
Scientia Iranica D (2017) 24(3), 1335{1343

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

Research Note

Time complexity of two disjoint simple paths

M. Razzazia and A. Sepahvanda,b;�

a. Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, P.O. Box
15875-4413, Iran.

b. School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, P.O. Box 19395-5746, Iran.

Received 26 April 2015; received in revised form 22 February 2016; accepted 14 May 2016

KEYWORDS
Hamiltonian path;
NP-complete;
Planar graph;
Simple path.

Abstract. Finding two disjoint simple paths on two given sets of points is a
geometric problem introduced by Je� Erickson. This problem has various applications
in computational geometry, e.g. robot motion planning, generating polygon, etc. We will
present a reduction from planar Hamiltonian path to this problem, and prove that it is NP-
complete. To the best of our knowledge, no study has considered its complexity up until
now. We also present a reduction from planar Hamiltonian path problem to the problem
of \�nding a path on given points in the presence of arbitrary obstacles" and prove that it
is also NP-complete. Also, we present a heuristic algorithm with time complexity of O(n4)
to solve this problem. The proposed algorithm �rst calculates the convex hull for each of
the entry points and then produces two simple paths on the two entry point sets.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

This problem has various applications in path planning,
VLSI, etc. Assume there are two pairs of sets of
robots R1 and R2 where robots in R1 and R2 give
sets of services s1 and s2, respectively; R and B sites
(points) in a set need the sets of services s1 and s2,
respectively. The amount of time which each robot
spends to give a service is not �xed. We want to
�nd a simple path within each set of R and B so that
these two paths are disjoint and the robots of one set
(R or B) can be stationed at one end point of the
related path to start o�ering the services. By choosing
two simple and disjoint paths, we avoid collision of
robots.

In the mathematical �eld of graph theory, the
Hamiltonian path problem and the Hamiltonian cycle
problem are problems of determining whether a Hamil-
tonian path (a path is an undirected or directed graph
that visits each vertex exactly once) or a Hamiltonian

*. Corresponding author.
E-mail address: A.sepahvand@aut.ac.ir (A. Sepahvand)

cycle exists in a given graph (whether directed or
undirected). Both problems are NP-complete [1,2].

There is a simple relation between the problems
of �nding a Hamiltonian path and a Hamiltonian cycle.
In one point of view, the Hamiltonian path problem for
graph G is equivalent to the Hamiltonian cycle problem
in a graph H obtained from G by adding a new vertex
and connecting it to all vertices of G. Thus, �nding a
Hamiltonian path cannot be signi�cantly slower (in the
worst case, as a function of the number of vertices) than
�nding a Hamiltonian cycle. In another point of view,
a graph G has a Hamiltonian cycle using edge uv if and
only if the graph H obtained from G by replacing the
edge by a pair of vertices of degree 1, one connected to
u and one connected to v, has a Hamiltonian path.
Therefore, by trying this replacement for all edges
incident to some chosen vertex of G, the Hamiltonian
cycle problem can be solved by at most n Hamiltonian
path computations, where n is the number of vertices
in the graph [1].

The Hamiltonian cycle problem is also a special
case of the travelling salesman problem, obtained by
setting the distance between two cities to one if they are

1336 M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343

adjacent and to two otherwise, and verifying that the
total distance travelled is equal to n (if so, the route is a
Hamiltonian circuit; if there is no Hamiltonian circuit,
then the shortest route will be longer) [3].

There are several di�erent de�nitions of path;
simple path is a sequence of points connected to each
other with line segments such that the segments do
not intersect each other. Self-intersecting path is like
a simple path but segments intersect each other. A
close path is a simple or self-intersecting path where
there exists a line segment between the �rst and the
last points of the path.

1.1. Drawing two disjoint simple paths on two
sets of points

Je� Erickson in [4] introduced the problem of �nding
two simple paths that had no intersection together. In
technical terms, given two sets of points X, and Y in
the plane, how we can �nd two disjoint simple paths
from the whole points of each set or report that no such
paths exist. Figure 1 shows the problem. The points
are in general position. A simple path may also be
called polygonal chain, polygonal curve [5], polygonal
path [6], polyline [7], or piecewise linear curve [7].

