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Abstract. In this study, the ensemble Kalman �lter is used to characterize three-
phase 
ow in porous media through simultaneous estimation of three-phase relative
permeabilities and capillary pressures from production data. Power-law models of relative
permeability and capillary pressure curves are used and the associated unknown parameters
are estimated by assimilating the measured historical data. The estimation procedure is
demonstrated on a twin numerical setup with two di�erent scenarios, in which a synthetic
2D reservoir under three-phase 
ow is considered. In the �rst scenario, all the endpoints
are assumed to be known and only the shape factors are estimated during the assimilation
process. In the second, all the endpoints and shape factors are estimated by assimilating
observed data. Accurate estimation of the unknown model parameters is achieved by
assimilating oil, water, and gas production rates of the producers and bottom-hole pressure
of the injector. Moreover, sensitivity analysis of the observations with respect to the
parameters de�ning the relative permeabilities and capillary pressures shows that for the
most sensitive parameters, better estimation and lower uncertainty are obtained at the end
of the assimilation process.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Several practical applications, such as enhanced oil
recovery and solute transport in aquifers, involve si-
multaneous 
ow of two or three phases in the reservoir.
Hence, it is a fundamental requirement to accurately
model the multiphase 
ow and transport in the porous
media [1]. Available models of multiphase 
ow are
simply the extension of Darcy's law of single phase

ow. Apparently, the only way to put the real physics
of the 
ow into these conventional models is through
capillary pressures and relative permeabilities. Thus, it
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is of capital importance to correctly determine relative
permeability and capillary pressure curves.

Reservoir simulation is a tool for decision-making
processes involved in the development and management
of petroleum reservoirs. A reservoir simulation model
takes into account the impact of rock and 
uid prop-
erties on the 
uid 
ow through porous media. The
model is then used to predict the future performance
of the reservoir and assess sensitivity of these forecasts
to uncertain reservoir parameters [2]. To improve the
reliability of the model, it is bene�cial to incorporate
historical measurements in the simulation model, which
is known as history matching in the petroleum litera-
ture [3].

Conventionally, two-phase relative permeabilities
and capillary pressures are obtained from displacement
experiments of core samples [4]. However, it is also
possible to utilize production data to estimate relative
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permeabilities and capillary pressures through history
matching [5,6]. Archer and Wong [7] were among
the �rst investigators who determined the relative
permeability curve by matching production data from a
core displacement experiment. Many other researchers
applied nonlinear optimization techniques to obtain an
implicit estimation of relative permeabilities and/or
capillary pressures from production data [8]. For
example, Sigmund and McCa�ery [9] applied non-
linear least-square procedure to determine relative-
permeability curves for heterogeneous core samples
taken from Alberta carbonate reservoirs. In their
study, only shape factors of the relative permeability
curves together with their standard errors were esti-
mated by matching the observed recovery and pressure
data. Kerig and Watson [10] extended the previous
parameter estimation procedure by considering the
use of several alternative functional forms, includ-
ing the power-law and cubic spline models. They
eventually concluded that cubic splines were more

exible than power-law models. These optimization
algorithms require calculation of the Jacobian and/or
Hessian matrix of the objective function (that is de�ned
as the di�erence between the simulated results and
the measurements). Henceforth, high computational
cost and convergence to the local minima are two
common shortcomings of these gradient-based meth-
ods [11]. Some investigators have also employed
evolutionary algorithms, such as Genetic Algorithm
(GA) and Simulated Annealing (SA) [12,13]. How-
ever, in these cases, there is no guarantee to �nd
an optimal solution in a �nite number of gener-
ations, and the convergence rate is relatively low.
Recently, the widely used method in assisted history
matching processes is the Ensemble Kalman Filter
(EnKF), which is an e�cient, recursive, and unbiased
�lter [14].

The EnKF is known as an attractive alterna-
tive for history matching problems because of its
ease of implementation and computational e�ciency
for models with large number of variables. Also,
EnKF is a sequential data assimilation scheme and
is well suited for continuous reservoir model updating
and closed-loop reservoir management problems [15].
Moreover, uncertainty assessment in reservoir char-
acterization and performance predictions is becoming
more important and, lately, more researchers have got
involved in this area [13,16]. Since the EnKF can
provide a measure of uncertainty along with history
matching, it is also getting more attractive for the
researchers working on uncertainty assessment. The
EnKF is a sequential Monte Carlo method in which
model states and covariance matrix are stored and
propagated through an ensemble of model realiza-
tions. Compared to the other available methods, the
EnKF requires no information about the gradient,

which makes it more 
exible to adapt to di�erent
types of model parameters and several commercial
reservoir simulators [17]. The EnKF advantages as
well as its limitations are thoroughly discussed in
Evensen [18].

The EnKF has been applied to estimate various
reservoir parameters, such as porosity and permeability
�elds [19], 
uid contacts [20], and grid block transmissi-
bility. Li and Yang [21] applied the EnKF to estimate
multiple petro-physical parameters for the PUNQ-S3
model, which included estimation of vertical and hori-
zontal permeability, porosity, and three-phase relative
permeability curves. These curves were generated
using power-law models. Unknown parameters of these
models are of two types: shape factors and endpoints
(which are discussed in Section 2.1). However, to
simplify the model, only shape factors of these models
were considered in the estimation process. They con-
cluded that relative permeability could be estimated
with good accuracy when the absolute permeability
�eld was known. When relative permeability was
tuned simultaneously along with porosity and absolute
permeability, the accuracy of the estimated relative
permeability was poor.

Li et al. [22] used a B-spline model for the two-
phase oil and water relative permeabilities. To ensure
monotonicity of the relative permeability curves, a
transformation was implemented to map the original
parameters to the pseudo-parameters. These pseudo-
parameters were sequentially updated and adjusted
toward their reference values, while the variance of
the estimation decreased throughout the assimilation
process using the EnKF. However, relative root-mean-
square error of the parameters decreased more sig-
ni�cantly before water breakthrough, in which the
injected water reached the producing wells. Therefore,
they concluded that the observation data collected
prior to water breakthrough contributed more to the
estimation of the relative permeability curve than
those collected after water breakthrough. Seiler et
al. [23] found that a signi�cant improvement in the
results of history matching was obtained by updating
the relative permeabilities in addition to porosity and
permeability �elds and initial 
uid contacts. Once
more, power-law models of relative permeability curves
were used and both the endpoints and the shape factors
were estimated through history matching with the
EnKF.

