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Abstract. Transfer learning is a well-known solution to the problem of domain shift in
which source domain (training set) and target domain (test set) are drawn from di�erent
distributions. In the absence of domain shift, discriminative dimensionality reduction
approaches could classify target data with acceptable accuracy. However, distribution
di�erence across source and target domains degrades the performance of dimensionality
reduction methods. In this paper, we propose a Discriminative Dimensionality Reduction
approach for multi-source Transfer learning, DiReT, in which discrimination is exploited
on transferred data. DiReT �nds an embedded space, such that the distribution di�erence
of the source and target domains is minimized. Moreover, DiReT employs multiple source
domains and semi-supervised target domain to transfer knowledge from multiple resources,
and it also bridges across source and target domains to �nd common knowledge in an
embedded space. Empirical evidence of real and arti�cial datasets indicates that DiReT
manages to improve substantially over dimensionality reduction approaches.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In machine learning and pattern recognition, dimen-
sionality reduction is the process of reducing the num-
ber of features via obtaining a collection of principle
variables [1-3]. Fisher Discriminant Analysis (FDA) [4]
and Principal Components Analysis (PCA) [5] are
pioneer approaches that concentrate on discovering a
low-dimensional latent space. However, there are many
real-world applications whose conditions for developing
and using the models are di�erent. In this case, the
embedding for source and target domains is drawn from
di�erent distributions; therefore, the performance of
model degrades dramatically.

Domain shift or data shift is a common challenge
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in real-world applications in which training and test
sets have di�erent distributions. This problem arises
of a variety of applications, such as computer vision [6-
9], multivariate time series [10], and sentiment analy-
sis [11,12].

In this paper, an invariant latent space is ex-
tracted to tackle domain shift problem. DiReT,
Discriminative Dimensionality Reduction approach for
multi-source Transfer learning discovers a latent space,
which is discriminative between di�erent classes. Di-
ReT employs Fisher discriminant analysis to �nd do-
main invariant features across source and target do-
mains in a semi-supervised manner. Moreover, DiReT
bridges source to target domain to transfer knowledge
from labeled samples of target domain to the learned
model.

In this work, we contribute to the solving of the
domain shift problem and show:

i) How to formulate the problem of domain shift;
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ii) How to exploit Fisher discriminant analysis to �nd
an embedding;

iii) How to bridge across source and target domains to
transfer knowledge;

iv) How to employ multiple source domains to bene�t
from various resources;

v) How our proposed method outperforms other
feature-based state-of-the-art transfer learning ap-
proaches.

The rest of this paper is organized as follows. We
brie
y review the related work in the next section.
Section 3 introduces the proposed method and presents
the main algorithm. We evaluate our method in variety
of datasets with di�erent number of features, instances,
and distributions in Sections 4 and 5. This will be
followed by conclusion and future work in the last
section.

2. Related work

2.1. Transfer learning
In general, domain adaptation approaches are divided
into two major categories: unsupervised and semi-
supervised [13-15]. In unsupervised domain adapta-
tion, no label is available in target domain. Blitzer
et al. [11,16] proposed a structural correspondence
learning approach that detects some pivotal features
occurring frequently and behaving similarly in both
domains. Ben-David et al. [17] presented a solution
for feature representation functions that minimizes
domain divergence and classi�cation error. Wang and
Mahadevan [18] faced with the unsupervised domain
adaptation problem by manifold alignment.

In semi-supervised domain adaptation, there are
a few labeled instances in the target domain. For
the �rst time, natural language processing commu-
nity paid attention to the semi-supervised domain
adaptation problem. In this regard, Daume III and
Marcu [19] detected the shared and individual com-
ponents of the source and target domains by data
distribution modeling. Kumar et al. [20] proposed a co-
regularization approach that �nds augmented feature
space for modeling the source and target domains
jointly. Pan et al. [21] presented Transfer Components
Analysis (TCA) to project domains onto reproducing
kernel Hilbert space. Saenko et al. [22] proposed a
metric learning approach to predict domain drift using
few labeled data of target domain. Kulis et al. [23]
investigated the object detection problem in di�erent
vision domains. Tu et al. [24] proposed a Fisher-based
discriminative dimensionality reduction approach for
the problem of single source and target domains.

