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Abstract. The paper proposes an adaptive Frequency-Domain-based Switching Median
Filter (FDSMF) for the restoration of images corrupted by periodic noise. The proposed
algorithm incorporates region-growing technique to e�ectively identify noisy peak areas of
the Fourier transformed image in a binary noise map image. The restoration phase of the
algorithm replaces the corrupted frequencies with the median of uncorrupted frequencies
by recursive median �lter. Experimental results from di�erent naturally and arti�cially
corrupted images at various noise levels/types reveal that the performance of the proposed
algorithm in restoring images corrupted by periodic noise is better than other competing
algorithms in terms of subjective and objective metrics.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Noise reduction is an important task in image process-
ing to restore images for facilitating pattern recognition
and computer vision applications [1]. Among all
types of noise reduction algorithms, periodic noise
reduction algorithms are of extreme importance since
these noises are very common in all types of imaging
processes [1]. Periodic noise corrupts digital images
by superimposing repetitive patterns in the true signal
content of the image [2]. These noises occur during
the image acquisition phase when images are sensed in
the presence of thermal/electrical/electro-mechanical
interferences. Moreover, they are very common in
aerial images captured by sensors �tted in vibrating
environments like helicopters, aircrafts, satellites, and
moving cameras [3-5]. Medical imaging processes
such as X-ray, Computer Tomography (CT) scan, and
Magnetic Resonance Imaging (MRI) are also a�ected
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by periodic noise due to the errors in Complemen-
tary Metal Oxide Semi-conductor Active Pixel Sensor
(CMOS APS) and Charged-Coupled-Device (CCD)-
based sensors [6,7]. Periodic noise also a�ects digital
images when images are received by TV receivers with
poor signal/transmission strength [8]. Many spatial do-
main methods are proposed in the literature to restore
periodic noise corrupted images by directly applying
�ltering operations to the input corrupted images,
including mean, median [1-3], and soft morphological
�lters [9-13]; but, the performance of these �lters is
limited since it is very di�cult to di�erentiate between
noise and uncorrupted frequencies in spatial domain.

Frequency domain techniques carry out �lter-
ing operation in the transformed domain by using
Discrete Fourier Transform (DFT), Discrete Wavelet
Transform (DWT), Discrete Cosine Transform (DCT),
etc., and inverse transforms provide the restored image
in the spatial domain [1]. The Fourier-Transform-
based frequency domain techniques [14-23] show much
improved performance in denoising periodic noise since
noisy frequencies are clearly di�erentiated in Fourier
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transformed domain by being made look like star/spike
shaped peak areas [1-3]. The basic �ltering techniques
applied in frequency domain to attenuate periodic noise
include Weiner �lter, Ideal and Butterworth low-pass
�lters, band reject �lters, and notch �lter [1]. Ideal
and Butterworth low-pass �lters admit only the low
frequencies clustered around the centre of low fre-
quency in the Fourier transformed image and, thereby,
cannot maintain image �delity in the restored image,
since these algorithms discard all high frequencies
irrespective of their corruption status. Speci�c circular
region around the centre of low frequency in Fourier
domain is completely rejected by the band reject �lters
to dispose noisy frequencies, while regions centred at
speci�c frequency are rejected by the notch �lter [1].
The notch �lters have advantage over band reject
�lters since they discard only small portions of the
band. Among all notch �lters, the Gaussian notch
�lter plays an important role in denoising of periodic
noise corrupted images since it not only discards the
corrupted centre frequency peak but also suppresses
its neighbouring frequencies corresponding to the noisy
peak areas. This advantage of Gaussian notch �l-
ters motivated later algorithms [19-22] to incorporate
Gaussian notch-based correction algorithms in their
�ltering operation. Aizenberg and Butako� proposed
three �lters by incorporating noisy peak identi�cation
and correction phases to restore images [17-19]. The
Gaussian notch-based restoration �lter proposed by
Aizenberg and Butako� [19] identi�es a frequency in
the Fourier domain to be corrupted when the ratio of
the frequency value to the median frequency value from
the pre�xed neighbourhood exceeds a static threshold.
The �lter di�uses these corrupted frequencies by ap-
plying Gaussian notch �lter with pre�xed window size.
Many variations of this �lter have been developed by
attempting at di�erent peak detection and Gaussian
notch �ltering schemes [8,20,21], but these algorithms
fail to e�ectively restore periodic noise due to the
following di�culties:

1. Gaussian notch �lters reject the noisy peak fre-
quency without restoring it by uncorrupted neigh-
bouring frequencies;

2. It is very di�cult to make the �ltering window size
adaptive to varying noise levels;

3. The coe�cients of Gaussian notch �lter are de-
signed in accordance with the distance without
making them adaptive to the noisy frequency val-
ues; hence, these coe�cients are not precise enough
to di�use the noisy peak areas.

Hudhud and Turner [22] proposed a semi-
automated algorithm that manually identi�ed the noisy
peak positions by replacing the noisy frequencies with
median of the neighbouring uncorrupted frequencies.

Konstantinidis et al. [23] proposed an interpolation-
based �lter to restore images by using pre�xed cross
shaped window, but this �lter could not perform e�ec-
tive restoration since the window size was not adaptive
to the varying noise strength. The peak detection
procedure employed by Gr�ediac, et al. [24], and Sur
and Gr�ediac [25] algorithms uses static approximation
of power law transformation, but it is not adaptive to
the corrupting noise and image types.

The paper presents an adaptive Frequency-
Domain-based Switching Median Filter (FDSMF) op-
erator for the restoration of periodic noise corrupted
images by incorporating region-growing-based noise de-
tection and median-based noise correction phases. The
paper is organized in four sections. Section 2 describes
the proposed restoration �lter. Section 3 provides the
experimental result analysis, and conclusions are �nally
made in Section 4.