This problem has many potential applications in
computational geometry, e.g. navigation, VLSI, robot
motion planning, network design, etc.

This paper is organized as follows. Section 2 will
review related studies; Section 3 will present an NP-
complete proof for the problem and reduction details;
in Section 4, we propose a heuristic algorithm for
the problem mentioned above; and in Section 5, the
conclusion and suggestions for future works will be
presented.

2. Related works

Let X be a �nite set of points and x0; x1; :::; xk 2 X be
some of the points of X; then, L is called an (s;X; t)-

Figure 1. Given two sets of red and blue points, �nd a
path from red points (L1) and a path from blue points
(L2) such that L1 and L2 are disjoint [7].

path. If there exists a path which starts at s = x0, goes
through vertices x1; :::; x(k�1), and ends at t = xk; and
if � is any subset of the plane, then, we say that L
avoids � if L does not intersect �, except for possibly
at points s and t. Cheng, Chrobak, and Sundaram [8]
presented an NP-complete proof for the problem of
computing a simple (s;X; t)-path that avoided �.

Qi Cheng et al. in [8] also showed that the problem
was solvable in polynomial time in a special case. Given
a set of points, X, inside a polygonal region P , and two
distinguished points s; t 2 X, they studied the problem
of �nding the simple polygonal paths that turn only at
the points of X and avoid the boundary of P , from s
to t. Qi Cheng et al. in [8] presented an O(m2n2) time
and space algorithm. Xuehou Tan and Bo Jiang in [9]
reviewed this problem and showed that it can be solved
by O((n2 +m)logm) time, O(n2 +m) space algorithm
for computing a simple path or reporting that no such
path exists, where n is the number of points of X and
m is the number of vertices of P .

Sometimes we may wish to generate a polygon
that uses all points of X, not just a subset. This
naturally leads to the problem of computing simple
Hamiltonian (s;X; t)-paths (that is, simple (s;X; t)-
paths that visit all points of X) that avoid �. It is easy
to see that the problem is NP-complete for arbitrary
obstacles and so is when we restrict our attention to the
case where � = P is a simple polygon and X is inside
(or outside) P . If P is convex, a simple Hamiltonian
(s;X; t)-path that avoids P always exists and can be
computed in time O(nlogn), by using angular orderings
of the points in X in an appropriate fashion. However,
the status of this problem remains open when P is an
arbitrary simple polygon [8].

Alsuwaiyel and Lee [10] showed that �nding a
Hamiltonian (s;X; t)-path (not necessarily simple) in
a simple polygon P is NP-complete. Their proof works
even in the special case when X is restricted to be the
vertex set of P . (Note that the boundary of P is not a
feasible solution if s and t are not consecutive.)

Erickson and LaValle in [11] presented an NP-
Hard motion planning problem, which included path
planning in situations where crossing an obstacle was
costly but not impossible, to �nd the path that crossed
the fewest obstacles. There are, not closely related,
problems, including [12-14], which consider di�erent
versions of �nding disjoint paths inside a set of sources
and a set of targets.

3. Complexity result

In this section, we will prove that drawing two disjoint
simple paths on two sets of points (de�ned in Section
1.1) is NP-complete. At �rst, we will present the
proof idea of reduction, then will prove the mentioned
problem.

M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343 1337

3.1. Proof idea
A planar graph with �xed planar embedding is called
a plane graph. To prove that our problem is NP-
complete, �rst, we prove that the problem of `�nding
Hamiltonian path in straight-line plane graph' is NP-
complete and, then, we reduce this special case of
Hamiltonian path problem to our own problem in
polynomial time.

Theorem 1. Finding Hamiltonian path in any (di-
rected or undirected) planar graph is NP-complete [15].