In many real-world applications, more than one
source domain is available [25-27]. In this case, the

focus is on transferring knowledge from multiple source
domains or utilizing only the most informative ones.
Yang et al. [27] presented a classi�er related to target
domain by adaptive SVM and multiple-source domains.
Duan et al. [28] proposed a multi-kernel approach
by di�erent source domains on which optimal linear
combination coe�cients are learned simultaneously.
Ho�man et al. [29] proposed a two-step probabilistic
framework, so that, at �rst, source data are separated
into latent clusters, and then a mixture-transform
model is employed for adaptation.

2.2. Fisher discriminant analysis
Classical Fisher feature extraction is a famous method
to look for linear combinations of variables which best
explains the data. FDA explicitly attempts to model
the di�erence between the classes of data by maxi-
mizing the between-class scatters and minimizing the
within-class scatters in a low-dimensional space [30,31].
Assuming that the training and test samples are drawn
from same distributions, classical Fisher maximizes the
so-called Fisher criterion, JF :

JF (W ) = (WSWW |)�1(WSBW |); (1)

where W is the output of the FDA that projects the
original feature space, k dimension, to the latent fea-
ture space, d dimension. In fact, W is a linear mapping,
a d� k-matrix, where d < k. SB and SW are between-
class and within-class scatter matrices, respectively.
JF is an optimization problem that is solved by an
eigenvalue decomposition of S�1

W SB [31,32]. In this
way, the eigenvectors corresponding to the d largest
eigenvalues are composed of the mapping matrix, W .

In this work, we are inspired by FDA to �nd
an embedding in which the distribution di�erence of
source and target domains is reduced. Moreover, we
employ the labeled segment of target domain to bridge
across domains. Also, multiple source domains are
exploited to transfer knowledge from various related
domains.

3. The proposed approach

The problem of dimensionality reduction is considered
as follows. Suppose that there are N source domains,
fX1; X2; � � � ; XNg, and only one semi-supervised tar-
get domain, XT . C denotes the number of classes in
each domain, and Xu

i indicates the subset of instances
of domain u that appertains to class i. �ui and pui
are mean and class prior probability of subset Xu

i ,
respectively. The between-class and within-class scat-
ter matrices can be calculated as SB =

PC
i=1 pi(�i �

�S)(�i��S)| and SW =
PC
i=1 piSi, respectively. Si is

within-class covariance matrix, and pi and �i are mean
vector and prior of class i, respectively, i.e.:
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�i = 1=(
NX
u=1

pui )
NX
u=1

pui �
u
i

and:

pi = 1=N
NX
u=1

pui :

The overall mean �S in XS is calculated by:

�S = 1=N
NX
u=1

CX
i=1

pui �
u
i :

3.1. Discriminative dimensionality reduction
for transfer learning

Since the distribution of the source and target domains
is di�erent, the problem of dimensionality reduction
in case of domain shift is considered as follows. The
training set is composed of the labeled source domains
and small labeled segments of target domain, Xtr =
fX1; X2; � � � ; XN ; XT

trg. In this way, two types of
criteria are considered to �nd an embedding in which
the distribution di�erence of the source and target
domains is minimized:
1. discrimination-based criteria;
2. Transferability-based criteria.
In the former, the main concentration is on the discrim-
ination across various classes in the embedding. In the
latter, the main concern is about transferability. In this
way, the embedding will have the discrimination and
transferability simultaneously. In the rest, the di�erent
criteria are investigated in detail.

3.1.1. Discrimination-based criteria
There are two discrimination-based criteria that are
discriminated across various classes. Between-class
scatter criteria maximize the various class means in
the embedding; in parallel, within-class scatter criteria
minimize the distance of each projected sample from
its mean in the embedding, as well. The between-class
scatter criterion, S0B , is de�ned as follows:

S0B =
C�1X
i=1

CX
j=i+1

NX
r=1

NX
s=1

pri p
s
j(�

r
i � �sj)(�ri � �sj)|; (2)

where �ri and �sj specify the mean of i and j classes
in r and s domains, respectively. In this way, the
distance of various class means from di�erent domains
is maximized in the embedding. Moreover, within-class
scatter criterion, SW , is calculated as follows:

SW =
CX
i=1

X
x2Xitr

pi(x� �i)(x� �i)|; (3)

where Xi
tr denotes the samples of training set that

belong to class i. In fact, the within-class scatter
criteria cluster the same class samples of source and
target domains in the embedding.

