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Abstract. OFDM is an e�ective multicarrier transmission technique with one primary
disadvantage; it su�ers from high Peak-to-Average Power Ratio (PAPR). Although clipping
and �ltering is a simple and e�ective method for PAPR reduction, it makes in-band and
out-of-band noise, which degrades the bit error rate performance and spectral e�ciency.
Publications on this subject show that clipped samples could be reconstructed at the
receiver by using oversampled signal and bandwidth expansion. By building on published
literature, this paper aims to achieve a low-complexity method. The proposed method has
complexity order of O(L2) to solve linear system, where L indicates the number of clipped
samples. Simulation results con�rm that our proposed method leads to both a better bit-
error rate performance and a lower complexity than similar methods. These results also
show that our method o�ers adequate performance, especially at low clipping ratios.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Orthogonal Frequency-Division Multiplexing (OFDM)
is an e�ective multi-carrier transmission technique with
attractive features such as high spectral e�ciency and
robustness of multipath fading channels; however, the
Peak-to-Average Power Ratio (PAPR) is a major draw-
back of the OFDM technique. A survey of published
papers details recent advances in this �eld, including
several attempts to overcome the PAPR shortcoming
such as clipping and �ltering [1,2], Partial Transmit
Sequence (PTS) [3,4], Selected Mapping (SLM) [5],
active constellation extension [6], companding [7], etc.
Among these methods, clipping and �ltering seems to
be one of the simplest and most e�ective solutions,
especially when the number of OFDM subcarriers is
large.
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Clipping can be performed at Nyquist rate or
higher. If signal is clipped at Nyquist rate, peak
regrowth occurs after Digital-to-Analog (D/A) con-
version. On the other hand, though oversampled
signal clipping reduces the peak regrowth after D/A
conversion, it causes out-of-band radiation. Further,
clipping procedure generates in-band and out-of-band
noise. The in-band noise degrades Bit Error Rate
(BER) performance and the out-of-band noise reduces
spectral e�ciency. In order to save spectral e�ciency,
out-of-band noise is �ltered but the �ltering operation
produces in-band noise and another peak regrowth.
To reduce overall peak regrowth, clipping and �ltering
operation can be repeated until a desired PAPR is
attained. In [8], convex optimizing techniques are used
in order to design optimized �lters for iterative clipping
and �ltering procedure. Optimized �lters reduce in-
band and out-of-band noise resulting in lower out-of-
band radiation and less BER degradations compared to
traditional clipping and �ltering techniques. However,
in this approach, computational complexity of design-
ing optimized �lters is high.
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On the other hand, there are techniques which
reconstruct the clipped samples at the receiver and here
is an overview of some of them. In [9], a Decision-
Aided Reconstruction (DAR) method is introduced in
which authors perform clipping operation in baseband
at Nyquist rate. At the receiver, clipping noise is
mitigated iteratively by initially making decisions in
the frequency domain and then converting them back
to the time domain. Based on DAR, the Iterative
Amplitude Reconstruction (IAR) method is proposed
by Kwon et al. [10,11], which improves the DAR
method and yields better BER performance. The DAR
method reconstructs both amplitudes and phases of
clipped samples while the IAR only reconstructs ampli-
tudes. The IAR method uses phases of clipped samples
because clipping procedure only reduces amplitudes of
samples and leaves phases una�ected. Thus, the IAR
method o�ers a better BER performance than its DAR
counterpart. In [12], an iterative scheme is presented
which estimates and removes the clipping noise in the
frequency domain. This scheme estimates the clipping
noise and cancels it at receiver.

On the other side, the lost samples of an over-
sampled signal can be reconstructed by building some
equations based on valid samples [13-16]. In these
methods, if the out-of-band components of the signal
are removed completely, the reconstruction procedure
fails [15,16]. On the basis of [14-16], a clipping noise
cancellation model using oversampled signal is unveiled
in [17]. In this study, �rst, the oversampled signal
is clipped; then, some out-of-band components of the
clipped signal are saved during out-of-band �ltering
procedure. At the receiver, the clipped samples of
oversampled signal, considered as lost samples, are
reconstructed by employing the least square method.
The reconstruction using this method is quite robust
against additive channel noise, but the penalty is high
complexity.