2. Proposed FDSMF algorithm

The proposed frequency-domain-based Switching Me-
dian Fillter (FDSMF) algorithm restores images cor-
rupted with periodic noise by incorporating the distinct
stages of noisy frequency identi�cation and correction.
The input corrupted image is Fourier transformed and
its origin is shifted to the centre for isolating noisy
frequencies. The origin shifted Fourier transformed
image F of the input corrupted image A of size M �N
is determined as:

F (u; v)=
1

MN

M�1X
x=0

N�1X
y=0

(�1)x+yA(x; y)e�j2�(uxM + vy
N ):

(1)

Here, u = 0; 1; 2; � � � ;M �1, v = 0; 1; 2; � � � ; N �1, and
(�1)x+y represent shifting operation. The algorithm
uses `�t2' and `�tshift' functions of Matlab software
to perform Eq. (1). The noise identi�cation stage of
the proposed algorithm detects the corrupted frequency
positions in a binary 
ag image by �nding the noisy
peak areas in the origin shifted Fourier transformed
image F . The noise correction phase of the proposed
algorithm replaces the detected noisy frequencies in F
by a valid restorer to di�use the noise. Figure 1(b)
shows the Fourier transformed image of Figure 1(a).

It can be observed that the noisy frequencies
spreading throughout the corrupted image in spatial
domain (Figure 1(a)) are concentrated in the Fourier
transformed image, causing the star/spike-like appear-
ance outside the low frequency region. The motivation
and goal of the proposed algorithm is to e�ectively
identify and restore these corrupted peaks in frequency
domain.

2.1. The noise detection phase
The noise detection phase of the proposed algorithm
records the noisy frequency positions in a binary noise
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Figure 1. Di�erent stages of FDSMF: (a) Corrupted Image, (b) Fourier transformed image, (c) di�erence image, (d) seed
points identi�ed, (e) initial noise map image, (f) �nal noise map image, (g) restored frequency domain image, and (h) �nal
restored image.

map image f of the same size M � N as the input
corrupted image A. The aim of the noise detection
algorithm is to set `1' at the positions of the binary
noise map image f , corresponding to the position of
corrupted frequencies in the Fourier transformed image
F . As an initial step, the algorithm resets all positions
of binary noise map image f to `0', assuming that all
the frequencies in F are uncorrupted; hence:

f=ff(i1; i2)=0 : 0 � i1 �M�1; 0 � i2 � N�1g :
(2)

The noise detection phase of the proposed algorithm
starts by isolating the noisy frequency areas from the
uncorrupted ones by �nding the average di�erence of
each pixel from its neighbors to better identify the noisy
peak areas. The iterative peak detection stage of the
noise detection algorithm �nds the largest frequency
peak outside the prede�ned low-frequency region. If
the maximum peak value of the iteration is greater than
the determined threshold, region-growing algorithm is
applied to the frequency di�erence image by taking
the largest peak point as the seed point. The posi-
tions of the corrupted areas identi�ed by the region-
growing algorithm are recorded in the binary 
ag
image to indicate the noisy positions and, accordingly,
the recorded peak areas of the di�erence frequency
image are di�used to zero in order to prevent these
peak positions from participating in the subsequent
iterations to �nd the remaining noisy peaks. The
iterations of the algorithm are continued until the
current iteration of the algorithm cannot detect any
new noisy peak areas. The algorithm is explained
through the following steps:

- Step i. In order to highlight the noisy frequency
peaks and to suppress other uncorrupted areas of

the frequency domain image to make the iterative
peak detection process easy, the algorithm �nds the
average di�erence image D as:

D(u; v)=
1

(W1)2

K1X
k=�K1

K1X
l=�K1

jF (u; v)�F (u+k; v+l)j:
(3)

Here, W1 is the window size for �nding the average
di�erence and is equal to (2K1 + 1), where K1 is a
positive integer not less than 1. The value of D(u; v)
is the average di�erence of frequency value F (u; v)
from the neighbouring values. The di�erence image
generated from Figure 1(b) is shown in Figure 1(c).
The peak detection process of the proposed algo-
rithm is iterative and it produces two sequences of
binary noise map and frequency di�erence images in
all iterations. The binary noise map image sequence
is f0; f1; f2; � � � , where f0 = f is the binary noise
map image in the 0th iteration and the frequency
di�erence image sequence is D0; D1; D2; � � � , where
D0 = D is the frequency di�erence image in the 0th
iteration;

- Step ii. The algorithm identi�es the position (i1; i2)
corresponding to the maximum peak value among
all the frequency di�erence values of the average
di�erence image Dn of the nth iteration by avoiding
the low frequency region RLF ; it is determined by:

(i1; i2)=argmax
(k;l)

fDn(k; l) : (k; l)2fDom(F )nRLFgg;
(4)

where `n' is the set di�erence operator and the region
of low frequency RLF is the set of low frequency
positions de�ned by:

RLF =f(k; l) :d(k; l)�T18(k; l) 2 Dom(F )g: (5)

Here, T1 is a threshold that di�erentiates between
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low- and high-frequency areas of frequency domain
image and the domain of F ; also, Dom(F ) is the set
of spatial positions of F de�ned by:

Dom(F ) = f(k1; l1) : 0 � k1 < M; 0 � l1 < Ng:
(6)

Also, d(k; l) is the Euclidian distance between the
pixel positions (k; l) and the centre of the image,
(M2 ;

N
2 );