3.1.2. Transferability-based criteria
The transferability-based criteria are attempted to
transfer knowledge from multiple source domains to a
target domain. In this case, within-domain and within-
dataset scatter criteria are minimized. In the former,
the distance between mean of the same class samples
and various domains is minimized in the embedding.
In fact, the data points in the embedding with the
same class label have minimum distance from each
other. The latter minimizes the distance of all dataset
domains from each other in the embedding. Within-
domain scatter, S0W , is de�ned as follows:

S0W =
CX
i=1

NX
u=1

N+1X
v=u+1

pipj(�ui � �vi )(�ui � �vi )|; (4)

where the value of v = (N + 1) indicates the labeled
segment of target data. In fact, S0W attempts to
minimize the distance of the same classes from di�erent
domains against labeled segment of target domain. In
this way, a bridge from source data to target data is
made, with most similarity to unlabeled data. It is
worth noting that the �nal goal is to predict the labels
of unlabeled segment of target data. In this regard,
within-dataset scatter criterion, S00W , is formulated as
follows:

S00W =
N+1X
u=1

(�u � �)(�u � �)|; (5)

where �u =
PC
i=1 p

u
i �ui is the mean of domain u, and

� denotes the mean of dataset.

3.2. DiReT
DiReT �nds a linear mapping, W , that maximizes the
following optimization problem:

J 0F (W ) =

 
W

 

SW + (1� 
)

  
1 +

nl
n

!
S0W

+ S00W

!!
W |

!�1

(WS0BW |); (6)

where nl is the size of labeled segment of target
data, and n denotes the number of samples in the
target domain. Thus, we attach more importance
to within-domain scatter criteria in which a bridge
is made amongst labeled segment of target data and
multiple source domains. 
 is the control parameter
that regularizes discrimination and transferability in
the optimization problem. Small values of 
 augment
the transferability in the embedding, and large values
of 
 highlight the discrimination in the optimization
problem. However, there is no exact value for 
,
and it is determined by variety of experiments on
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di�erent datasets. One straightforward way to estimate
the value of 
 is cross-validation whose best value is
determined based on various experiments.

The main di�erence of J 0F (W ) and JF (W ) belongs
to the transferability-based criteria that handle shift
problem. However, J 0F (W ) is solved using decomposi-
tion. The transformation matrix, W , is considered as d
eigenvectors corresponding to the d largest eigenvalues
of ((
SW + (1� 
)((1 + nl

n )S0W + S00W ))�1S0B).
The number of extracted features of FDA in the

embedding is equal to min(C � 1; k); however, DiReT
extracts min((N + 1) � C � 1; k) features according to
the rank of matrix S0B in the optimization problem.
Moreover, DiReT is invariant to the linear mapping of
matrix W , similar to FDA.

4. Experimental setup

This section provides details on the experimental setup
of the proposed approach. At �rst, we introduce the
arti�cial and real-world benchmark datasets, and then
DiReT is compared to other state-of-the-art transfer
learning approaches.

4.1. Data description
Table 1 shows the list and details of arti�cial and real
datasets. The number of samples in the source and
target domains is considered the same. The arti�cial
datasets are designed to evaluate DiReT in di�erent
conditions of shift. Also, real datasets are considered
to show the performance of DiReT in facing with
real applications. Subsequently, a short description of
datasets is included.

4.1.1. Arti�cial data
The experiments are conducted on three arti�cial
datasets. The number of source domains is considered
two, and each domain contains two classes. Each
domain is composed of variant and invariant features.
The distribution of invariant features is similar across
di�erent source and target domains; however, variant
features have di�erent distributions. The number of

invariant features is indicated by N , and the variant
features are denoted by V . Moreover, V is considered
from 1 through 40 where DiReT is evaluated in di�erent
conditions.

The dataset Gau contains 15 invariant features
and 3000 samples. It is composed of two source
domains and one target domain with dimension of
1000 � (15 + V ). According to six di�erent values
for variant features, experiments are repeated six times
with 16, 20, 25, 35, 45, and 55 features. The invariant
features have the same mean and variance; however,
variant features are drawn from di�erent distributions
with di�erent mean and variance.

4.1.2. Lung dataset
The lung dataset is composed of 30 chest radiographs,
obtained from publicly available JSRT dataset [33].
The number of features of each pixel is determined as 10
based on N -jets feature representation [34]. There are
three available classes, i.e. lung, rib, and background.
In each experiment, one radiograph is considered as
source domain, and the rest of radiographs are sup-
posed to be target data.