Zhang et al. [24] used the EnKF to simultaneously
estimate relative permeabilities and capillary pressures
through matching the historical data, including wa-
ter saturation pro�le, cumulative oil production, and
pressure drop. Again, power-law model was used for
both relative permeabilities and capillary pressures.
They concluded, albeit qualitatively, that historical
data were more sensitive to the relative permeabilities,
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especially water relative permeability, than capillary
pressures. Their study, however, was limited to water

ooding experiments in two-phase oil-water systems.
Later, Zhang and Yang [25] used the EnKF to esti-
mate three-phase relative permeabilities and capillary
pressures for tight formations by assimilating historical
data including oil, water, and gas production rates
and cumulative oil production. Power-law models
of relative permeabilities and capillary pressures were
used and these prior models were updated during the
assimilation process. Nevertheless, they considered the
entry capillary pressures (i.e., endpoints of the power-
law model) to be �xed to prevent poor estimation,
and proposed to predetermine these values according
to the prior knowledge. Moreover, the estimated shape
factors of the capillary pressure curves were less accu-
rate than the estimation of the relative permeability
parameters, which was again qualitatively attributed
to the less sensitivity of historical data to capillary
pressure parameters.

This study is motivated by the work of Li et
al. [26]. They considered a 2D, three-phase 
ow
system and estimated endpoints and shape factors of
the relative permeabilities by assisted history matching
using the EnKF. They also found that distribution of
the updated parameters tends to be Gaussian even if
initial parameters are uniformly distributed. This is
due to the fact that all the distributions are bound to be
Gaussian in the EnKF. Furthermore, they proposed to
integrate production data from multiple samples in the
assimilation process to obtain more accurate estimation
of multiphase 
ow parameters. The main contribution
of this study is to advance the topic beyond the e�orts
of Li et al. [26] by including endpoints and shape factors
of three-phase capillary pressure curves in the unknown
parameter set. In other words, this study demonstrates
joint estimation of three-phase relative permeability
and capillary pressure curves by assimilating observa-
tion data. Furthermore, sensitivity of the observation
data to the unknown model parameters is analyzed
quantitatively, which clearly justi�es the estimation
results and the associated uncertainties of the unknown
model parameters.

Here, an ensemble-based assimilation technique
is developed and successfully applied in the simulta-
neous estimation of relative permeabilities and capil-
lary pressures under three-phase 
ow condition in the
porous media. Power-law models are used for both
relative permeability and capillary pressure curves.
Unknown model parameters of these models are ad-
justed progressively toward their reference values by
assimilating observed historical data, including oil,
water, and gas production rates of the producers and
bottom-hole pressure of the injector. The estima-
tion technique is validated in a synthetic �ve-spot
2D three-phase reservoir with two di�erent scenar-

ios. In the �rst, all the endpoints are assumed to
be known and only the shape factors are estimated
during the assimilation process. In the second, all
the endpoints (including endpoints of the capillary
pressure curves) and shape factors are estimated by
assimilating observed data. Furthermore, the impacts
of availability of the endpoints and ensemble size
are evaluated, and quantitative sensitivity analysis of
the observation data to the unknown parameters is
performed.

2. Methodology

2.1. Relative permeability and capillary
pressure curves

Direct measurement of three-phase relative permeabil-
ities is di�cult and time consuming; hence, empirical
models are widely used [27]. A comprehensive descrip-
tion of the available correlations for the three-phase
relative permeabilities along with their shortcomings
is provided by Oliveira and Demond [28]. Based on
the channel 
ow theory, the relative permeability of
water and water-oil capillary pressure in a three-phase
system are similar to those of the two-phase water-
oil case [29]; and the relative permeability of gas and
gas-oil capillary pressure are the same as those for the
two-phase gas-oil case. The relative permeability of
oil is then determined by interpolating two-phase data.
Therefore, appropriate models of two-phase relative
permeability and capillary pressure curves are initially
needed.

Representative models of these curves are clas-
si�ed under two categories: parametric models and
non-parametric models [26]. Non-parametric models,
such as B-splines, have larger degrees of freedom,
which make them more adaptable. However, if these
models are used in the history matching process, a
variable transformation is required to ensure that es-
timated relative permeabilities and capillary pressures
are monotonic functions of saturation. Moreover, val-
ues estimated for a B-spline model frequently deviate
from the reference values and, thus, the estimation
su�ers from non-uniqueness [11]. Parametric models,
such as power-laws, are the most widely used models
in multiphase 
ow studies.

Furthermore, the parameters de�ning a power-
law relation carry more engineering information, and
one may discuss their uncertainty in regard to time
or sensitivity to the observation data. In this study,
the empirical Corey-type (power-law) models are used
to represent the two-phase relative permeability and
capillary pressure curves. These models are simple
and they also capture the trends of many experimental
measurements.

For the oil-water system, relative permeability
and capillary pressure functions are:
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8>>>>>><>>>>>>:
kro = ao (1� SwD)bo

krw = aw (SwD)bw

Pcow = P �cow (1� SwD)ncow

SwD = Sw�Swc
1�Swc�Sorw

(1)

where, kro and krw are relative permeabilities of oil and
water, respectively; Sw is the water saturation; Swc is
the critical (or irreducible) water saturation; Sorw is
the residual oil saturation; and ao and aw are relative
permeabilities of oil at Sw = Swc and water at Sw =
1� Sorw, respectively. Exponents bo and bw are shape
factors of relative permeability curves; P �cow is the oil-
water capillary pressure at Sw = Swc; ncow is the shape
factor of the capillary pressure curve; and SwD is the
dimensionless water saturation.