A hybrid method was proposed in [18] that used
least square method [17] with BCH coding. While
Saeedi et al. [18] examined the performance of hybrid
method in Additive White Gaussian Noise (AWGN)
channels, the performance of hybrid method was
also studied in Rician channels by AliHemmati and
Azmi [19]. In addition, another hybrid method was
proposed in [20] by employing Reed-Solomon coding
and least square method [17].

The downlink of Orthogonal Frequency-Division
Multiple Access (OFDMA) system comprises many
users with di�erent modulations and channel codes who
usually have no knowledge of modulation and channel
code of the other users. Thus, methods such as [9-
12] cannot be applied to OFDMA receivers because
they must know in advance the modulation types
and channel codes employed by the other users to
reconstruct the clipped samples. On the other hand,

the least square methods [17-19] are independent of
modulation and channel code; thus, these methods
can be used on OFDMAs when users have di�erent
modulations and channel codes with no knowledge
about modulation and channel code of the other
users.

There are a few subcarriers that carry zeros or
certain symbols and they are known at the receiver
side. Cen et al. [21] use those known subcarriers of
OFDMA to estimate and to compensate the clipping
noise by employing the least square equations whereas
the transmitted signal has been clipped at Nyquist rate.
The method in [21] uses a few known subcarriers (about
10%) to reconstruct clipped samples successfully when
the number of clipped samples is lower than that
of known subcarriers. In comparison with [21], the
methods [17-20] are more robust against AWGN and
clipping noise, support lower clipping thresholds, and
reconstruct more clipped samples because they use
more equations in the least square stage. Nevertheless,
in [17-20] need bandwidth expansion is needed to
reconstruct clipped samples successfully while there is
no need for more bandwidth in [21].

The objective of authors in this paper is to
develop an improved version of [17] while making com-
putations less complex. The proposed method converts
the overdetermined system to a linear system by using
constant pre-computed matrices and obtaining a pair of
FFT/IFFT. The resulting linear system is then solved
by using the Jacobi numerical method [22]. Finally,
amplitudes of clipped samples are compensated by
utilizing least square solution. To reconstruct am-
plitudes of clipped samples successfully, the proposed
method needs bandwidth expansion similar to those
reported in [17-20]. The proposed method o�ers low
complexity and adequate performance, especially at
low clipping ratios; thus, it can be exploited in most
DFT-based least square methods, such as in [17-20].
The new approach can also be used to reconstruct
clipped samples of OFDM systems and �nds applica-
tion with other structures including single-carrier and
OFDMA.

The rest of the paper is organized as follows.
The PAPR de�nition and clipping procedure are brie
y
discussed in Section 2. Section 3 considers reconstruc-
tion of clipped samples by employing the least square
method and Section 4 describes the proposed method.
Simulation and analysis of results are discussed in
Section 5 and the paper ends with a conclusion in
Section 6.

2. Preliminaries

For an OFDM transmitter with N subcarriers, the
oversampled time-domain sequence fs(n)gJN�1

n=0 is
transmitted as:
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s(n) =
1p
JN

N�1X
k=0

S(k)ej2�nk=JN ; (1)

where j =
p�1, J is oversampling factor, fS(k)gN�1

k=0
are data modulated symbols and n = 0; 1; � � � ; JN � 1.
The PAPR of signal s(n) can be approximated as:

PAPR =
max

n=0;1;��� ;JN�1
js(n)j2

E [js(n)j2]
; (2)

where j�j and E[�] denote the amplitude and expectation
operator. This approximation will be more precise
when oversampling rate of 4 or greater is used [23].

To reduce the PAPR of OFDM signal, the clipping
and �ltering procedure can be used. The clipping
procedure is a non-linear function, which restricts the
amplitudes of samples and leaves phases una�ected.
The clipped signal fsc(n)gJN�1

n=0 can be formulated as:

sc(n) =

8<:s(n); js(n)j � T
T s(n)
js(n)j ; js(n)j > T

(3)

where T is clipping threshold and n = 0; 1; � � � ; JN�1.
The clipping procedure causes out-of-band ra-

diations and these radiations should be removed by
�ltering procedure. The �ltering procedure is done at
frequency domain by zeroing out-of-band components:

SCF (k) =

8<:SC(k); k = 0; 1; � � � ; N � 1

0; k = N;N + 1; � � � ; JN � 1
(4)

where sequence fSC(k)gJN�1
k=0 is frequency domain of

clipped sequence fSC(n)gJN�1
n=0 . Finally, the time-

domain sequence of fSCF (k)gJN�1
k=0 is transmitted after

adding cyclic pre�x to the sequence.