Theorem 2. Planarity testing can be conducted in
linear time [16-17].

Theorem 3. In linear time, it is possible to �nd planar
embedding from a planar graph [17-19].

Theorem 4. Any plane graph in linear time can be
converted to straight-line embedding of the graph [20-
22].

We call the straight-line embedding of a plane
graph Straight-Line Plane Graph (SLPG). Algorithms
for constructing planar line segment grid drawings,
where the edges had integer coordinates, were devel-
oped by de Fraysseix, Pach, and Pollack [20] (shift
method) and by Schnyder [21] (realizer method). They
independently showed that every n-vertex planar graph
had a planar line segment grid drawn with the height
O(n) and the width O(n), resulting in the area of
O(n2). Fraysseix et al. [20] conjectured that its com-
plexity could be improved to O(n). This bound was in
fact achieved a few years later by Chrobak and Payne
in [22].

Theorem 5. The problem of �nding Hamiltonian path
in a straight-line plane graph is NP-complete.

Proof. Using Theorems 1 to 4, we can simply
conclude that �nding Hamiltonian path in SLPG is NP-
complete.�

We then call \Hamiltonian path problem in
SLPG" ham-path problem.

Lemma 1. Any planar graph G = (V;E) can be
converted to two sets of points U = V , and W =
fw1; w2; :::; wkg (wis are points) in the plan such
that 8u; v 2 V ; if (u; v) 2 E, then u; v 2 U are
visible together; else 9wi such that u; v; wi are collinear
and wi is between u; v; it means, u; v 2 U are not
visible together because wi blocks their visibility as an
obstacle.

Proof. According to Theorems 2 to 4, any planar
graph can be converted to an SLPG and any SLPG
G = (V;E) can be converted to two sets of points U =

V; W = fw1; w2; :::; wkg with the following algorithm:

Convert SLPG
Input: graph G = (V;E)
Output: two sets of points U;W with the

mentioned condition in Lemma 1.
Begin

Set U = V
Set k = 0
Set w = �
De�ne H = (U;E0) a complete graph
For each (u; v) 2 E0
Begin

If (u; v) =2 E
Begin

De�ne wk a point
between u; v

Set W = W [wk
Set k = k + 1

End
End
Return U;W

End

Execution of the above algorithm on a sample
input and its output is shown in Figure 2 (as set of
red and blue points).

Clearly the condition mentioned in Lemma 1 is
satis�ed.�

Observation 1. Consider W as obstacles (blue points
in Figure 2); if we can �nd a path containing all the
points in U in such a way that the path does not cross
the obstacles, clearly, we can �nd a Hamiltonian path
in G, because two vertices are visible in U if there exists
an edge between them in G.

Theorem 6. Finding a path on the given points and
arbitrary obstacles in the plane is NP-complete.

Figure 2. (a) Input graph SLPG G = (V;E). (b)
Complete graph H = (U;E0). Blue edges are not in G. (c)
Output of the algorithm that includes two sets of points
with the conditions mentioned in Lemma 1.

1338 M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343

Proof. Directly concluded from lemma 1 and observa-
tion 1.�

Until now we have not proven that our de�ned
problem is NP-complete, but in Section 3.2 we will
present a reduction from ham-path using the above-
mentioned idea.

3.2. Details of reduction
To prove that the problem of \drawing two disjoint
simple paths on two sets of points" (disjoint path
for short) is NP-complete, we will reduce ham-path
problem to it as follows.

Given a planar graph G = (V;E) with line
segments as edges, with the function below, we can
make two sets of points U;W such that U = V ; and
if there exists a path containing the points of U , there
exists a path containing the points of W too.

De�nition 1. For each vertex v 2 V , extending each
edge connected to v is called an extending edge of v.
These edges are called extended edges. This extension
will divide the plane into some regions (Figure 3).