For the gas-oil system, relative permeability and
capillary pressure functions are:8>>>>>><>>>>>>:

krog = aog (1� SgD)bog

krg = ag (SgD)bg

Pcgo = P �cgo (SgD)ncgo

SgD = Sg�Sgc
1�Swc�Sgc�Sorg

(2)

where, krog and krg are relative permeabilities of oil
and gas, respectively; Sg is the gas saturation; Sgc
is the critical gas saturation; Sorg is the residual oil
saturation; and aog and ag are relative permeabilities
of oil at Sg = Sgc and gas at Sg = 1 � Swc � Sorg,
respectively. On the other hand, exponents bog and bg
are shape factors of relative permeability curves; P �cgo
is the gas-oil capillary pressure at Sg = Sgc; exponent
ncgo is the shape factor of the capillary pressure
curve; and SgD is the dimensionless gas saturation.
Consequently, parameters of the relative permeabilities
and capillary pressures are divided into two types:
shape factors (bo, bw, ncow, bog, bg, and ncgo) and
endpoints (ao, aw, P �cow, aog, ag, and P �cgo). Essentially,
ao = aog = 1 [11,26], because relative permeability
is de�ned as the ratio of the e�ective permeability to
the absolute oil permeability at the irreducible water
saturation.

The oil relative permeability for the simultaneous

ow of oil, water, and gas in the reservoir is calculated
by Stone's model II method [30]. Stone proposed two
empirical models of three-phase relative permeability
that are the most popular in the petroleum indus-
try [31]. These models are considered as the industry
standard and have become a benchmark against which
other models are compared. Stone's model II is a
modi�ed version of Stone's model I and better predicts
oil relative permeability in three-phase 
ow systems,
especially for water-wet reservoir rocks [32]. Moreover,

it is not required to estimate the minimum residual
oil saturation (Som) in this model. Stone [30] further
veri�ed the validity of model II by comparing the resid-
ual oil saturation data predicted from this model with
the experimental measurements given by Holmgren and
Morse [33]. In addition, hysteresis e�ects can be easily
taken into consideration by using the appropriate two-
phase data.

The form of Stone's model II used in this study
is the modi�cation proposed by Aziz and Settari [34],
which is as follows [27]:

kro=ao
��

kro
ao

+krw
��

krog
aog

+krg
�
�(krw+krg)

�
: (3)

Stone's model II gives relative permeability of oil as
a function of Sw and Sg. Negative values may be
obtained from this model, albeit they have no physical
meaning. Thus, kro is set to zero whenever the model
predicts a negative value [28].

2.2. State-space representation of system
The discrete nonlinear state-space formulation of the
system is represented as [35]:

xk = Mk (xk�1;uk) + wk; (4)

dk = Hkxk + Dk; (5)

where Mk is the reservoir simulation model; xk =
[s;m; ~d]Tk is the (augmented) state vector wherein s
is ns � 1 system states (which consist of pressures,
water and gas saturations, and solution gas/oil ratios
for each grid block); m is nm�1 model parameters that
encounter constant dynamics (i.e., mk = mk�1); and ~d
is nd�1 predicted observations. uk is the control inputs
or boundary conditions and wk is the dynamic system
noise (or model error), which is a white Gaussian noise
with covariance matrix Qk of size nd�n (n is the size of
the state vector, n = ns+nm+nd), i.e. wk � N(0;Qk).
dk is the vector of real observations of size nd � 1 and
matrix Hk of size nd � n is the operator mapping the
state space to the observation space [18]:

Hk � �O I
�
k ; (6)

where O is the null matrix of size nd � (ns + nm)
and I is the identity matrix of size nd � nd. Also,
Dk = ["1; "2; � � � ; "nd ]k is the vector of measurement
perturbations of size nd � 1, which are sampled from
a white Gaussian distribution with covariance matrix
Rk of size nd � nd, i.e. Dk � N(0;Rk).

As the state vector also includes the predicted
observations, the relation between dk and xk can
always be expressed by Eq. (5), regardless of the type
of the relationship that exists between dk and sk. In
addition, because there is little theoretical knowledge of
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model error statistics, a rigorous procedure to properly
account for modeling errors has not been established
for multiphase 
ow in porous media [36]. Moreover,
a common assumption in the parameter estimation
applications is that the dominating errors in the model
are due to the uncertainty in the parameters and,
thus, dynamic model error is neglected (Q = On�n).
Reservoir simulation model together with the initial
and boundary conditions is described in Section 3.1.

2.3. The ensemble Kalman �lter
The EnKF is a sequential Monte Carlo method in which
a �nite number of ensemble members are used to fore-
cast error statistics and to approximate Kalman gain
matrix for updating model variables [37]. The EnKF is
the most suitable for high-dimensional discrete systems
wherein storage and manipulation of the error covari-
ance matrix are impossible or impractical [38]. In the
EnKF, model states and system error covariance are
stored and manipulated implicitly through an ensemble
of model realizations. The EnKF is an e�cient and
easy-to-implement data assimilation method and has
been successfully applied in history matching problems
to estimate various parameters of the reservoir. Details
of the EnKF theory and algorithms are described by
Evensen [18]. The EnKF contains two consecutive
steps; the �rst is the forecast step in which the reservoir
simulator uses the updated model realizations from the
previous time step to generate forecasted state vector
for the current time where new observation data are
available; in the second step, known as the assimilation
step, the forecasted state vector is assimilated with new
observations under a Bayesian framework.