3. Reconstruction of clipped signal

Let fx(n); n = 0; 1; � � � ; JN � 1g be the received and
equalized OFDM signal with oversampling rate of J
times. Let also sets of fli; i = 1; 2; � � � ; Lg and fpj ; j =
1; 2; � � � ; Pg be the time indices of clipped and non-
clipped samples of x(n), respectively, and P = JN �
L. The frequency-domain of sequence fx(n)gJN�1

n=0 is
computed by:

X(k) =
1p
JN

JN�1X
n=0

x(n)e�j2�nk=JN ; (5)

where k = 0; 1; � � � ; JN � 1.
Since the signal fx(n)gJN�1

n=0 is oversampled
J times, the out-of-band components fX(k0 + N)
g(J�1)N�1
k0=0 should be zero while in-band components

Figure 1. The frequency domain of oversampled signal
x(n) consists of (J � 1)N zeros and N modulated data
symbols.

fX(k00)gN�1
k00=0 carry modulated data symbols, see Fig-

ure 1. By considering the out-of-band components,
(J � 1)N equations can be expressed as:

1p
JN

LX
i=1

x(li)e�j2�(k0+N)li=JN

= � 1p
JN

PX
j=1

x(pj)e�j2�(k0+N)pj=JN ; (6)

where x(li) and x(pj) are clipped and non-clipped
samples, respectively, and k0 = 0; 1; � � � ; (J�1)N�1. If
the clipped samples are assumed to be unknown, then,
a linear system of (J�1)N equations with L unknowns
is formulated. This system can be written in matrix
form:

�W�x = � ~W~x; (7)

where vectors �x and ~x comprise clipped and non-
clipped samples of sequence fx(n); n = 0; 1; � � � ; JN �
1g, �W = [ �wk0;i](J�1)N�L, respectively:

�x =
�
x(l1) x(l2) � � � x(lL)

�T ; (8)

~x =
�
x(p1) x(p2) � � � x(pP )

�T : (9)

In additions, the two matrices �W = [ �wk0;i](J�1)N�L
and ~W = [ ~wk0;j ](J�1)N�P contain Fourier coe�cients:

�wk0;i =
1p
JN

e�j2�(k0+N)li=JN ; (10)

~wk0;j =
1p
JN

e�j2�(k0+N)pj=JN ; (11)

where i = 1; 2; � � � ; L, j = 1; 2; � � � ; P and k0 =
0; 1; � � � ; (J � 1)N � 1.

In Eq. (7), the number of unknowns (clipped
samples) is usually smaller than the number of equa-
tions. This equation has a unique least square solution
because �W is a full rank matrix that has L independent
columns. The least square solution of Eq. (7) is
obtained by solving the following linear system [22]:

�WH �W�x = � �WH ~W~x; (12)
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where �WH denotes Hermitian (conjugate transpose)
of �W [22]. This overdetermined linear system can be
formulated as square linear system A�x = b, where:

A = �" �WH �W; (13)

b = " �WH ~W~x; (14)

" = J=(J � 1): (15)

After solving linear system (Eq. (12)), the signal x(n)
can be compensated by replacing the clipped samples
fx(li); i = 1; 2; � � � ; Lg with the solution �x of the linear
system (Eq. (12)).

4. Proposed method

Preparation of the linear system A�x = b needs (J �
1)(L2 + L + P )N complex multiplications and direct
solution of the linear system has complexity order of
O(L3). In Subsection 4.1., a fast method to construct
linear system at low complexity is described. This
method only needs a pair of FFT/IFFT computations.
In Subsection 4.2., A�x = b is solved numerically by in-
voking the Jacobi method. The amplitude reconstruc-
tion of clipped samples is explained in Subsection 4.3.
and the transmitter and receiver parts of the proposed
method are described in the last subsection.

4.1. Preparing linear system
This subsection and the next describe the way authors
prepare and solve linear system (Eq. (12)) by using
a pre-computation step, an FFT/IFFT pair, and the
Jacobi numerical method.