4.1.3. USPS handwritten digits
The USPS handwritten digits' dataset is considered as
the next real dataset. USPS contains images of size
16 � 16 with pixel values going from 0 to 2. The
numerous past works investigated the di�culties in
classi�cation between some digits, e.g. separating 4
from 7 and also 4 from 9 [35,36]. USPS contains 10
classes, which are equal to the number of digits.

4.2. Method evaluation
The performance of DiReT is compared with those of
other four dimensionality reduction approaches. Since
DiReT and other compared approaches are feature ex-
traction methods, we employ SVM and 1-NN classi�ers
to compare the accuracy/error. PCA is a well-known
feature extraction method that exploits covariance
matrix to �nd principal components. Despite good
performance of PCA in di�erent applications, it shows

Table 1. Arti�cial and real-world benchmark datasets. In arti�cial datasets, the distribution property indicates the
distribution of source and target data. For example, the distribution of source data of UniPoi dataset is Uniform, and the
distribution of target data is the mixture of Uniform and Poison. Moreover, N denotes the number of invariant features
across domains in which the number of variant features could be di�erent.

Dataset Type Distribution Number of
examples

Number of
invariant features

(N)
Gau Synthetic Gaussian 1000 15

UniPoi Synthetic Uniform, Poison 1200 20
WeiGeo Synthetic Weibull, Geometric 800 25

lung Real | 30 |
USPS Real | 1470 |
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low performance against FDA. In fact, PCA �nds
principal components in a fully unsupervised manner,
i.e. without considering the label of samples.

TCA is a dimensionality reduction approach in
which the shift problem is considered, as well. TCA
has been inspired from PCA to tackle domain shift
problem in dataset. The main drawback of TCA is
similar to PCA, i.e. unsupervised transformation. f-
MMD is another dimensionality reduction approach
that employs feature selection instead of feature extrac-
tion. f-MMD assigns a weight to each feature according
to its variation across source and target domains.

5. Experimental results and discussion

5.1. Arti�cial dataset
The experiments are conducted on three arti�cial
datasets to compare the performance of DiReT with
those of other dimensionality reduction approaches.
Table 2 shows the performance of di�erent approaches
on various conditions, i.e. various number of variant
features. As is clear from the results, transfer learning-
based approaches (TCA, f-MMD, and DiReT) show

a better performance against other dimensionality
reduction methods. Also, DiReT preserves its ac-
curacy even with increasing number of variant fea-
tures.

PCA and FDA are high-performing approaches
on non-shifted data; however, as is clear from results,
they fail to face with the shifted data. Thus, the
performance of PCA and FDA degrades with increasing
the number of variant feature, i.e. random classi�er.
However, FDA shows a better performance than that
of PCA, because it transforms data according to the
discrimination criteria.

DiReT bene�ts from more number of features
against other dimensionality reduction approaches such
as FDA due to its optimization problem. Thus, DiReT
re
ects more properties and statistics from original
dataset, and it preserves the geometric properties of
source and target data. In addition, DiReT bridges
across target and source domains using labeled segment
of target data. In this case, distance of the samples
with the same class label reduces from the target data.
Tables 3 and 4 show the same results according to the
above discussions.

Table 2. Error rates on Gau dataset using 1-NN classi�er. The number of invariant features is 15, and the number of
variant features is changing from 1 to 40.

Methods V = 1 V = 5 V = 10 V = 20 V = 30 V = 40

PCA 28:1� 1:7 40:6� 2:2 45:7� 1:2 48:3� 0:9 47:1� 1:3 48:2� 2:7

TCA 23:9� 0:4 22:6� 1:4 24:1� 0:6 24:5� 1:2 23:1� 0:9 24:0� 0:4

f-MMD 19:8� 0:7 20:3� 0:9 25:4� 1:2 23:1� 0:5 21:5� 2:1 22:3� 0:7

FDA 17:5� 0:3 26:0� 0:5 35:7� 1:2 39:1� 1:9 42:3� 0:5 44:4� 0:7

DiReT 13:9� 0:3 14:1� 0:5 11:3� 1:0 15:9� 0:8 13:3� 0:2 13:6� 0:4

Table 3. Error rates on UniPoi dataset using 1-NN classi�er. The number of invariant features is 20, and the number of
variant features is changing from 1 to 40.

