converter for decimal
multiplication", Proc. Int. Symp. on VLSI Design Au-
tomation and Test (VLSI-DAT), pp. 315-318 (2010).

15. Vazquez, A., Antelo, E. and Montuschi, P. \A new
family of high-performance parallel decimal multipli-
ers", Proc. IEEE Symp. on Computer Arithmetic,
Montepellier, pp. 195-204 (2007).

16. Zimmermann, R. and Fichtner, W. \Low-power logic
styles: CMOS versus pass-transistor logic", IEEE
Trans. on Solid State Circuits, 32(7), pp. 1070-1090
(1997).

Appendix A

One more example is shown in Figure A.1. Chart
implementation procedure is described in Table A.1.

Figure A.1. Example of reciprocal algorithm: (a) Number is 789 and (b) number is 388 .

P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372 1371

Table A.1. Chart implementation procedure of the examples, shown in Figure A.1.

Number
Steps N = 789 N = 388

1 Dividing numerator 1 by 790 = 0:1=79 gives
quotient 0 and remainder 1.

Dividing numerator 1 by 390. that is
1=390 = 0:1=39 gives quotient 0 and remainder 1.

2
Dividing (r � 10 + q) 10 by 79 (0 times,
remainder 10) gives the quotient 0 and
remainder 10.

Multiplying quotient with 2 and remainder with
10 (r � 10 + q � 2) gives 10. Dividing 10 by 39
gives new quotient 0 and new remainder 10.

3 Dividing (r � 10 + q) 100 by 79 (1 time,
remainder 21) gives quotient 1 and remainder 21.

Dividing (r � 10 + q � 2) 100 by 39 (2 times,
remainder 22) gives quotient 2 and remainder 22.

4 Dividing (r � 10 + q) 211 by 79 (2 times,
remainder 53) gives quotient 2 and remainder 53.

Dividing (r � 10 + q � 2) 224 by 39 (5 times,
remainder 29) gives quotient 5 and remainder 29.

5 Dividing (r � 10 + q) 532 by 79 (6 times,
remainder 58) gives quotient 6 and remainder 58.

Dividing (r � 10 + q � 2) 300 by 39 (7 times,
remainder 27) gives quotient 7 and remainder 27.

6 Dividing (r � 10 + q) 586 by 79 (7 times,
remainder 33) gives quotient 7 and remainder 33.

Dividing (r � 10 + q � 2) 284 by 39 (7 times,
remainder 11) gives quotient 7 and remainder 11.

7 Dividing (r � 10 + q) 337 by 79 (4 times,
remainder 21) gives quotient 4 and remainder 21.

Dividing (r � 10 + q � 2) 124 by 39 (3 times,
remainder 7) gives quotient 3 and remainder 7.

8
Dividing (r � 10 + q) 214 by 79 (2 times and
remainder 56) gives quotient 2 and remainder 56,
and so on.

Dividing (r � 10 + q � 2) 76 by 39 (1 time,
remainder 37) gives quotient 1 and remainder 37,
and so on.

Appendix B

Ancient rule for recipe implementation:

Let:
ri � 10
D

= quotientQi, remainder ri+1.

then:
ri � 10 = QiD + ri+1D;

where:
(Dividend = Divisor�Quotient + Remainder);

) ri � 10
D

= Qi +
ri+1

D
;

) ri
D

= Qi10�1 +
ri+1

D
10�1;

i.e.:
ri
D

=
1X
i=1

Qi10�i:

Appendix C

The example of the divider algorithm is shown in
Figure C.1, and chart implementation procedure is
shown in Table C.1. Figure C.1. Division implementation procedure.

1372 P. Saha and D. Kumar/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1363{1372

Table C.1. Chart implementation procedure of the examples is considered in Figure C.1.

1) One digit of divisor, i.e., `8' (MSD), has been put a little down compared to the rest of divisor digits (i.e., `3');
this is going to be the actual divisor for subsequent division process. Since 1st digit of dividend (`4') is less
than divisor (`8'), take two digits of dividend, i.e. `49', as temporary dividend. After division, we get `6' as
1st quotient digit and `1' as remainder at the completion of 1st stage.

2) In 2nd stage, temporary dividend (i.e., `00') is generated by concatenating the remainder of 1st stage (i.e., `1')
with the next unused digit of actual divisor (i.e. `8') and subtracting it by the product of the rest of divisor
digits, `3' and quotient digit `6' of the last stage. After division, we get `0' as 2nd quotient digit and `00' as
remainder at the completion of 2nd stage.

3) In 3rd stage, temporary dividend (i.e., `07') is generated like in 2nd stage, and we get `0' as 3rd quotient digit
and `07' as remainder at the completion of this stage.

4) In 4th stage, temporary dividend (i.e., `73') is generated like in previous cases. But in this stage, we do not do
division and stop the procedure since stopping criteria are met (i.e., the last digit of actual dividend has been
used). Thus, we get `600' as quotient and temporary dividend, `73', as remainder.

Biographies

Prabir Saha was born in Kolkata, India, in February
1980. He received BTech, MTech, and PhD degrees
in 2003, 2008, and 2014, respectively. Presently, he is
working as an Assistant Professor in Electronics and
Communication Engineering Department in National
Institute of Technology Meghalaya, India. His research
interest includes VLSI design, digital signal processing,
and digital image processing.

Deepak Kumar was born in Muza�arpur, India,
in January, 1983. He received his BE degree from
VTU, Belgaum, in 2007, and ME degree from Ben-
gal Engineering and Science University, Shibpur, in
2009.

Presently, he is pursuing the PhD degree at
National Institute of Technology, Meghalaya, India.
His research interest includes computational mathe-
matics, digital signal processing, and digital image
processing.