Vector b can be computed by implementing FFT
and IFFT in two steps. In the �rst step, c = ~W~x is
computed by employing FFT and the second step uses
IFFT to evaluate b = " �WHc.

For the �rst step, vector y = [yn]JN�1 and
incomplete Fourier matrix W = [wk0;n](J�1)N�JN are
de�ned as:

yn =

8<:x(n); n 2 fli; i = 1; 2; � � � ; Lg
0; n 2 fpj ; j = 1; 2; � � � ; Pg

(16)

wk0;n =
1p
JN

e�j2�(k0+N)n=JN ; (17)

where k0 = 0; 1; � � � ; (J � 1)N � 1 and n =
0; 1; � � � ; JN � 1. Based on these de�nitions, the
products ~W~x and Wy are equal. Since the matrix W
contains bottom rows of Fourier matrix, Wy is equal
to the last (J � 1)N component of FFT(y):

z = FFT(y); (18)

c =
�
zN zN+1 � � � zJN�1

�T : (19)

In the second step, vector t = [ti]JN�1 is constructed
by using the last components of z:

ti =

8<:zk; N � k � JN � 1

0; 0 � k � N � 1
(20)

The above equation implies that product b = " �WHc
is same as "WHt. These products can be computed by
using IFFT and selecting certain components of IFFT
outputs:

u = IFFT(t); (21)

b = "
�
ul1 ul2 � � � ulL

�T : (22)

After preparing vector b, we must construct matrix
A. For this aim, strictly diagonally dominant matrix
C = [cn;n0 ]JN�JN is de�ned as:

C = �WHW: (23)

Matrix C is a constant matrix for all OFDM symbols
and needs to be computed once. On the other hand,
matrix A can be constructed for each OFDM symbol
by selecting certain components of matrix C:

ai;i0 = cli;li0 ; i; i0 2 f1; 2; � � � ; Lg: (24)

Matrix C is independent of fligLi=1 and can be com-
puted once. This matrix is a JN � JN Hermitian
matrix with �1 s on its diagonal. Therefore, the
algorithm needs JN(JN � 1) store locations.

By accessing a few of these store locations, matrix
A can be constructed as:

ai;i0 = � 1
(J � 1)N

(J�1)N�1X
k0=0

ej2�(li�li0 )(k0+N)=JN :
(25)

Based on geometric series properties, Eq. (25) can be
simpli�ed as:

ai;i0 = a�i0;i =

8<: �(li;li0 )
1�'(li)'�(li0 ) ; i 6= i0

�1; i = i0
(26)

where a�i0;i is conjugate of ai0;i, and �(li; li0) and 'i are
de�ned as:

�(li; li0) =
1� ej2�(li�li0 )=J

(J � 1)N
; (27)

'(li) = ej2�li=JN : (28)

In this paper, we choose J = 4; thus, Eq. (27) is
simpli�ed as:
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�(li; li0) =

8>>>>>>>><>>>>>>>>:

0; mod(li � li0 ; 4) = 0

1�j
3N ; mod(li � li0 ; 4) = 1

2
3N ; mod(li � li0 ; 4) = 2

1+j
3N ; mod(li � li0 ; 4) = 3

(29)

where mod indicates the modulus after division. In
this case, the terms �(li; li0) and '(li) have only 4 and
4N variations, respectively. All variations of �(li; li0)
and '(li) can be stored in memory as pre-computed
values in order to avoid increasing complexity. On the
other hand, computation of each ai;i0 , i 6= i0 needs a
complex multiplication, a complex division, and a real
addition based on Eq. (27). Therefore, construction of
A needs L(L�1) complex multiplications and divisions
and L(L� 1)=2 additions.

After preparation, the linear system A�x = b will
be solved by utilizing the Jacobi numerical method
whose complexity order of each iteration is O(L2).

4.2. Solving linear system
The Jacobi method begins with an initial approxima-
tion �x(0) of the solution vector. Then, a sequence of
approximations f�x(t)g is generated iteratively:

�x(t+1) = D�x(t) + e; t = 1; 2; � � � ; tmax; (30)

where t denotes iteration number, D = [di;i0 ]L�L and
e = [ei]L�1 are Jacobi iteration matrix and Jacobi
vector, respectively. Since matrix A has �1 s along
the main diagonal, Jacobi vector is de�ned as e = �b
and components of Jacobi matrix D are expressed as:

di;i0 =

8<:0; i = i0

ai;i0 i 6= i0
(31)

for i; i0 2 f1; 2; � � � ; Lg.
Based on Eq. (13), A is strictly diagonally dom-

inant matrix [24]. The strictly diagonally dominant
property makes sequence Eq. (30) converge on the
solution of linear system [22].