For simplicity, time index of the variables is
removed. The forecast ensemble perturbations or
anomalies are obtained based on calculation of their
di�erence from the mean of the ensemble. Then, the
ith vector of anomalies becomes Af

i = xfi � xf :

Af = [xf1 � xf ;xf2 � xf ; � � � ;xfN � xf ]; (7)

in which xfi is the ith forecast vector, N is the
number of ensemble members, and xf is the forecast
of ensemble mean, as follows:

xf =
1
N

NX
i=1

xfi : (8)

The forecast of error covariance matrix is then calcu-
lated as:

Pf =
1

N � 1

NX
i=1

�
xfi � xf

��
xfi � xf

�T
=

1
N � 1

Af �Af�T ; (9)

wherein superscript T denotes matrix transpose. In

the assimilation step, the assimilated ensemble mean,
ensemble perturbations, and ensemble members are
obtained by employing Kalman �lter equation:

xa = xf + K(d�Hxf ); (10)

Aa = Af + K
�
D�HAf� ; (11)

xai = Aa
i + xa: (12)

Here, K is the Kalman gain matrix of size n � nd.
Kalman gain is calculated based on the minimization
of the analysis error covariance matrix [35]:

Pa =
1

N � 1

NX
i=1

(xai � xa) (xai � xa)T

=
1

N � 1
Aa(Aa)T ; (13)

which results in [38]:

K = PfHT �HPfHT + R
��1

; (14)

Pa = (I�KH) Pf : (15)

At each assimilation stage, the system states, model
parameters, and predicted observations are updated
simultaneously.

Even though there is a great interest to use
the EnKF for reservoir history matching, the method
su�ers from a couple of shortcomings. A basic assump-
tion of the EnKF is that the updated state variables
(primary reservoir-simulation variables) and updated
static model parameters are statistically consistent.
That is, at each assimilation step, updated ensemble
of state variables is same as the ensemble of state
variables obtained by running the reservoir simulator
with updated ensemble of parameters from time zero.
This consistency has been proved only for systems with
Gaussian statistics in which there is a linear relation
between model parameters and state variables [39-41].
However, the reservoir simulation equations are highly
nonlinear and, consequently, this assumption can be
invalid. A procedure to avoid inconsistency is to re-
run the simulator with the latest updated ensemble
of model parameters from time zero to the current
time after each assimilation step. This procedure is
referred to as half-iteration EnKF [20,40]. Obviously,
the simulation re-run increases the computational cost.
Thus, Wang et al. [20] proposed to do a re-run only
if the relative change in the ensemble mean of the
model parameters is larger than a threshold value [17].
However, in this study, we have considered a small
synthetic reservoir model, which is described in Sec-
tion 3.1. Subsequently, computational burden is not
a critical challenge here and a simulation re-run is
performed after each assimilation cycle.
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2.4. Half-iteration ensemble-based
assimilation procedure

The implementation road map for estimation of relative
permeability and capillary pressure curves is summa-
rized below:

- Step 1: Representative models of relative perme-
abilities and capillary pressures are selected and
initialized. A number of N realizations from the
prior knowledge of the unknown parameters are
generated;

- Step 2: All the ensemble parameter sets are propa-
gated with the reservoir simulator to generate the
predicted observations for the next measurement
time. Therefore, the state vector components for
each ensemble member become:

s = [Po; Sw; Sg; Rs]
T for each grid block; (16)

m=[bo; aw; bw; P �cow; ncow; bog; ag; bg; P �cgo; ncgo]T ;
(17)

~d = [WOPRi;WWPRi;WGPRi;WBHPj ]
T ;8<:i 2 fProduction wellsg

j 2 fInjection wellg (18)

- Step 3: When new observations become available,
the EnKF algorithm is used to assimilate the real
observations with the predicted ones, meanwhile rel-
ative permeability and capillary pressure parameters
are updated;

- Step 4: The reservoir simulator is re-run with the
updated ensemble of model parameters from time
zero to the current time. Consequently, updated
ensemble of system states, s, and predicted obser-
vations, ~d, which is consistent with the updated
ensemble of model parameters, is obtained;

- Step 5: The assimilation procedure is repeated until
no more observations are available.

To evaluate the �lter performance, Relative Root-
Mean-Square Error (RRMSE) is calculated, which
illustrates the dimensionless di�erence between the
average estimated values and reference (or true) values,
as:

RRMSE =

vuut 1
Np

NpX
i=1

�
xavg
i � xtrue

i
xtrue
i

�2

; (19)

wherein xavg
i and xtrue

i are the average and true values
of the ith model parameter, respectively, and Np is
the total number of to-be-estimated parameters. As
discussed previously, a twin numerical setup has been

implemented for assessment purposes. Consequently,
true values of to-be-estimated parameters are known
(which will be discussed in Section 3.2) in order to ex-
amine the estimation performance. If the assimilation
converges, RRMSE will decrease along the simulation
time interval. However, RRMSE is just a traditional
tool that has been employed in many other studies and
does not guarantee the success of assimilation [5,42].

3. Case study

3.1. Reservoir model description
A 2D synthetic reservoir is considered to simulta-
neously estimate relative permeabilities and capillary
pressures under three-phase 
ow condition. The
synthetic model is built in the commercial �nite-
di�erence-based simulator, ECLIPSE. ECLIPSE is a
well-established and industry-reference simulator that
has been widely applied as the forward model in the as-
sisted history matching processes [12,15]. Accordingly,
in this study, ECLIPSE software with a fully-implicit
scheme is considered as the forward simulation model.

The heterogeneous reservoir model is divided into
a uniform grid system of size 21�21�1 with dimensions
of 100 � 100 � 50 ft. No-
ow boundary condition
is assumed at all sides of the reservoir model, and
the phases present in the reservoir are oil, water, and
gas. Absolute permeability map is generated using
sgsim module of SGeMS software [43] with isotropic
Gaussian covariance in which major and minor ranges
are set to 5 grid blocks. Figure 1 depicts the absolute
log-permeability map, whose mean and variance are
equal to 6 and 1 mD, respectively, and the well
patterns. Porosity of the formation is 10%. Absolute
permeability and porosity are known and �xed during
the assimilation process.

System states consist of (oil) pressure, water and
gas saturations, and solution gas/oil ratio for each grid

Figure 1. Absolute log-permeability �eld (mD) and well
locations of the synthetic 2D reservoir.
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Table 1. Well patterns and speci�cations.

I1 P4 P3 P2 P1 Well
Well type Producer Producer Producer Producer Injector
X location 2 20 20 2 11
Y location 2 2 20 20 11
Constraint 1500 psi 1500 psi 1500 psi 1500 psi 5000 STB/D

block. The initial reservoir pressure is 3600 psia, which
is equal to the bubble point pressure of the reservoir

uid. Thus, there is no free-gas initially present inside
the reservoir and initial gas saturation equals zero.
Also, initial solution gas/oil ratio is 1.390 MSCF/STB
and initial water saturation is 0.3.