- Step iii. If the maximum peak value, Dn(i1; i2),
corresponding to the position (i1; i2) detected in the
nth iteration is greater than a prede�ned threshold
T2, it is detected as a noisy peak. Accordingly,
the peak position (i1; i2) is fed into region-growing
algorithm as a seed point for identifying and record-
ing of the peak areas associated with this peak
in the noise map image of the nth iteration, fn.
If 
W (i1; i2) generalizes the set of pixel positions
de�ned by neighborhood W �W centred at position
(i1; i2), 
W (i1; i2) is mathematically expressed as:


W (i1; i2) =

8<: (j1; j2) :i1�K�j1� i1+K; i2

�K � j2 � i2 +K

9=; :
(7)

Here, K = (W � 1)=2, and W is an odd integer
not less than 3. If W2 � W2 denotes the window
size used for the region-growing process, the region-
growing algorithm is detailed through the following
sub-steps;
- Step iii.a. The window W2 �W2 and the max-

imum window size, Wmax � Wmax, used in the
region-growing algorithm are respectively initial-
ized by 3� 3 and 15� 15;

- Step iii.b. The corresponding frequency positions
of the peak area associated with the peak fre-
quency value, Dn(i1; i2), in the di�erence image,
Dn, are identi�ed in the set S by checking the ab-
solute di�erence between the peak frequency value
and the di�erence image value whose positions are
de�ned by the set 
W2(i1; i2) as:

S=

8>>>><>>>>:
(j1; j2) :(j1; j2) 2 
W2(i1; i2);

fn(j1; j2) = 0 and

jDn(j1; j2)�Dn(i1; i2)j � T3

9>>>>=>>>>; :
(8)

Here, T3 is a threshold used for detecting the noisy
peak areas. It is to be noted that the noisy peak
positions that are not yet recorded in the 
ag
image are collected in the set S;

- Step iii.c. If the set S is found nonempty, the
binary map values of the noise map image in
the n + 1th iteration, fn+1, corresponding to the

pixel positions caught in the set S are marked
by `1' since these positions are detected as noisy
frequency areas; hence:

fn+1(j1; j2) =

(
1 if (j1; j2) 2 S
fn(j1; j2) Otherwise

(9)

Accordingly, the corresponding di�erence values
of Dn+1(j1; j2) in the n+1th iteration correspond-
ing to these noisy areas are di�used to `0' in order
to prevent these areas from participating in the
subsequent iterations while detecting new noisy
peak positions, i.e.:

Dn+1(j1; j2) =

(
0 if (j1; j2) 2 S
Dn(j1; j2) Otherwise (10)

The region-growing process is continued with the
increased window size, W2 = W2 + 2, from Step
iii.b if W2 < Wmax;

- Step iii.d. Otherwise, if S is found empty,
the iterative peak detection process is continued
to the n + 1th iteration from Step ii since the
region-growing algorithm in the iteration n stops
adding new pixel positions in the noise position
set S. Unlike normal region-growing algorithms
that use average of already grouped pixels to
check the similarity, the proposed region-growing
algorithm uses the centre peak value to check the
similarity and, thereby, the positions for adding
noisy frequency to the noise map image.

- Step iv. If the maximum peak value, Dn(i1; i2),
detected in Step iii is found less than the prede�ned
threshold, T1, the algorithm stops the iterative noise
map identi�cation process since all the noisy areas
in the di�erence image are caught in the noise map
image, fn. The detected peaks from the di�erence
image (Figure 1(c)) are shown in Figure 1(d). The
noise map generated from Figure 1(d) using the
region-growing algorithm is provided in Figure 1(e);

- Step v. The binary noise map image generated by
the proposed noise detection process normally con-
tains breaks and gaps, and these gaps and breaks are
�lled by applying morphological closing operation to
perform better identi�cation of noisy areas in the
frequency domain. The �nal noise map image f is
given by:

f = fn � b: (11)

Here, `�' and b are the morphological closing oper-
ation and the structural element, respectively. The
algorithm uses a 
at 3� 3 square structural element
to perform morphological closing operation. The
�nal noise map image determined from Figure 1(e)
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by applying the morphological closing operation is
provided in Figure 1(f). Once the �nal noise map
image f is generated, it is fed into the restoration
algorithm for restoring the corrupted frequencies.
The restoration process is explained in the following
subsection.

2.2. The noise correction phase
The �ltering algorithm of the proposed scheme is a
variation of standard recursive median �lter [1] and
it restores the detected periodic noise corrupted fre-
quencies in F by the median of uncorrupted frequencies
from the static neighborhood. The algorithm uses the
corrupted/purity status of the frequencies in the 
ag
image f provided by the noise detection algorithm.
The noise detection algorithm sets `1' at all positions
of the binary noise map image f corresponding to
the position of corrupted frequencies in the Fourier
transformed image F . The median �lter used in the
�ltering stage is recursive since it uses the previously
restored frequencies to restore the current corrupted
frequency. The proposed �ltering scheme restores all
corrupted frequencies in corrupted frequency image
F for all positions (j1; j2) 2 Dom(F ) starting from
position (0; 0) and is tracked through the following
steps. Dom(F ) is de�ned in Eq. (6).