If the clipped samples are used as initial approxi-
mation �x(0), then Eq. (17) converges on the solution
after 5 to 10 iterations. The Jacobi method needs
L(L�1) complex multiplications and L(L�1) complex
additions for each iteration.

4.3. Amplitude reconstruction
The clipping procedure only reduces amplitude of
samples that are large and leaves phases of all samples
unchanged. After clipping, the clipped samples still
have large amplitudes and, thus, their phases have less
impressibility against AWGN than those with lower
amplitudes. This property is illustrated in Figure 2.
Based on this property, only the amplitudes of clipped

Figure 2. The additive noise, n, has less e�ect on the
phases of samples with greater amplitudes.

samples should be reconstructed at the receiver and it is
not necessary to reconstruct the phases [10-11]. While
Saeedi et al. [17] uses the complex value of linear system
solution to replace clipped samples, this paper uses
its amplitude to replace amplitude of clipped samples.
This technique improves BER performance compared
to [17].

4.4. Transmitter and receiver
Figure 3 shows the block diagrams of the transmitter
and receiver for the proposed method. As can be
seen, the receiver includes �ltering and equalizing
processes before amplitude reconstruction stage. The
receiver uses a zero-force equalizer [25] to reduce the
e�ects of channel. On the other hand, the �ltering
process removes the parts of frequency domain that
only contain AWGN. The use of �ltering and equalizing
processes, therefore, helps the linear system to endure
less noise and perturbation.

In order to construct the linear system repre-
sented by A�x = b, the location of clipped samples
must be known. This calls for examination of two
points; �rstly, we know Eq. (6) is valid for k0 =
0; 1; � � � ; (J � 1)N � 1; therefore, up to (J � 1)N
unknown samples can be found by using Eq. (6) and
the succeeding equations. If L0 non-clipped samples (in
addition to L clipped samples) are taken as unknowns,
then L + L0 unknowns can be obtained by Eq. (6)
where L + L0 is smaller than (J � 1)N . Secondly,
by considering the e�ect of the AWGN, we know that
the amplitudes of samples have changed in a way that
most of the equalized clipped samples have amplitudes
within intervals [T � ��N ; T + ��N ], where �N is the
variance of AWGN, T is the clipping threshold, and � �
0. Chen et al. [21] use the threshold T���N to estimate
the locations of clipped samples. In this manner, the
clipped samples can be reconstructed approximately by
comparing the amplitude of equalized signal with the
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Figure 3. Block diagrams of the proposed method: (a) Transmitter and (b) receiver.

threshold T � ��N [21]. If the amplitude of the sample
is greater than the threshold, the sample is probably a
clipped sample. Hence, this technique �nds most of the
clipped samples, although some of non-clipped samples
are also extracted as clipped samples, which have no
e�ect on the reconstruction process itself as there are
(J � 1)N equations outnumbering the unknowns.

After solving linear system, A�x = b, the ampli-
tudes of clipped samples are reconstructed by replacing
them with those obtained from the solution of linear
system and the phases of clipped samples are left
unchanged.

4.5. Comparison with other methods
The iterative techniques [9-12] exploit modulation and
channel coding information to estimate and recon-
struct the clipped signal. These methods recon-
struct the clipped samples by employing demodula-
tion/modulation with channel decoding/coding pro-
cesses iteratively. Therefore, the receiver has to
know the modulation and channel coding types of all
users when iterative methods [9-12] are employed for
OFDMA systems.

On the other hand, techniques of [17-20] are
founded on DFT equations. These methods approxi-
mate the clipped samples by preparing a linear system
and solve the equations to specify the complex values
of clipped samples. These methods have two important
disadvantages: high complexity and instability. They
require high computational complexity to prepare and
solve a non-square linear system and cannot recon-
struct the clipped samples, especially when the pertur-
bation caused by the clipping and �ltering procedure
is high.