The synthetic reservoir is a �ve-spot in which
there are four production wells (P1, P2, P3, and P4)
at the corners of the domain and a water injection
well (I1) at the center of the reservoir. Water is
injected through the injection well at a constant rate of
5000 STB/D and all producers have constant bottom-
hole pressure of 1500 psia. Well (block) locations and
speci�cations are listed in Table 1. Oil, water, and
gas production rates of the producers and bottom-hole
pressure of the injection well are used as the production
data; these provide 13 data points for each assimilation
cycle. Because real historical data from the �eld side is
not available, we have to generate synthetic historical
data from the reservoir simulator using the true model
parameters. Total production history is 720 days and
measurements are available every 60 days; hence, we
have 12 assimilation cycles. To mimic actual noisy
measurements [44], a white Gaussian noise is added
to the synthetic historical data. Standard deviation of
this noise is 10 psi for bottom-hole pressure, 5 STB/D
for oil and water production rates, and 8 MSCF/D for
gas production rate.

3.2. Reference relative permeability and
capillary pressure curves

Throughout this study, endpoint saturations are as-
sumed to be known. We consider Sorw = Sorg = 0:11,
Swc = 0:152, and Sgc = 0. Conventionally, critical
gas saturation (Sgc) is assumed to be zero whenever
the reservoir is initially undersaturated [25]. Similar
values have been incorporated for endpoint saturations
by other researchers [45].

Mean values and standard deviations of the un-
known model parameters are considered as the prior
knowledge (prior probability) in Table 2. Also, some
typical arbitrary values are selected for the true values
of these parameters. They, however, should be in
the ranges covered by Gaussian distributions whose
mean and standard deviations are speci�ed in Table 2.
Therefore, reference relative permeability and capillary
pressure curves are generated with these true values
and shown in Figures 2 and 3, respectively.

Table 2. Reference values of the relative permeability
and capillary pressure parameters.

Parameter Average
value

Standard
deviation

Reference
value

b0 3.00 0.80 3.70
aw 0.55 0.15 0.40
bw 5.00 1.00 4.00
P �cow 100.00 10.00 90.00
ncow 3.50 0.80 4.30
bog 4.00 0.70 4.70
ag 0.70 0.20 0.85
bg 2.20 0.50 1.70
P �cgo 50.00 5.00 55.00
ncgo 4.00 0.70 4.70

Reference model is the simulation model in which
all the unknown parameters are set to their true values,
and will be used to evaluate the assimilation process.
True observations are also obtained from the reservoir
simulator using this reference model. Subsequently,
estimated model parameters and updated observations
are compared with their true values.

4. Results and discussions

4.1. Scenario 1: Estimation of shape factors
In this scenario, we assume all the endpoints to be
known. Hence, there exist only 6 parameters to be
estimated by assimilation of the observation data with
the dynamic model:

m = [bo; bw; ncow; bog; bg; ncgo]T : (20)

A typical number of 100 ensemble members are con-
sidered for this scenario. Each ensemble member is
generated from a set of random numbers with Gaussian
distribution whose mean and standard deviation are
listed in Table 3. That is, a number of 100 random
numbers are generated for bo from a normal distri-
bution with mean and standard deviation equal to
3 and 0.8, respectively, [bo � N(3; 0:8)]. The same
procedure is repeated for bw, ncow, bog, bg, and ncgo
using their own mean and standard deviation values.
This provides a number of 100 di�erent realizations for
the model parameters, which are then used in the initial
ensemble.
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Table 3. Initial, estimated, and reference values of the relative permeability and capillary pressure parameters in
Scenario 1.

Parameter Average
value

STD Reference
value

Average
initial

Estimated
value

Final
STD

Relative
error (%)

bo 3.00 8:00� 10�1 3.70 3.06 3.70 1:36� 10�2 0.00
bw 5.00 1:00� 100 4.00 5.16 4.00 1:42� 10�2 0.00
ncow 3.50 8:00� 10�1 4.30 3.67 4.31 5:00� 10�2 0.23
bog 4.00 7:00� 10�1 4.70 3.97 4.67 2:57� 10�1 0.64
bg 2.20 5:00� 10�1 1.70 2.19 1.70 1:57� 10�2 0.00
ncgo 4.00 7:00� 10�1 4.70 3.94 4.64 4:32� 10�1 1.28

Figure 2. Reference relative permeabilities and envelopes
of initial ensembles for (a) the oil-water system and (b)
the gas-oil system.

The boundary envelopes of the initial ensemble
members are depicted in Figures 2 and 3. These
envelopes are generated with the maximum and mini-
mum values of the ensemble members and all the other
initial curves will be within the range covered by these

Figure 3. Reference capillary pressure and envelopes of
initial ensembles for (a) the oil-water system and (b) the
gas-oil system.

envelopes. As all of the endpoints (i.e., aw, P �cow, ag,
P �cgo) are assumed to be known and constant in this
scenario, there is no spread at the endpoints of the
curves.

The averages of the estimated relative permeabil-
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Figure 4. Estimated and reference relative permeability
curves for (a) the oil-water system and (b) the gas-oil
system in Scenario 1.

ity and capillary pressure curves are compared with
their corresponding references in Figures 4 and 5.
Clearly, an accurate evaluation of the relative perme-
abilities and capillary pressures is performed with the
maximum relative error of 1.28%. The initial, esti-
mated, and reference parameters are listed in Table 3.

Figure 6 displays evolution of the relative per-
meability and capillary pressure parameters versus
assimilation time. The dots represent mean values
calculated by averaging ensemble members and error
bars show standard deviations. Before the assimilation,
there is a large error and uncertainty for all the param-
eters. As assimilation proceeds, parameters get closer
to their reference values while standard deviations
(uncertainties) of the updated parameters are usually
reduced. This is in agreement with other investigations
in relation to the estimation of the relative permeabil-
ities and capillary pressures [11,21,24].