Methods V = 1 V = 5 V = 10 V = 20 V = 30 V = 40

PCA 32:6� 1:2 41:7� 0:9 47:9� 1:7 46:1� 2:4 50:2� 2:7 51:3� 1:4
TCA 25:0� 0:4 27:2� 0:9 27:6� 1:4 26:3� 1:1 25:5� 0:6 29:2� 0:7

f-MMD 21:4� 0:7 19:2� 0:8 22:9� 1:1 23:5� 0:3 24:1� 1:9 27:2� 1:4
FDA 19:1� 0:3 22:3� 0:8 30:6� 1:9 41:1� 1:2 45:0� 0:8 43:2� 2:1

DiReT 12:5� 0:2 13:2� 0:5 15:0� 0:7 14:7� 0:6 12:3� 0:9 12:9� 0:3

Table 4. Error rates on WeiGeo dataset using 1-NN classi�er. The number of invariant features is 25, and the number of
variant features is changing from 1 to 40.

Methods V = 1 V = 5 V = 10 V = 20 V = 30 V = 40
PCA 30:9� 2:2 33:7� 1:4 35:8� 2:7 45:1� 1:8 47:2� 0:9 50:1� 1:2
TCA 27:1� 0:8 27:5� 0:6 31:0� 1:2 26:5� 1:4 27:2� 0:9 26:3� 1:3

f-MMD 21:2� 1:0 21:5� 1:6 25:2� 0:7 25:8� 1:2 24:7� 1:5 28:3� 0:7
FDA 20:5� 1:2 25:1� 0:7 29:9� 1:5 38:2� 1:7 43:5� 2:6 41:4� 2:3

DiReT 11:2� 0:7 12:6� 0:3 11:2� 0:8 10:1� 0:4 10:7� 0:5 10:1� 1:1
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5.2. Real data
The experiments on real-world datasets are conducted
with three di�erent scenarios. In the �rst scenario,
a single-source domain is considered against a semi-
supervised target domain. In this case, the proposed
approach only bene�ts from one resource to transfer
knowledge. In the second scenario, the knowledge
is transferred from three-source domain to a semi-
supervised target domain. Finally, in the last scenario,
DiReT bene�ts from �ve-source domain, where it is
expected to show a better performance.

In the multiple scenarios, the data are divided
into di�erent partitions; at each step, one partition is
selected for training, and the rest are used for testing.
The reported error is the average classi�cation error
over all partitions. In general, in multiple scenarios, we
try to test the e�ect of presence of multiple information
in the performance of our method. Instead, in the
single scenario, only one set is used for training and
the test is done on the target data.

Figures 1 and 2 depict the classi�cation error
rates on lung and USPS datasets, respectively. In

Figure 1. Error rates on di�erent scenarios for lung dataset. The dotted lines in DiReT and FDA show that the number
of extracted features is less than the number of depicted features on the horizontal axis.
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Figure 2. Error rates on di�erent scenarios for USPS dataset. The dotted lines in DiReT and FDA show that the number
of extracted features is less than the number of depicted features on the horizontal axis.

these experiments, the performance of feature extrac-
tion methods has been evaluated against the di�erent
number of extracted features. Each panel contains
six �gures, which shows the di�erent scenarios and
classi�cation algorithms. The �rst row of the panel
indicates single-domain scenario, and the second and
third rows show multiple scenarios with three and �ve
source domains, respectively. Also, the left column
of panel shows the accuracy of the 1-NN classi�er,
and the right columns indicate the SVM classi�ers'
performance.

Since the number of classes in lung and USPS
datasets is 3 and 10, respectively, FDA could only
extract 2 and 9 features in the embedding according
to di�erent scenarios. However, DiReT extracts more
features in multiple scenarios with regard to the rank

of scatter matrices. In this case, DiReT has more
knowledge to transfer across domains.

6. Conclusion and future work

In this paper, we have proposed a novel approach
for tackling domain shift problem. Our approach is
the generalization of Fisher discriminant analysis that
copes with the transfer learning. In this work, we
introduced DiReT, a Discriminative Dimensionality
Reduction approach for multi-source Transfer learning,
which maps source and target domains to embedding
in a semi-supervised manner. DiReT maximizes the
between-class scatters and concurrently minimizes the
within-class and within-domains scatters. On bench-
mark tasks in arti�cial and real world, DiReT con-



1310 J. Tahmoresnezhad and S. Hashemi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1303{1311

sistently outperforms other dimensionality reduction
methods. For the future work, we plan to advance this
direction further and extend DiReT to online transfer
learning.
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