- Step i. If the binary noise map value, f(j1; j2),
corresponding to the frequency image value F (j1; j2)
at position (j1; j2) is `0', F (j1; j2) is retained in the
restored frequency image since F (j1; j2) is uncor-
rupted and the algorithm is continued from Step iii;

- Step ii. Otherwise, if the binary noise map
value, f(j1; j2), corresponding to the frequency im-
age value, F (j1; j2), at position (j1; j2) is `1', the
output frequency image value, F (j1; j2), is restored
with the median of uncorrupted frequencies of the
frequency image F whose positions are de�ned by

W3(j1; j2) since F (j1; j2) is a corrupted frequency.
The proposed restoration algorithm is recursive and
it re-uses some of its previous outputs as inputs
to restore other pixels which are not yet restored.
The algorithm moves from left to right and from
top to bottom to replace the corrupted frequencies.
For example, if W3 = 3, the algorithm replaces
F (j1; j2) with the median of uncorrupted frequencies
covered by 
W3(j1; j2), among which F (j1�1; j2�1),
F (j1 � 1; j2), F (j1 � 1; j2 + 1), and F (j1; j2 � 1)
have already been restored. Hence, irrespective of
the corrupted status of frequency-domain image,
the proposed algorithm ensures the presence of
su�cient uncorrupted pixels in the �ltering window
while replacing a corrupted pixel. Unlike iterative
�ltering, the computational complexity of recursive
�ltering will also be same as that of normal �ltering.
The output and input frequency images are given

with the same notation, F , to indicate that the
�lter is recursive. The operation is mathematically
expressed as:

F (j1; j2) = Median( ): (12)

Here,  is the set of uncorrupted frequencies of F
de�ned by the positions 
W3

j as:

 =

8<:F (l1; l2) :f(l1; l2) = 0 and

(l1; l2) 2 
W3(j1; j2)

9=; : (13)

Accordingly, the algorithm resets the binary map
value, f(j1; j2), to zero since it replaces a corrupted
frequency. This replacement of 
ag value enables
the newly restored frequencies to participate while
�nding the restorer for replacing other neighboring
frequencies;

- Step iii. The restoration process of the next pixel is
continued from Step i and the restoration process is
continued until all the frequencies in F are processed.
The �nal restored frequency image from Figure 1(b)
by the proposed algorithm is shown in Figure 1(g).
It is to be noted that the corrupted frequency peak
areas in Figure 1(b) are well patched by the proposed
algorithm to produce Figure 1(g);

- Step iv. Once all the corrupted frequencies of the
frequency image F are restored by replacing the
corrupted frequencies with the recursive median of
uncorrupted neighboring frequencies, the algorithm
performs the inverses of centre shifting and Fourier
transform to reconstruct the �nal restored image O
as:

O(x; y) =
M�1X
u=0

N�1X
v=0

(�1)x+yF (u; v)ej2�(uxM + vy
N ):

(14)

Here, (�1)x+y represents the shifting operation and
the algorithm uses `i�t2' and `i�tshift' functions of
Matlab software to perform Eq. (14). Since the
algorithm e�ectively detects and restores the noisy
frequency areas to generate the �nal restored image,
it always has the ability to produce better restoration
of images corrupted with high-density periodic noise
as can be viewed from Figure 1(h).

3. Experimental results and analysis

The performance of the proposed FDSMF algorithm,
while restoring arti�cially corrupted images is tested
over 20 di�erent 8-bit images, including Cameraman,
Boats, Lena, Bridge, Man, and Barbara, of which the
Boats, Lena, Barbara, and Cameraman images are
used in this section for performance evaluation. The
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comparative �lters used in the analysis are Standard
Morphological Filter (SMF1)[1], Soft Morphological
Filter (SMF2) [9], Ideal Low-Pass Filter (ILPF) [1],
Aizenburg Mean Filter (AMF1) [17], Aizenberg Median
Filter (AMF2) [18], Windowed Gaussian Notch Filter
(WGNF) [19], Gaussian Star Shaped Filter (GSSF)
[20], Adaptive Optimum Notch Filter (AONF) [8], In-
terpolation Notch Reject Filter (INRF) [23], Brickwall
Notch Reject Filter (BNRF) [23], and Gaussian Notch
Reject Filter (GNRF) [23]. Peak Signal to Noise Ratio
(PSNR) and Mean Absolute Error (MAE) are the
criteria used in this paper to analyze the objective
performance of the algorithms. The formulations for
PSNR and MAE are de�ned in [26]. The visual
detail preservation capability of di�erent algorithms
is assessed with Mean Structural Similarity Index
Measure (MSSIM) while the computational e�ciency
of the algorithms is analyzed with Computational Time
(CT) in seconds.

An Intel Core 2 Duo system with 2.6 GHz and
4 GB RAM is used for testing the algorithms. The
Structural Similarity Index Measure (SSIM) [27] ac-
counts for visual quality assessment similar to human
visual system and is determined for each pixel de�ned
by a window of an image. If Zb and Ob are the image
samples of the same structure from the bth window
respectively from original uncorrupted image Z and
restored image O, the formulation of SSIM is given by:

SSIM(Zb; Ob) =
(2�Zb�Ob+c1) (2�ZbOb+c2)�
�2
Zb+�2

Ob+c1
� �
�2
Zb+�2

Ob+c2
� ;

(15)

where �Zb , �Ob , �Zb , �Ob , and �ZbOb are respectively
the mean of original uncorrupted image, mean of
restored image, standard deviation of original image,
standard deviation of restored image, and joint stan-
dard deviation of original and restored images de�ned
by the window size. Here, c1 and c2 are the constants to
avoid zero denominators. Mean Structural Similarity
Index Measure (MSSIM) is the average of all calculated
SSIMs and is de�ned by:

MSSIM =
1
m

mX
b=1

SSIM(Zb; Ob): (16)

Here, m is the number of local windows used for
determining SSIM. MSSIM is equal to 1 when both the
images are identical. To arti�cially generate periodic
noise for testing the performance of algorithms, the al-
gorithm uses a linear combination of sinusoid functions
with di�erent amplitude and phase angles similar to the
noise function used in [8,20]. These sinusoid functions
are generated with the idea of Fourier series. In addi-
tion, these arti�cially generated periodic noise images
are superimposed in the uncorrupted image through
addition. The periodic noise images considered in this
paper are:

N1(x; y) = a� 255(sin(x+ y)); (17)

N2(x; y) = a� 255

0BBBB@
sin(8y) + sin(8x)

+ sin(5:25x+ 5:25y)

+ sin(x+ 5:25y)

1CCCCA ;
(18)

N3(x; y)=a�255

0BBBBBBBBBBBB@

sin(1:8x+1:8y)+sin(x+y)

+ sin(2:2x+ 2:2y)

+ sin(1:8x� 1:8y)

+ sin(x� y)

+ sin(2:2x� 2:2y)

1CCCCCCCCCCCCA
:
(19)

Here, a is the strength of the noise and (x; y) is the
spatial position.

Figures 2 to 4 show the visual analysis of the
restored outputs produced by ILPF, GSSF, WGNF,
AONF, INRF, and the proposed FDSMF Filter, respec-
tively, for images corrupted with N1, N2, and N3 noises
with the noise strength of a = 1. The restored outputs
of di�erent algorithms from corrupted Barbara image
by N1 +N2 +N3 with a = 1 for all types of noises are
shown in Figure 5. In order to test the performance of
the proposed algorithm in restoring real periodic/quasi
periodic noise corrupted images, the algorithm is tested
with 15 di�erent non-synthetic/naturally corrupted
images, of which Clown, Ariel Pompeii [28], Halftone
Lady [29], Man, and football live match video frame [8]
images are used in this paper for analysis.

Figure 6 shows the restored outputs of di�erent
algorithms for Clown image. Figure 7 produces the
restored outputs of non-synthetic, naturally corrupted
Ariel Pompeii, Halftone Lady, Man, and football live
match video frame images. The visual analysis of
restored outputs of di�erent algorithms performed in
Figures 2 to 7 shows that the restored outputs produced
by the proposed algorithm from natural and arti�cially
corrupted images are better than those produced by the
competing algorithms.

Figures 2 to 4 also show the corrupted images
and their corresponding Fourier transforms to provide
a clear idea about the corrupting noise. Tables 1
to 3 show MAE, PSNR, MSSIM, and Computation
Time (CT) analyses of the restored outputs produced
by SMF1, SMF2, ILPF, AMF1, AMF2, WGNF,
GSSF, AONF, INRF, BNRF, GNRF, and the proposed
FDSMF �lter, respectively, for Barbara, Cameraman,
and Lena images corrupted with N1, N2, and N3
noises with various noise strengths. The MAE, PSNR,
MSSIM, and the Computation Time (CT) of di�erent
algorithms when restoring Barbara images corrupted
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Figure 2. Outputs of algorithms in restoring the Barbara image corrupted with N1-type noise of strength a = 1:0: (a)
Corrupted image, (b) Fourier transform of the corrupted image, (c) ILPF, (d) GSSF, (e) WGNF, (f) AONF, (g) INRF,
and (h) FDSMF.

Figure 3. Outputs of algorithms in restoring the Cameraman image corrupted with N2-type noise of strength a = 1:0: (a)
Corrupted image, (b) Fourier transform of the corrupted image, (c) ILPF, (d) GSSF, (e) WGNF, (f) AONF, (g) INRF,
and (h) FDSMF.

Table 1. MAE, PSNR, MSSIM, and CT analysis of di�erent �lters while restoring Barbara images corrupted with N1

noise.

Filters Noise strength a = 0:5 Noise strength a = 0:9 Noise strength a = 1:5
MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT

SMF1 16.37 22.38 0.78 0.85 18.79 22.14 0.75 0.81 23.32 22.06 0.67 0.84
SMF2 10.32 23.27 0.81 10.34 10.79 23.14 0.79 10.30 11.89 22.84 0.74 10.28
ILPF 9.70 23.99 0.85 16.73 10.63 23.15 0.84 16.71 12.19 21.52 0.82 16.72
AMF1 8.03 24.09 0.87 27.82 9.44 23.99 0.85 27.72 13.07 20.55 0.76 27.44
AMF2 7.82 25.00 0.89 22.40 9.21 24.10 0.87 22.62 12.13 21.74 0.82 22.35
WGNF 7.41 25.40 0.91 22.38 9.01 24.30 0.89 22.29 11.98 21.86 0.85 22.19
GSSF 3.87 26.33 0.95 2.93 5.68 22.43 0.92 4.07 7.43 23.33 0.91 5.65
AONF 2.33 34.11 0.95 4.31 3.21 33.69 0.93 9.87 4.38 30.96 0.91 12.07
INRF 2.52 34.64 0.96 6.48 3.62 32.73 0.93 6.53 5.97 30.91 0.92 6.47
BNRF 2.87 34.28 0.95 5.07 3.78 32.64 0.91 5.13 6.08 30.86 0.90 5.12
GNRF 1.92 36.56 0.97 5.00 2.30 34.42 0.94 5.99 5.38 32.31 0.92 5.83
FDSMF 1.23 4 1.79 0.98 4.15 1.41 40.01 0.96 5.41 1.82 38.16 0.97 5.57
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Figure 4. Outputs of algorithms in restoring the Lena image corrupted with N3-type noise of strength a = 1:0: (a)
Corrupted image, (b) Fourier transform of the corrupted image, (c) ILPF, (d) GSSF, (e) WGNF, (f) AONF, (g) INRF,
and (h) FDSMF.