In contrast to [17-20], the proposed method pre-
pares DFT equations simply and solves the linear
system iteratively. The proposed method improves
performance of DFT-based methods by employing the
Jacobi numerical scheme and amplitude reconstruction
technique while the overall complexity of the proposed
method is e�ciently decreased. The complexity of our
method is reduced by preparing a square linear system
A�x = b instead of the overdetermined DFT-based
system (Eqs. (7)). The matrix A is prepared simply
by utilizing (25)-(29) and the vector b is computed

by obtaining a de�cient FFT/IFFT pair. Several
numerical schemes can be exploited to solve the square
linear system, A�x = b. Among these methods,
we choose Jacobi scheme to reduce complexity and
increase stability of the solution against the pertur-
bations, which are imposed by AWGN, clipping, and
�ltering procedures.

5. Simulation and analysis

At this stage, simulation of OFDM system is performed
by selecting N = 1024 subcarriers, 16-QAM constel-
lation, and a 5-MHz bandwidth. For the proposed
method, J = 4 times oversampled signal is used for
the clipping and �ltering stage because J = 4 is
su�cient for PAPR reduction purposes. The results of
simulation and analysis are presented in the following
subsections.

5.1. Complementary cumulative distribution
function

Complementary Cumulative Distribution Functions
(CCDFs) of the PAPR for common OFDM and several
cases of clipped OFDM are plotted using an oversam-
pling factor of 16 in Figure 4. During clipping pro-
cedure, OFDM signals are clipped at various Clipping

Figure 4. PAPR CCDFs of OFDM in several situations.
As shown in the �gure, bandwidth expansion reduces
PAPR.
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Ratios (CRs), which are estimated by:

CR = 10 log10
T 2

E [js(n)j2]
; (32)

where T is the clipping threshold. For the case of CR =
0 dB and J = 1, clipping is employed at Nyquist rate
and for the remaining clipping cases, signals are clipped
at oversampling rate of J = 4.

Figure 4 veri�es that the clipping and �ltering
methods can achieve low PAPR compared to clipping
at Nyquist rate and that bandwidth expansion also
reduces this parameter. Based on this �gure, PAPR of
the proposed method can be even lower than clipping
at Nyquist rate.

In the following subsection, we will evaluate our
BER performance when the bandwidth is expanded by
25% and 100% at clipping ratios of 2.5 dB and 1.0 dB,
respectively.

5.2. BER performance
In order to assess BER performance of the proposed
method, Rayleigh and Rician channels are used for
simulations. The channel frequency response of the
mth OFDM symbols at kth subcarrier is denoted by:

Hm(k) =
DX
d=1

�d;me�j2�k�f�d ; (33)

where �d;m is the complex amplitude and �d is the delay
of the dth path and �f is the subcarrier separation
in the frequency domain. �2;m, �3;m, � � � and �D;m
are modeled as zero mean complex Gaussian random
variables with variances �2

2 , �2
3 , � � � and �2

D. �1;m
is modeled as a complex Gaussian random variable
with variance �2

1 while its mean is zero for Typical
Urban (TU) channel and

p
K�2

1 for Typical Rural Area
(TRA) channel with Rician K-factor. In this paper,
the Rician K-factor is set to 1.0. The delays �d and
variances �2

d of channels are displayed in Table 1 based
on COST207 channel models [26].

In this subsection, the BER performances versus
Signal-to-Noise Ratio (SNR) are plotted. The SNR is
de�ned as:

SNR =
PSPH
PZ

; (34)

where PZ , PS , and PH are average power of AWGN,
transmitted signal, and channel fade Hm, respectively.

The BER performances over Rayleigh and Rician
channels are plotted in Figures 5 and 6, when the
receiver knows the locations of the clipped samples.
The analytical BER of conventional OFDM is plotted
based on [25]. As can be seen, the proposed method
suppresses the clipping noise e�ectively while [17]
cannot reconstruct the clipped samples at low clipping

Table 1. The delays and powers of channel taps.