Although the uncertainties in the parameters bo,
bw, ncow, and bg have been reduced signi�cantly in
Figure 6, the shape factors of the capillary pressure
curve and oil relative permeability in the gas-oil system

Figure 5. Estimated and reference capillary pressure
curves for (a) the oil-water system and (b) the gas-oil
system in Scenario 1.

(ncgo and bog) still have large uncertainty. Actually, for
the most sensitive parameters, better estimation and
lower uncertainty are obtained during the assimilation
process. Thus, it can be inferred that parameters bo,
bw, ncow and bg have more profound e�ects on the 
uid

ow through porous media and the production data.
Furthermore, larger uncertainty and larger relative
error for the estimation of ncgo and bog may have root
in the fact that production data contain information
re
ecting low free gas saturation inside the reservoir.
Figure 7 accentuates that maximum free-gas saturation
in the reservoir for all ensemble members does not
exceed 0.18.

Moreover, in Section 4.3, the sensitivity of the
observation data to the unknown model parameters
will be discussed thoroughly and it will be illustrated
that estimation of the most sensitive parameters is
closer to their reference values and, also, uncertainty of
these parameters is decreased signi�cantly at the end
of assimilation.

Average initial values of the relative permeability
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Figure 6. Estimation of the relative permeability and capillary pressure parameters versus assimilation time: (a) bo, (b)
bw, (c) bog, (d) bg, (e) ncow, and (f) ncgo, in Scenario 1.

and capillary pressure parameters are listed in Table 3,
which are relatively close to the mean values of their
distributions. For the �rst assimilation cycle in Fig-
ure 6, parameters bo, bw, and bg are overestimated while
the other parameters are underestimated relative to
their corresponding reference values. This observation
can be better justi�ed using the Kalman �lter equation
(Eq. (10)), in which the assimilated ensemble mean is
equal to the forecasted ensemble mean plus the update
term, K(d�Hxf ). This term makes the model param-
eters adjust in some way that closer agreement between
the predicted observations and real measurements is
obtained when assimilated parameters are utilized in
the reservoir simulator. Thus, any increase or decrease
in the assimilated model parameters is interpreted
through the update term in the Kalman �lter equation.

Figure 8 shows the trend of RRMSE variation, as

calculated by Eq. (19), versus assimilation time. It
is a decreasing trend, which means that the overall
estimation error is reduced as the assimilation pro-
ceeds. Results of the history matching process are
presented in Figure 9. At each assimilation cycle,
updated ensemble of model parameters is used to
generate its corresponding relative permeability and
capillary pressure curves. Then, reservoir simulator is
re-run with the updated curves to calculate oil, gas,
and water production rates for all the producers and
the bottom-hole pressure of the injector. Also, before
the assimilation, initial ensemble members were used in
the simulation model to forecast reservoir performance
and assess the uncertainty. The gray and the black
curves denote the results from the initial and updated
ensembles, respectively, and the red line represents
the true observations from the reference model. The
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Figure 7. Maximum free gas saturation in the reservoir
versus assimilation time.

Figure 8. Relative root-mean-square error versus
assimilation time for Scenario 1.

updated ensemble members perform fairly well and
closely match the true observations for di�erent types
of production data.

Before the breakthrough of water, no water is
produced from the production wells and, thus, there
is no data of water production. However, water is
injected via the injection well throughout the produc-
tion history. Bottom-hole pressure of the injection
well is internally related to the relative permeability
and capillary pressure curves through the simulation
equations. As the bottom-hole pressure of the injection
well is also included in the historical data used for the
assimilation process, it will provide enough informa-
tion for estimating parameters of water 
ow functions
during the pre-breakthrough period.

4.2. Scenario 2: Estimation of shape factors
and endpoints

When the endpoints are also unknown, there exist
10 parameters to be estimated by assimilation of the
observation data with the dynamic model, which are

shown as vector m in Eq. (17). This makes the history
matching problem more complicated and challenging
due to its higher degree of freedom. Apparently, this
requires larger number of ensemble members to make
the �lter converge to appropriate estimates. If the
ensemble size is not large enough to approximate the
prior covariance properly, the ensemble members may
collapse to a single one or the updated ensemble mem-
bers may get improperly tuned with the observation
data; either case results in a poor data match and, thus,
�lter divergence occurs. As Figure 10 depicts, using a
number of 100 ensemble members (N = 100), similar to
what used previously, led to the divergence of the �lter.
This is despite the fact that RRSME was decreasing at
the early assimilation cycles; however, after a while,
RRMSE started to increase, which ultimately resulted
in �lter divergence. Subsequently, a twice larger
ensemble size was examined (N = 200), which made
the �lter converge and RRMSE decrease along the
assimilation time. The same approach is implemented
by some other researchers, such as Li et al. [26],
in order to determine the appropriate large-enough
ensemble size. Additionally, to our knowledge, no
researchers have provided an analytical error analysis
to deterministically indicate bounds on the number
of realizations required for convergence, and this is
certainly application-dependent.

Each ensemble is generated from a Gaussian
distribution with the mean and standard deviation
values listed in Table 4. As with the �rst scenario,
the averages of the estimated relative permeability
and capillary pressure curves have been compared
with their corresponding reference values in Figures 11
and 12, respectively. Obviously, more accurate estima-
tion of the relative permeability and capillary pressure
curves is obtained for the oil-water system. This will be
justi�ed by calculation of dimensionless sensitivities in
Section 4.3. For the endpoint of water and gas relative
permeabilities, cut-o� values of aw = 1:0, and ag = 1:0
have been used and all the greater values are set to 1.0
during simulation.

Except for P �cgo, the estimations of the other
unknown parameters at the end of assimilation are
much closer to their corresponding reference values
than to the initial ones. The initial, estimated, and
reference parameters are also listed in Table 4. The
estimation error after the assimilation is small enough
and its maximum relative error is about 8.89%.