Figure 5. Outputs of algorithms in restoring the Barbara image corrupted with N1 +N2 +N3-type noises each with
strength a = 1: (a) Corrupted image, (b) Fourier transform of the corrupted image, (c) ILPF, (d) GSSF, (e) WGNF, (f)
AONF, (g) INRF, and (h) FDSMF.

Table 2. MAE, PSNR, MSSIM, and CT analyses of di�erent �lters when restoring Cameraman images corrupted with N2

noise.

Filters Noise strength a = 0:5 Noise strength a = 0:9 Noise strength a = 1:5
MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT

SMF1 18.89 19.59 0.67 0.23 20.09 16.93 0.63 0.26 28.83 14.58 0.51 0.25
SMF2 17.25 19.81 0.71 2.82 16.80 17.96 0.64 2.77 30.32 15.60 0.52 2.77
ILPF 8.76 24.41 0.76 2.14 9.78 23.69 0.73 2.16 11.58 22.25 0.68 2.17
AMF1 6.87 28.68 0.77 7.12 8.72 26.23 0.70 7.07 11.80 23.39 0.60 7.08
AMF2 6.29 28.59 0.79 5.70 9.55 24.95 0.76 5.66 14.59 23.69 0.71 5.59
WGNF 5.07 29.95 0.89 5.78 6.01 28.01 0.86 5.78 7.45 26.16 0.82 5.85
GSSF 4.78 28.25 0.92 0.95 6.74 24.08 0.88 1.19 9.01 20.74 0.85 1.61
AONF 8.56 27.54 0.85 5.73 12.69 22.57 0.81 9.71 19.26 19.15 0.76 17.05
INRF 5.13 31.54 0.80 2.38 8.43 27.06 0.64 2.70 19.39 18.78 0.43 3.02
BNRF 4.11 33.38 0.86 2.61 6.36 29.28 0.74 3.29 17.61 19.04 0.48 3.31
GNRF 2.43 36.86 0.95 2.41 3.24 34.40 0.92 2.40 7.82 26.24 0.84 2.67
FDSMF 2.30 39.28 0.96 2.68 3.16 36.46 0.93 4.25 6.48 29.01 0.89 3.05
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Figure 6. Outputs of algorithms in restoring non-synthetic clown image: (a) Real periodic noisy image, (b) Fourier
transform of the corrupted image, (c) ILPF, (d) GSSF, (e) WGNF, (f) AONF, (g) INRF, and (h) FDSMF.

Figure 7. Performance of FDSMF in restoring naturally corrupted images: (a) Corrupted satellite image, (b) halftone
newspaper image, (c) corrupted scanned photograph, (d) corrupted football live match video frame, and its corresponding
restored images in (e)-(h).

Table 3. MAE, PSNR, MSSIM, and CT analyses of di�erent �lters when restoring Lena images corrupted with N3 noise.

Filters Noise strength a = 0:5 Noise strength a = 0:9 Noise strength a = 1:5
MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT

SMF1 18.88 14.71 0.53 0.86 24.32 10.46 0.45 0.87 28.61 8.77 0.32 0.81
SMF2 16.71 17.51 0.60 10.01 22.62 12.63 0.51 10.17 25.85 11.20 0.41 10.22
ILPF 5.72 28.04 0.94 17.07 7.29 24.67 0.91 16.80 9.82 20.89 0.86 16.77
AMF1 15.51 19.42 0.67 27.25 17.80 16.33 0.59 27.16 21.31 15.90 0.51 27.05
AMF2 14.30 20.03 0.79 22.43 16.07 18.83 0.68 22.26 19.07 17.38 0.55 21.84
WGNF 9.00 24.24 0.84 22.88 12.85 22.23 0.73 22.84 15.07 19.82 0.60 22.82
GSSF 7.82 25.71 0.93 7.01 11.75 24.70 0.89 11.79 13.55 20.82 0.84 20.23
AONF 6.82 25.97 0.94 16.20 7.62 24.87 0.91 27.36 13.79 20.61 0.76 45.17
INRF 6.80 27.18 0.90 6.73 13.25 24.37 0.87 6.84 17.66 20.02 0.74 6.91
BNRF 6.40 28.53 0.92 4.40 10.49 24.83 0.83 4.59 16.83 20.52 0.79 4.72
GNRF 3.58 33.60 0.94 4.23 5.32 29.58 0.89 4.22 8.12 25.52 0.82 4.18
FDSMF 2.76 36.42 0.98 4.29 4.26 32.67 0.95 4.34 6.31 29.16 0.91 4.53
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Table 4. MAE, PSNR, MSSIM, and CT analyses of di�erent �lters when restoring Barbara images corrupted with
N1 +N2 +N3 noises.

Filters Noise strength a = 0:5 Noise strength a = 0:9 Noise strength a = 1:5
MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT

SMF1 26.11 6.43 0.37 0.82 34.85 4.48 0.22 0.84 49.91 2.54 0.11 0.91
SMF2 21.47 12.89 0.49 10.34 25.19 9.87 0.37 10.25 31.24 6.54 0.21 10.29
ILPF 11.07 22.59 0.83 16.70 13.41 20.10 0.80 16.70 17.18 16.84 0.75 16.72
AMF1 20.91 15.61 0.66 27.44 24.14 12.51 0.53 27.43 28.13 9.92 0.33 27.38
AMF2 19.18 18.21 0.73 22.33 20.76 16.15 0.66 22.18 26.29 11.72 0.48 21.88
WGNF 16.52 20.14 0.76 22.93 18.23 18.06 0.69 22.73 28.42 13.65 0.53 22.87
GSSF 10.40 24.55 0.92 9.97 14.54 19.56 0.85 18.29 18.50 14.48 0.76 31.68
AONF 8.81 25.43 0.91 27.20 11.05 22.53 0.86 42.56 15.28 19.75 0.81 84.92
INRF 21.51 18.45 0.62 6.76 33.51 14.04 0.47 6.92 28.20 12.10 0.67 4.97
BNRF 15.14 20.52 0.73 5.28 26.81 15.29 0.58 5.21 44.10 10.90 0.44 5.20
GNRF 10.35 23.68 0.86 4.99 17.46 20.40 0.78 4.99 28.20 18.10 0.67 4.97
FDSMF 3.73 33.41 0.97 5.14 5.23 30.77 0.94 5.97 6.52 28.92 0.93 7.51