Convert Function 2
1 Input: graph G = (V;E)
2 Output: two sets of points with the mentioned

condition in Lemma 1 (and some more
points as described later)

3 Begin
4 Set U = V
5 Set k = 0
6 Set w = �
7 De�ne H = (U;E0) a complete graph
8 For each (u; v) 2 E0
9 Begin

10 If (u; v) =2 E
11 Begin
12 De�ne wk; wk+1 two points

between u; v with jjwk � ujj = "
and jjwk+1�vjj="

13 Set W = W [fwk; wk+1g
14 Set k = k + 2
15 End
16 End
17 For each vertex v 2 V
18 Begin
19 Extend edges of v
20 For each region ri of v
21 Begin
22 If @wi 2W in region ri

with jjwi � vjj = "
23 Begin
24 De�ne wk a point in

region ri with jjwk�vjj="
25 Set W = W [wk
26 Set k = k + 1
27 End
28 End
29 For each extended edge e of v

Figure 3. Extending edges of vertex v and respective
regions. Dash lines are extended edges.

30 Begin
31 De�ne wk a point on e

with jjwk � vjj = "
32 Set W = W [wk
33 Set k = k + 1
34 End
35 End
36 Return U;W
37 End

The output of Convert Function 2 includes two
sets of points, U and W , such that U = V and
W contains some points that satisfy the condition of
Lemma 1 and some other points. Points inserted into
W are shown in Figure 4. These points are added in
such a way that all of them can be connected to each
other as a cycle if there exists a path containing the
points of U .

Claim 1. If there exists a path containing the points
of U , there exists a cycle containing the points of W .

Proof. Points added to W are added in such a way
that guarantee the above claim. If there exists a simple
path containing U , we add the points to W such that
we can have a cycle just moving near the path with
about epsilon distance from it (Figure 5).

To explore more, let L = fp1; p2; :::; pkg be the
path that contains the points of U such that p1; and
pk are the end points (just one edge is connected to
them). In the above algorithm, we inserted at least
three points in W with epsilon distance from these end
points (Figure 6(a)).

Knowing this, we can connect these points (three
or more) together as it is shown in Figures 6(b) and
5. We need these properties to make a simple path
containing the points of W .

For v = pi; 1 < i < k, there exists at least �ve
points in W that are on the concave side of point
pi with distance epsilon from pi (Figure 7(a)), and
there exists at least one point in W that is on the
convex side of the point pi with distance epsilon from
pi (Figure 7(a)).

M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343 1339

Figure 4. The output of Convert Function 2: (a) Red points and red lines represent input graph G = (V;E) and all line
segments (blue and red) represent the complete graph H = (U;E0), (b) lines 8-16 of the function will add blue points to W ,
(c) black lines are extended edges of v 2 V (line 19 of the function), (d) lines 20-28 of the function will add green points to
W , (e) lines 29-34 of the function will add purple points to W , and (f) output of the algorithm: red points are in U and
other points are in W (di�erent colors for points are used for well understanding; all points in W play the same role).

Figure 5. Red line segments are a path containing the
points of U . Black line segments are a cycle containing the
points of W .

Figure 6. (a) There are at least three points in W with
distance epsilon from the end point v. (b) The points can
easily be connected with epsilon distance from v.

We can easily connect all such points on the
concave side as shown in Figure 7(b). This trick
is useful for turning around pi; 1 < i < k and to
build a simple path containing all the points of W .
By continuing these connecting points (as mentioned),
there will be a chain containing the points of W .�

Figure 7. There exist at least �ve points on the concave
side of vertex v and at least one point on its convex side.

As mentioned in Observation 1 and Claim 1, we
can �nd a path from U if and only if we can �nd a
Hamiltonian path from V . Thus, we have the following
theorem.

Theorem 7. \Drawing two disjoint simple paths on
two sets of points" is NP-complete.

Proof: Clearly, if we have two disjoint simple paths,
simply, we can verify their disjointness in polynomial
time; thus, the problem is NP. Because of the reduction
mentioned in this section, we can conclude that the
problem is NP-complete.�

1340 M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343

4. The proposed algorithm

In this section, we present a heuristic algorithm in
order to �nd two simple and distinct Paths from the
set of entry points, namely, red (R) and blue (B). The
objective is to minimize the intersection points between
the two obtained paths.