(a) Typical Rural Area (TRA)

Tap number Delay (�s) Power (dB)

1 0.0 0.602

2 0.1 0.241

3 0.2 0.096

4 0.3 0.036

5 0.4 0.018

6 0.5 0.006

(b) Typical Urban (TU)

Tap number Delay (�s) Power (dB)

1 0.0 -3

2 0.2 0

3 0.5 -2

4 1.6 -6

5 2.3 -8

6 5.0 -10

Figure 5. BER performance over TU channel model
when receiver knows the locations of clipped samples. As
shown, the proposed method has low BER degradations
with respect to non-clipped (original) OFDM signal.

ratios such as 1 dB and 2.5 dB. Hence, the proposed
method has better stability than [17] at lower clipping
ratios because it only reconstructs amplitudes by using
iterative Jacobi sequence (Eq. (30)). Figure 7 illus-
trates e�ects of Jacobi numerical scheme and amplitude
reconstruction method on error performances. This
�gure implies that both of the mentioned techniques
increase stability of reconstruction.

Figure 8 depicts the BER performances of the
proposed method over TRA channel when the receiver
does not know the locations of the clipped samples
and must estimate them. The locations of clipping
are estimated approximately by using a simple thresh-
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Figure 6. BER performance over TRA channel when
receiver knows the locations of clipped samples. As shown,
the proposed method has low BER degradations with
respect to non-clipped (original) OFDM signal.

Figure 7. E�ects of Jacobi numerical scheme and
amplitude reconstruction technique on error performances
when CR = 2 (dB).

old. Then, linear system, A�x = b, is prepared by
employing the estimated locations and reconstructing
their amplitudes based on the solution of linear system.
As Figure 8 illustrates, performance of the proposed
method can be acceptable even when receiver has no
knowledge of locations of clipped samples.

5.3. Complexity analysis
Our proposed method uses oversampled signal clipping
and �ltering at the transmitter and, at the other
side, the receiver compensates BER degradation by
reconstructing amplitude of clipped samples. The
proposed reconstruction method requires a pair of
FFT/IFFT and L2 multiplications in order to prepare
the Jacobi matrix and Jacobi vector. The sequence (30)
also needs L(L � 1) multiplications in each iteration.

Figure 8. BER performance over TRA channel when
receiver does not know the locations of clipped samples.

Thus, the overall complexity of the proposed method
is L(L � 1)tmax + L2 + JN log2(JN) complex multi-
plications/divisions and L(L� 1)tmax + 2JN log2(JN)
complex additions at the receiver where tmax indicates
the maximum number of iterations.

On the other hand, we know that System (7)
can be written as Vandermonde matrices and solved
by the Vandermonde least square methods as in [27-
29]. The order of complexities of these methods is
O((J�1)NL+L2), whereas the complexity order of the
proposed technique is O(L2). For a reasonable PAPR
value, the number of clipped samples is usually much
less than the total number of out-of-band components,
i.e. L << (J � 1)N . Therefore, the complexity order
of the proposed solution is less than those of [27-29].

For the aforementioned OFDM system, the ap-
proximate numbers of multiplications and divisions
carried out in the proposed and other methods are
listed in Table 2. Based on this table, the proposed
method reduces the complexity of [17] more than 300
times.

Table 2. Approximate comparison of complexities.

Method Approximate number of
multiplications/divisions

[17], CR = 1:0 dB 4:3� 109

[17], CR = 2:5 dB 1:6� 109

Proposed,

CR = 1:0 dB,

10 iterations

1:2� 107

Proposed,

CR = 2:5 dB,

10 iterations

4:8� 106
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Figure 9. Average number of multiplications/divisions
required for [17] and the proposed method for OFDM
systems with 16-QAM and N subcarriers.

The average numbers of multiplications/divisions
for various clipping ratios and several cases of N are
plotted in Figure 9. This �gure shows that complexity
of the proposed method is much less than that of the
other method.

6. Conclusion

This paper introduced an innovative amplitude re-
construction method and demonstrated that it was
capable of o�ering superior features for clipped signals
(OFDM, OFDMA, or single-carrier). The proposed
model used clipping and �ltering technique at the
transmitter to reduce the PAPR and reconstruct the
clipped samples at the receiver without any knowledge
about modulation and channel code. It was found that
bandwidth expansion was required in order to recon-
struct the clipped samples e�ectively at a reasonable
degree of complexity. The presented algorithm has the
potential to be used in other similar approaches such
as [17-21] where DFT-based least square equations are
required. Simulation results con�rm its outstanding
BER performance at reasonable PAPR compared to
the similar methods considered.
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