Figures 13 and 14 represent evolution of the
relative permeability and capillary pressure parameters
versus assimilation time for the oil-water and gas-oil
systems, respectively. Before the assimilation, there is
a large error and large uncertainty for all the param-
eters. During the assimilation, model parameters get
closer to their reference values except for P �cgo in which
the initial and estimated values are almost the same
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Figure 9. History matching results for oil production rate, water production rate, gas production rate, and bottom-hole
pressure in Scenario 1.

(see Table 4). Furthermore, estimation of ncgo has been
only improved at the �rst assimilation cycle, while no
improvement is achieved during the next cycles. In
general, estimation of the most sensitive parameters
is closer to their reference values and uncertainty of
these parameters is decreased signi�cantly at the end

of assimilation. Therefore, it can be inferred that
parameters bo, aw, bw, ncow, and bg have more profound
e�ects on the production data. Later, the sensitivity of
the observation data to the unknown parameters will
be discussed. Also, the larger relative error for the
estimation of the relative permeabilities and capillary
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Table 4. Initial, estimated, and reference values of the relative permeability and capillary pressure parameters in
Scenario 2.

Parameter Average
value

STD Reference
value

Average
initial

Estimated
value

Final
STD

STD
ratio�

Relative
error (%)

bo 3.00 8:00�10�1 3.70 3.01 3.71 9:10�10�3 1:14�10�2 0.27
aw 0.55 1:50�10�1 0.40 0.55 0.40 4:40�10�3 2:93�10�2 0.00
bw 5.00 1:00�100 4.00 5.07 3.99 3:73�10�2 3:73�10�2 0.25
P �cow 100.00 1:00�101 90.00 98.79 89.56 3:97�100 3:97�10�1 0.49
ncow 3.50 8:00�10�1 4.30 3.50 4.29 6:00�10�2 7:50�10�2 0.23
bog 4.00 7:00�10�1 4.70 3.96 4.95 3:18�10�1 4:54�10�1 5.31
ag 0.70 2:00�10�1 0.85 0.71 0.88 5:74�10�2 2:87�10�1 3.53
bg 2.20 5:00�10�1 1.70 2.22 1.73 3:72�10�2 7:44�10�2 1.76
P �cgo 50.00 5:00�100 55.00 50.02 50.11 4:83�100 9:66�10�1 8.89
ncgo 4.00 7:00�10�1 4.70 4.03 4.91 4:98�10�1 7:11�10�1 4.47

�: Ratio of the �nal STD to the initial std.

Figure 10. Relative root-mean-square error versus
assimilation time for Scenario 2.

pressure of the gas-oil system may be due to the fact
that production data contains information re
ecting
low free-gas saturation (see Figure 7).

Similar to Figure 9, at each assimilation cycle,
reservoir simulator is re-run with the updated relative
permeability and capillary pressure curves to calculate
oil, gas, and water production rates for all the pro-
ducers and the bottom-hole pressure of the injector.
In Figure 15, the gray and the black curves denote
the results from the initial and updated ensembles,
respectively; and the red line represents the true
observations from the reference model. It is clear
that updated ensemble members closely match the true
observations for di�erent types of production data and
this further veri�es that relative permeabilities and
capillary pressures are well adjusted during assimila-
tion using the EnKF.

4.3. Sensitivity analysis
In this section, the sensitivity of the observation data
to the relative permeability and capillary pressure

Figure 11. Estimated and reference relative permeability
curves for (a) the oil-water system and (b) the gas-oil
system in Scenario 2.

parameters obtained in the second scenario is analyzed.
Dimensionless sensitivity coe�cients provide a relative
measure of how di�erent data a�ect estimates of the
model parameters. Dimensionless sensitivity of obser-
vation di to model parameter mj is given by [45,46]:
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Figure 12. Estimated and reference capillary pressure curves for (a) the oil-water system and (b) the gas-oil system in
Scenario 2.

Figure 13. Estimation of the relative permeability and capillary pressure parameters versus assimilation time for the
oil-water system: (a) bo, (b) bw, (c) aw, (d) ncow, and (e) P �cow, in Scenario 2.
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Figure 14. Estimation of the relative permeability and capillary pressure parameters versus assimilation time for the
gas-oil system: (a) bog, (b) bg, (c) ag, (d) ncgo, and (e) P �cgo, in Scenario 2.

Si;j =
@di
@mj

�mj
�di

; (21)

wherein �2
mj is the prior variance of model parameter

mj and �2
di is the variance of measurement error for the

ith observation. The derivatives involved in Eq. (21)
are calculated using a �ve-point stencil as [47]:

@di
@mj

=
�fi;1 + 8fi;2 � 8fi;3 + fi;4

12�mj
; (22)

in which:
fi;1 = di at

m=[m1; � � � ;mj�1;mj+2�mj ;mj+1; � � � ;mNp ]T ;

fi;2 = di at

m=[m1; � � � ;mj�1;mj+�mj ;mj+1; � � � ;mNp ]T ;

fi;3 = di at

m=[m1; � � � ;mj�1;mj��mj ;mj+1; � � � ;mNp ]T ;

fi;4 = di at

m=[m1; � � � ;mj�1;mj�2�mj ;mj+1; � � � ;mNp ]T ;
(23)

and �mj = 0:01mj :fi;1 through fi;4 are evaluated
using the reservoir simulator.

Actually, higher values of dimensionless sensitiv-
ity result in better estimation of the model parameters
and lower uncertainty (lower variance) at the end of
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Figure 15. History matching results for oil production rate, water production rate, gas production rate, and bottom-hole
pressure in Scenario 2.

assimilation. For example, if Si;j > Sk;j , then use of di
for history matching gives a better estimate of mj than
the one obtained by history matching based on dk [45].

In this section, we choose production rates of
well P1 and bottom-hole pressure of well I1 so as
to perform the sensitivity analysis. Figure 16 shows
the dimensionless sensitivity of the oil production rate
at well P1 to the model parameters as a function of

time. It shows that oil production rate at well P1 is
very sensitive to the parameters de�ning the oil-water
relative permeabilities (bo, bw, and aw). Furthermore,
water and gas production rates at well P1 (Figures 17
and 18) and bottom-hole pressure at well I1 (Figure 19)
are quite sensitive to the oil-water relative permeability
parameters. Therefore, one expects a close agreement
between the estimation of the oil-water relative perme-
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Figure 16. Dimensionless sensitivity of well P1 oil
production rate to relative permeability and capillary
pressure parameters.