First, we separately generate the convex hull for
each R and B sets and we call the sets of edges of these
convex hulls RCH and BCH, respectively (Figure 8(b)).
By randomly removing an edge from RCH and BCH
so that they have the highest numbers of intersections
with the other CH, we obtain two simple red and blue
paths (Figure 8(c)). Then, according to Algorithm 1,
we add to each path, depending on the color of the
path, those points in R or B sets that are not members
of the path. Assume p is any given point and q is one
of the two end points of a path x; we say q is visible
from p (similarly p is visible from q) if pq (qp) does not
intersect path x, except at q(p). The point p is visible
form edge (u; v) of path x, if neither edge (p; u) nor
(p; v) intersect with path x (also edge (u; v) is visible
from point p). For example, in Figure 8(d), point rp is
visible from e1; e4; p1, and p2 of the red path, and point
rp is not visible form e2 and e3 of the red path.

Figure 8. (a) The entry points sets. (b) Convex hulls of
red and blue points sets are generated and the re edge is
selected randomly from the convex hull of the red points
set, and the be edge from the convex hull of blue points set
in order to be removed. (c) Omission of re and be edges
from convex hull. (d) The rp point is selected to be added
to the red path and is visible from e1; e4; p2, and p1. (e)
The output of applying the algorithm.

In Algorithm 1 we �rst generate the convex hull
of two sets. Then, we remove one of the edges which
has the most intersections with the other convex hull
(lines 5-8). We start to add free we call a red (blue)
point free if it is not connected to the red (blue) chain
yet. red and blue points to corresponding chains (lines
9-51). Lines 10-29 add the free red points to the red
chain and lines 30-50 add the free blue points to the
blue chain. A red point rp is added to a red path x by
doing the following.

rp is connected to any endpoint of the path x
which is visible from rp; otherwise, it �nds an edge
(u; v) of path x which is visible from rp, removes (u; v)
from path x, and adds edges (rp; u) and (rp; v) to path
x. Similar steps are taken for adding a blue point to
the blue path. In rare cases that such an endpoint or
edge cannot be found (see Section 4.2), the algorithm
is restarted. For example, Figure 8 shows these
operations on the given sample red and blue points.

4.1. Analysis of the proposed algorithm
Assuming that n = maxfthe number of blue and red
pointsg, calculating the convex hull by using Graham's
algorithm takes O(nlogn). Checking whether the two
edges have any intersection with each other or not takes
a constant time. Steps 5-8 at most take the time O(n2).
Most of the time needed for adding a point p to a path
belong to �nding the visible edges of a path from the
point p; this takes the time O(n3). We add n points to
the path so that time complexity of the entire algorithm
becomes O(n4). In �nding the above complexity, we
use naive algorithms. Clearly, there are more e�cient
algorithms for visibility and �nding intersections of
two convex hulls, by using which complexity could be
reduced signi�cantly.

4.2. A special case of the algorithm
A condition may occur such that none of the remaining
points from a point set is visible from any of the edges
or points at the two ends of the path. If this special case
occurs, we execute Algorithm 1 from the beginning.
Figure 9 shows an example of this special case.

We executed the proposed algorithm 100,000
times on a point set which included the set point of

Figure 9. The point p is not visible from any of the edges
or end points of a path.

M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343 1341

Algorithm 1. Computing two disjoint simple paths from two sets of red and blue points.

Figure 9, and in 99,742 executions the algorithm suc-
cessfully produced a simple path in the �rst run. Also,
in order to successfully test the proposed algorithm,
we used point-set cardinalities: 10, 20, 30,..., 100, 130,
160, 190, and 220. For each cardinality, we randomly
generated 1000 pairs of point sets, one for the set of
red points and the other for the set of blue points. The
proposed algorithm was executed 10,000 times on each
pair of point sets. Figure 10 shows the probability of
the algorithm's success at the �rst run.