with N1 + N2 + N3 noises with equal strengths are
tabulated in Table 4. Quantitative values tabulated
in Tables 1 to 4 clearly indicate that the proposed
algorithm is capable of producing better outputs than
the outputs of competing algorithms.

4. Discussion, analysis, and comparison

The section provides the analysis, discussion, and
comparison of di�erent algorithms, results, and param-
eters of di�erent methods to demarcate the improved
performance of the proposed algorithm. The Standard
Morphological Filter (SMF1) replaces all the pixels of
the image by the average of morphological closing and
opening operations with a static structural element
while Soft Morphological Filter (SMF2) replaces all the
pixels of the image by the average of soft morphological
closing and opening operations with a static structural
element. These �lters produce extensive blurring in
the restored images and are not e�ective for restoring
images corrupted by periodic noise due to their
di�culties in di�erentiating periodic noise frequencies
from the uncorrupted ones in the spatial domain. The
Ideal Low-Pass Filter (ILPF) admits only speci�c
low-pass region clustered around the Direct Current
(DC) coe�cient of Fourier transformed image by
discarding all high-frequency components irrespective
of their corrupted status and, hence, cannot maintain
�ne image details in the restored image. Aizenburg
Mean (AMF1), Median (AMF1), and Windowed
Gaussian Notch Filter (WGNF) algorithms stop the
�ltering process in the low-frequency region RLF
de�ned by a radius distance. Aizenburg Mean (AMF1)
reduces the impact of noisy peak position by dividing
it by a constant when the ratio of that frequency to the
mean of surrounding frequency exceeds a threshold.

Aizenburg Median Filter (AMF1) and Windowed
Gaussian Notch Filter (WGNF) detect a frequency
as corrupted when the ratio of that frequency to the
median of surrounding frequencies exceeds a threshold.
AMF1 replaces only the corrupted frequency by
the median of surrounding frequencies while WGNF
reduces the impact of noise not only of the corrupted
peak but also of the neighboring frequencies by
applying a static sized notch reject �lter. These �lters
fail to provide ample restoration of images corrupted
with periodic noises due to the non-adaptive nature of
detecting and denoising noisy peak areas. In addition,
the low-frequency areas that should be avoided in the
�ltering process of these �lters are statically �xed and
do not vary according to the position of corruption.

The Adaptive Optimum Notch Filter (AONF)
adaptively determines the low-frequency region to
avoid the low frequency components in the �ltering
process. The optimum low-frequency region is de-
termined by partitioning the frequency image F into
non-overlapping arc shaped portions using concentric
rings of 5-pixel width. These rings are further divided
into 12 equal slices and, subsequently, the average of
individual slices in the Fourier transformed image F
is found out. The optimum radius of low frequency
is the distance of that slice from the inner ring
closest to the centre of the image which produces
less average value than its corresponding outer ring
slice. These low-frequency regions are avoided in the
�ltering process. AONF uses the hot point detection
process of [30] to identify the noisy peaks. Once
the noisy peaks are identi�ed, the algorithm uses the
traditional region-growing algorithm to quantify the
noisy region to design the Gaussian notch �lter for
denoising the noisy regions. The traditional region-
growing algorithm can produce misclassi�cations in
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peak detection since it uses the dynamically changing
mean value of the already grouped frequency values
for checking the similarity of neighbouring frequencies.
This region-growing technique is di�erent from the
proposed method, in which the algorithm uses the
centre peak value to check the similarity for adding
the noisy frequency positions to the noise map im-
age. Gaussian Star Shaped Filter (GSSF) uses the
traditional region-growing approach to identify the low-
frequency regions to avoid this area in the �ltering
process. The algorithm detects a position exposed
to corruption if the frequency value exceeds a certain
threshold value and noisy positions are applied with
Gaussian star shaped notch �lter to di�use the noisy
areas. Interpolation Notch Reject Filter (INRF), Brick-
wall Notch Reject Filter (BNRF), and Gaussian Notch
Reject Filter (GNRF) algorithms detect a frequency as
noisy peak when either the di�erence between central
frequency and the maximum of outer surrounding
frequencies of 5 � 5 neighbourhood or the di�erence
between the maximum of frequencies covered by 3� 3
neighbourhood and the maximum of outer surrounding
frequencies of 5�5 neighbourhood exceeds a prede�ned
threshold. However, these algorithms could not provide
e�ective restoration since they do not quantify the area
of corruption associated with the peaks. Unlike other
�lters in the comparative study [1,8,9,17-20,23], the
proposed �lter �rst isolates the noisy frequencies from
the uncorrupted ones by determining the di�erence
image to make the threshold-based noise detection
process easy. A region-growing algorithm that depends
on the centre frequency value to group similar pixels
is applied for quantifying the noisy regions associated
with individual peaks. The proposed �lter replaces
the detected noisy frequencies by applying recursive
switching median �lter to generate the restored fre-
quency domain image. The algorithm outperforms
other algorithms in terms of subjective and objective
metrics due its better capability in identifying and
denoising noisy frequencies.