Figure 17. Dimensionless sensitivity of well P1 water
production rate to relative permeability and capillary
pressure parameters.

ability parameters and the reference values with low
uncertainty at the end of assimilation. This is veri�ed
by the results presented in Figure 13 and Table 4. Oil
production rate at early times is also sensitive to the
shape factor of the gas relative permeability, bg.

Figure 17 represents the dimensionless sensitivity
coe�cients of water production rate at well P1. As it is
shown, water production is sensitive to the parameters
bo, bw, aw, and ncow. Figure 18 shows that at the
early times of assimilation, gas production rate of well
P1 is quite sensitive to bg, as expected. However, as
assimilation cycle proceeds, when the free-gas satura-
tion decreases and the gas production rate is reduced
signi�cantly, only bo, bw, and aw dominate the gas 
ow
rate.

Figure 19 represents the dimensionless sensitivity
coe�cients of 
owing bottom-hole pressure at well I1.
Bottom-hole 
owing pressure is strongly in
uenced by
total mobility [45], which is the sum of the mobilities
of each phase and is de�ned as:

Figure 18. Dimensionless sensitivity of well P1 gas
production rate to relative permeability and capillary
pressure parameters.

Figure 19. Dimensionless sensitivity of well I1
bottom-hole pressure to relative permeability and
capillary pressure parameters.

�t =
kro
�o

+
krg
�g

+
krw
�w

: (24)

Grid blocks surrounding the injection well are almost
saturated with water and oil. Therefore, the bottom-
hole pressure is expected to have high sensitivity to
the oil-water relative permeability parameters, as it
is depicted in Figure 19. Around the injection well,
there is a high 
ow rate in the reservoir, and so the
bottom-hole pressure of the injection well is insensitive
to P �cow and ncow. As a result, a small relative error is
obtained for estimation of parameters bo, bw, aw, ncow,
and bg with low variances at the end of assimilation, as
depicted in Figures 13 and 14 and Table 4.

The dimensionless sensitivity of the production
rates of well P1 and bottom-hole pressure of well I1 to
the other parameters, including P �cow, bog, ag, P �cgo, and
ncgo, are all small. However, the information contents
of these sets of data are di�erent. Therefore, history
matching of all the production rates and bottom-hole
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pressure yields an improved estimation of these param-
eters whose maximum relative error is 8.89%, as listed
in Table 4. However, as discussed above, parameters
with high values of dimensionless sensitivity usually
result in better estimation of the model parameters and
lower uncertainties. Table 4 shows that uncertainty of
the parameters P �cow, bog, ag, P �cgo, and ncgo at the end
of assimilation is much greater than parameters with
high dimensionless sensitivity.

5. Conclusions

In this study, three-phase relative permeabilities and
capillary pressures were simultaneously estimated from
historical data using the EnKF. The proposed tech-
nique was validated by a 2D three-phase heterogeneous
reservoir with two di�erent scenarios. Power-law
models were used for both relative permeability and
capillary pressure curves and the associated unknown
parameters were adjusted sequentially toward their
reference values during the assimilation process. All
the unknown model parameters were accurately esti-
mated except for the gas-oil entry capillary pressure.
This is explained by calculation of the dimensionless
sensitivities, which represent the sensitivity of the
observation data to the unknown model parameters.
It was veri�ed that higher values of dimensionless
sensitivity resulted in better estimation of the model
parameters and lower uncertainty (lower variance) at
the end of assimilation. Nonetheless, this consequence
could be further approved by considering more complex
and larger reservoir models in the future. Moreover, the
impacts of availability of the endpoints and ensemble
size on the �lter performance were evaluated.

The second scenario in which the endpoints were
unknown seemed to be a better representative of
an actual history matching problem performed to
characterize a real three-phase 
ow reservoir through
simultaneous estimation of relative permeabilities and
capillary pressures from production data. However,
this scenario was more complicated and challenging due
to its higher degree of freedom. Hence, to avoid �lter
divergence, a larger number of ensemble members were
required, which increased the computational burden.

Nomenclature

A Ensemble perturbations or anomalies
a Endpoint of relative permeability curve
b Shape factor of relative permeability

curve
D Measurement perturbations vector
d Real observations
~d Predicted observations
H Mapping operator

I Identity matrix
K Kalman gain matrix
M Reservoir simulation model
kr Relative permeability
m Model parameters
N Gaussian distribution
N Number of ensemble members
nc Shape factor of capillary pressure curve
nd Number of observations at each

assimilation cycle
nm Number of model parameters
Np Number of to-be-estimated parameters
ns Number of model states
O Null matrix
P Error covariance matrix
Pc Capillary pressure (psia)
P �c Endpoint of capillary pressure curve

(psia)
Q Model error covariance matrix
R Measurement noise covariance matrix
Rs Solution gas/oil ratio (MSCF/STB)
RRMSE Relative Root-Mean-Square Error
S Saturation
s Model states
Sd;m Dimensionless sensitivity coe�cient of

observation d to model parameter m
Sgc Critical gas saturation
SgD Dimensionless gas saturation
Sorg Residual oil saturation in the gas-oil

system
Sorw Residual oil saturation in the oil-water

system
Swc Critical water saturation
SwD Dimensionless water saturation
std Standard deviation
u Control inputs
w Model error
WOPR Well Oil Production Rate (STB/D)
WWPR Well Water Production Rate (STB/D)
WGPR Well Gas Production Rate (MSCF/D)
WBHP Well Bottom-Hole Pressure (psia)
x State vector (augmented)

Greek letters

" Measurement perturbation
�t Total mobility (cp�1)
� Viscosity (cp)
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�d Standard deviation of measurement
error

�m Standard deviation of model parameter

Subscripts

g Gas phase
go Gas-oil system
o Oil phase
ow Oil-water system
w Water phase

Superscript

a Analysis value
avg Average value
f Forecast value
T Matrix transpose
true True value
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