4.3. The proposed algorithm test
In order to test the proposed algorithm, we used point-
set cardinalities: 10, 20, 30,..., 90, 100. For each
cardinality, we randomly generated 100 pairs of point
sets, one for the set of red points and the other for the
set of blue points. We executed the proposed algorithm
1000 times on each pair of point sets. Table 1 shows
the obtained results.

Figure 10. The probability of success of the proposed
algorithm at the �rst run on the set of entry points.

We designed an exact algorithm with exponential
time complexity to obtain the optimum solution. Using
this exact algorithm, we carried out the following tests:
we used point-set cardinalities: 5; 6; 7; :::; 11; 12; for
each cardinality, we randomly generated 100 pairs of

1342 M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343

Table 1. The results obtained from the implementation of the proposed algorithm.

Number of
entry points
from each

color

The minimum number
of created intersections

by the proposed
algorithm

The maximum number
of created intersections

by the proposed
algorithm

The average number
of created intersections

by the proposed
algorithm

10 0 7 1.95
20 0 19 5.41
30 1 27 10.63
40 1 35 15.16
50 4 47 19.10
60 8 53 24.87
70 11 60 29.59
80 16 77 33.77
90 17 81 37.63
100 22 86 37.54

Table 2. The results of executing the optimal algorithm and the proposed algorithm.

Number of
entry points
from each

color

The minimum number
of created intersections

by the proposed
algorithm

The maximum number
of created intersections

by the proposed
algorithm

The average number
of created intersections

by the proposed
algorithm

5 3 0.34 0.64
6 5 0.63 0.83
7 4 0.91 1.17
8 6 0.98 1.34
9 5 1.11 1.5
10 5 1.13 1.91
11 6 1.43 2.13
12 9 1.57 2.51

point sets, each pair consisting of a set of red points
and a set of blue points, with both sets having the
same cardinality. For each pair of point sets, we ran
the proposed algorithm 1000 times and calculated the
average and the maximum number of intersections.
Table 2 shows the results.

5. Conclusion and future works

In this paper, we presented proof of NP-completeness
for �nding two disjoint simple paths on two given sets of
points. Also, we proved that �nding a path on a given
set of points in presence of arbitrary obstacles is NP-
complete. These proofs were done by reduction from
planar Hamiltonian path problem. Finding two disjoint
paths on two given sets of points has application in
robots motion planning, polygon generation, etc. Also,
we proposed a heuristic algorithm to solve this problem
in polynomial time, the objective of which was to
minimize the number of intersection points between the
two paths.

We discussed the problem in the two-dimensional
space. As a future work, this problem can be general-
ized to higher dimensions. Another interesting problem
is �nding a path on the given points while a path
as an obstacle exists. By solving this problem, some
problems mentioned in [8] may be easily solved.

Acknowledgment

The authors would like to thank the anonymous re-
viewers for their valuable comments and suggestions to
improve the quality of the paper. This research was in
part supported by a grant from IPM (No. CS1396-5-
01).

References

1. Michael, R.G and David, S.J., Computers and
Intractability: A Guide to the Theory of NP-
Completeness, pp. 199-200, W.H. Freeman, US (1979).

2. Karp, R. \Reducibility among combinatorial prob-

M. Razzazi and A. Sepahvand/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1335{1343 1343

lems", In Complexity of Computer Computations, R.
Miller, J. Thatcher and J. Bohlinger, pp. 85-103,
Springer, US (1972).

3. Gupta, P. and Varshney, M., Design and Analysis of
Algorithms, p. 374, PHI Learning, New Dehli (2012).

4. Erickson, J. \Generating random simple polygons",
(1999, 2001). From http://je�e.cs.illinois.edu/open/
randompoly.html.