4.1. Parameter analysis
The subsection analyses various parameters used in the
proposed algorithm. The window W1 � W1 is used
for �nding the di�erence image D. The window size
W1 is set to 5 after analyzing di�erent noisy situa-
tions and image statistics. T1 is the radius distance
threshold used for �xing the low-frequency region RLF
that should be avoided in the noise detection process.
Table 5 shows the average PSNR values obtained from
restored Lena, Cameraman, and Barbara images with
varying noise strengths and T1 with N1-type noise.
It can be observed from Figures 1(b), 2(b), 3(b),
4(b), 5(b), and 6(b) that the optimum value of T1
is fully dependent on the corrupting noise type. For
adaptively �xing T1, algorithms need the information

Table 5. Average PSNR values obtained for N1 noise by
varying T1 values.

Noise
strength, a

T1 values
10 50 90 110 150

0.1 19.698 37.986 39.24 39.24 19.947
0.3 19.655 35.845 37.72 37.72 10.449
0.5 19.648 35.523 36.52 36.59 6.017
0.7 19.607 34.141 34.23 34.23 3.095
0.9 19.551 32.806 32.44 32.44 0.913

of the nearest noisy peak position from the centre of
Fourier transformed image F . The proposed algorithm
uses. Payman et al. algorithm [8] to �x the radius
threshold, T1. This approach �rst segments the entire
Fourier transformed image to arc shaped portions using
concentric rings of 5-pixel width. These rings are
further divided into 12 equal slices and, subsequently,
the average of individual slices in the Fourier trans-
formed image F is found out. The optimum T1 value
is the distance of the origin of that slice from the inner
ring closest to the centre of the image that produces
less average value than its corresponding outer ring
slice. T2 is the threshold used for detecting noisy peak
positions of the image. Obviously, the optimum T2
values depend on the individual peak values and are
very much heuristic to obtain. By making experiments
on di�erent types of images with varying noises and
strengths, T2 is formulated as a function of the central
frequency by:

T2 = �1 �D
�
M
2
;
N
2

�
: (20)

Table 6 shows the average PSNR values obtained
from Lena, Cameraman, and Barbara by varying noise
strengths and �1 values with N1-type noise. Accord-
ingly, �1 is set to 0.1 to provide better results. T3 is
formulated as:

T3(x; y) = �2 �D(x; y): (21)

Here, (x; y) is the spatial position of the peak value
under consideration. T3(x; y) makes the region-growing

Table 6. Average PSNR values obtained for N1 noise by
varying �1 values.

Noise
strength, a

�1 values
0.08 0.10 0.12 0.14 0.16 0.18

0.1 37.50 39.24 34.16 32.29 31.69 29.09
0.3 35.36 37.72 34.45 28.91 27.55 26.50
0.5 31.52 36.59 30.62 29.18 26.44 25.73
0.7 32.18 34.23 32.01 28.19 26.66 25.11
0.9 32.68 32.44 31.33 29.56 26.36 24.56
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Table 7. Average PSNR values obtained for N1 noise by
varying �2 values.

Noise
strength, a

�2 values
0.7 0.75 0.8 0.85 0.9 0.95

0.1 33.12 34.24 36.11 39.24 39.21 31.28
0.3 30.50 31.98 33.95 37.72 37.64 31.05
0.5 29.77 30.71 32.97 36.59 36.40 30.77
0.7 29.76 31.18 32.36 34.23 34.01 30.33
0.9 28.89 30.07 31.48 32.44 32.25 29.86

Table 8. Average PSNR values obtained for N1 noise by
varying W3 values.

Noise
strength, a

W3 values
3 5 7 9 11

0.1 39.15 39.24 39.24 39.23 39.22
0.3 37.43 37.72 37.71 37.67 37.64
0.5 36.37 36.59 36.50 36.45 36.40
0.7 34.02 34.23 34.13 34.06 34.01
0.9 32.35 32.44 32.35 32.30 32.25

algorithm add all the pixels surrounding the noisy peak
at position (x; y) to the noise map image whose values
lie in the interval [D(x; y); T3(x; y)]. The algorithm
yielded better results when �2 = 0:85, as can be seen in
Table 7. Although the current formulation of parame-
ters provides reasonable results for most of the images,
optimization of these parameters can be regarded as
a direction for future work by performing heuristic
training with arti�cial neural networks/evolutionary
algorithms.

The restoration window, W3 � W3, used in the
recursive restoration phase needs to ensure that there is
su�cient number of uncorrupted frequencies caught in
the noise-free frequency set  and, hence, the algorithm
set W3 = 5. PSNR analysis for various values of
W3 with varying noise levels is shown in Table 8.
For Standard Morphological Filter (SMF2), the best
quantitative values are selected by varying window
sizes. For other algorithms used in the comparative
study, the parameters are set as suggested in their
respective papers.

5. Conclusion

The paper presented an adaptive frequency-domain-
based switching median �lter for the restoration of
digital images corrupted by periodic noise. The region-
growing algorithm incorporated in the binary noise
map image generation process improves detection of
noisy peak areas of the Fourier transformed image.
The recursive restoration algorithm always ensures the
existence of uncorrupted frequencies while restoring
the corrupted frequencies. Experimental results at

various noise levels for naturally/arti�cially corrupted
images show that the proposed algorithm provides
better restoration than other competing algorithms do
in terms of the quantitative and qualitative metrics
used in the analysis. Although the current formulation
of thresholds works reasonably well for the majority
of images, it can be made adaptive to di�erent im-
ages and types of periodic noises by attempting at
adaptive training schemes by neural networks/genetic
algorithms in the future work.
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