5. Gomes, J., Velho, L. and Sousa, M.C., Computer
Graphics: Theory and Practice, p. 186, CRC Press,
New York (2012).

6. Cheney, W., Analysis for Applied Mathematics,
Springer Science & Business Media, New York, p. 13
(2001).

7. Boissonnat, J.-D. and Teillaud, M. (eds.)., E�ective
Computational Geometry for Curves and Surfaces, p.
34, Springer, Berlin (2007).

8. Cheng, Q., Chrobak, M. and Sundaram, G. \Com-
puting simple paths among obstacles", Computational
Geometry, 16(4), pp. 223-233 (2000).

9. Tan, X. and Jiang, B. \Finding Simple Paths on
Given Points in a Polygonal Region", In Frontiers in
Algorithmics, J. Chen., J. Hopcroft. and J. Wang.,
pp. 229-239, Springer International Publishing, China
(2014).

10. Alsuwaiyel, M.H. and Lee, D.T. \Minimal link visi-
bility paths inside a simple polygon", Computational
Geometry, 3(1), pp. 1-25 (1993).

11. Erickson, L. and Lavalle, S.M. \A simple, but NP-
Hard, motion planning problem", Proceedings of the
27th AAAI Conference on Arti�cial Intelligence, North
America (2013).

12. Bermond, J.C., David, C., Gianlorenzo, D. and Fatima
Zahra, M. \Finding disjoint paths in networks with
star shared risk link groups", Theoretical Computer
Science, 579, pp. 74-87 (2015).

13. Park, J.-H., Joonsoo, C. and Hyeong-Seok, L. \Algo-
rithms for �nding disjoint path covers in unit interval
graphs", Discrete Applied Mathematics, 205, pp. 132-
149 (2016).

14. Xi, W., Jianxi, F., Xiaohua, J. and Cheng-Kuan, L.
\An e�cient algorithm to construct disjoint path cov-
ers of DCell networks", Theoretical Computer Science,
609(1), pp. 197-210 (2016).

15. Garey, M.R., Johnson, D.S. and Tarjan, R.E. \The
planar Hamiltonian circuit problem is NP-complete",

SIAM Journal on Computing, 5(4), pp. 704-714
(1976).

16. Hopcroft, J. and Tarjan, R.E. \E�cient planarity
testing", J. ACM, 21(4), pp. 549-568 (1974).

17. Shih, W.K. and Hsu, W.-L. \A new planarity test",
Theoretical Computer Science, 223(1), pp. 179-191
(1999).

18. Mehlhorn, K. and Mutzel, P. \On the embedding
phase of the Hopcroft and Tarjan planarity testing
algorithm", Algorithmica, 16(2), pp. 233-242 (1996).

19. Chiba, N., Nishizeki, T., Abe, S. and Ozawa, T. \A
linear algorithm for embedding planar graphs using
PQ-trees", Journal of Computer and System Sciences,
30(1), pp. 54-76 (1985).

20. De Fraysseix, H., Pach, J. and Pollack, R. \How to
draw a planar graph on a grid", Combinatorica, 10(1),
pp. 41-51 (1990).

21. Schnyder, W. \Embedding planar graphs on the grid",
Proceedings of the First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, San Francisco, pp. 138-
147 (1990).

22. Chrobak, M. and Payne, T.H. \A linear-time algorithm
for drawing a planar graph on a grid", Information
Processing Letters, 54(4), pp. 241-246 (1995).

Biographies

Mohammadreza Razzazi received the MS degree
in Computer Science from Stanford University and
the PhD degree in Computer Science from the Uni-
versity of California at Santa Barbara. Currently,
he is an Professor in Computer Engineering & IT
Department at Amirkabir University of Technology
(AUT) in Tehran. His primary areas of research
are computational geometry, robotics, and computer
graphics.

Abdolah Sepahvand received the BSc degree in
Computer Engineering in 2013 from Shahid Rajaee
Teacher Training University (SRTTU) and MSc degree
in Computer Engineering in 2015 from Amirkabir
University of Technology (AUT). His research interests
include computational geometry and approximation
algorithms.

