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Abstract. Thermolysis of the mixture of [CuMoO4(N2C12H8)].H2O and [Cu3
ICl(4,40-

bipy)4][CuII(1,10-phen)2Mo8 O26] (4,40-bipy=4,40-bipyridine and 1,10-phen=1,10-phenan-
throline) coordination polymers has led to the formation of MoO3/CuMoO4 nanoparticles
(NPs). The nanomaterial was characterized by means of X-ray Di�raction (XRD),
Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) analysis, Dynamic
Light Scattering (DLS), and Inductive Coupled Plasma Optical Emission Spectroscopy
(ICP-OES). The MoO3/CuMoO4 NPs were employed as heterogeneous catalysts in the
epoxidation of ole�ns and allylic alcohols with tert-butyl hydroperoxide (TBHP) or cumene
hydroperoxide (CHP) as oxidants in di�erent solvents such as CHCl3, CH2Cl2, and CH3CN.
The resulting catalyst displayed high activity and selectivity towards the epoxidation of
ole�ns and allylic alcohols.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Metal oxide nanoparticles are becoming a progressively
important group of materials with potential appli-
cations in di�erent research areas such as catalysis,
magnetism, sensors, and optics [1-3]. Various methods
have been devised to prepare metal oxide nanomate-
rials including solvothermal [4], co-precipitation [5],
microwave synthesis [6], sol-gel process [7], chemical
vapor methods [8], and template synthesis [9].

Decomposition of coordination polymers and
Metal-Organic Frameworks (MOFs) is a facile and
reasonable procedure to obtain desired metal oxide
nanomaterials with diverse morphologies [10-12].
For instance, Co3O4 nanoparticles were prepared
by direct calcination of fCo3 (2,6-NDC)3(DMF)4gn
(NDC= 2,6-naphtalene-dicarboxylate; DMF=N,N0-
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dimethylformamide) MOF [13]; nanostructured
CuO was synthesized using Cu(C6H4NO2)2(H2O)4
nanosheets and [Cu(C6H4NO2)(OH)].H2O(C6H4NO2
= isonicotinic acid) nanorods [14]; MnO2 nano-
wires were obtained from fMn(SO4)(4,4-bipyirdine)
(H2O)2gn MOF [15]; 
owerlike NiO nano- materials
were acquired from Ni3(btc)2.12H2O (btc=1,3,5-
benzen-tricarboxylic acid) [16]; ZnO nanorods were
synthesized from 1-D coordination polymer [Zn(4,4-
bipyridine)Cl2], while nanoneedle-like ZnO was formed
from thermolysis of [Zn(C2O4)(4,4-bipyridine)] [17].

Among metal oxide materials, molybdenum-based
oxides are important from catalytic point of view
since they serve as e�ective catalysts for industrial
reactions such as hydrodesulphurization of petrol, hy-
drogenation, oxidation, polymerization, and metathesis
of ole�ns [18,19]. For example, CeO2-MoO3/SiO2
was exploited as a catalyst for the oxidative coupling
of benzylamines to N -benzylbenzaldimines, which is
recognized as an industrially important reaction [20].
It was also reported that molybdenum oxide can act
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as a promoter in the acetalization of glycerol with
ketones or aldehydes which presumes signi�cant impor-
tance from industrial and environmental aspects [21-
24]. Additionally, molybdenum-based materials are
excellent catalysts for the epoxidation of ole�ns that
is a crucial reaction in both industry and academia
since epoxides are proper intermediates that can form a
variety of other compounds [25,26]. In this association,
we have studied the catalytic activity of molybdenum-
based catalysts for the epoxidation of ole�ns [27-
29].

Synthesis of molybdenum oxide materials as
e�ective epoxidation catalysts [30-34] provoked us
to prepare MoO3/CuMoO4 nanoparticles through
the thermolysis of the mixture of [CuMoO4(N2C12
H8)].H2O and [CuI

3Cl(4,40-bipy)4][CuII(1,10-phen)2
Mo8O26] (4,40-bipy=4,40-bipyridine and 1,10-phen =
1,10-phenanthroline) coordination polymers. We have
applied the nanosized MoO3/CuMoO4 crystals as het-
erogeneous catalysts for the epoxidation of ole�ns and
allylic alcohols. Moreover, the type of solvent and
oxidant in the catalytic activity of the nanoparticles
was explored.

2. Experimental section

2.1. Materials and instrumentation
All chemicals were acquired from commercial sources
and used as received. X-Ray Di�raction (XRD) pat-
terns of the samples were recorded on a Philips PW1800
di�ractometer with Cu K� radiation (� = 1:5406 �A).
The Scanning Electron Microscopy (SEM, KYKY EM-
3200) was used to examine the morphology of the
samples. Elemental analyses were conducted by a
scanning electron microscope with EDX (Energy Dis-
persive X-ray) detector INCA Penta FETx3. Inductive
Coupled Plasma Optical Emission Spectroscopy (ICP-
OES, Optima 8000) was employed to determine the
metal content of the samples.

2.2. Synthesis of MoO3/CuMoO4 NPs
The MoO3/CuMoO4 NPs were prepared via thermol-
ysis of [CuMoO4(1,10-phen)].H2O and ([CuI

3Cl(4,40-
bipy)4][CuII(1,10-phen)2Mo8O26]) (4,40-bipy = 4,40-
bipyridine and 1,10-phen = 1,10-phenanthroline) co-
ordination polymers at 600�C for 2 h. The coordi-
nation polymers were obtained based on a reported
hydrothermal procedure [35]. In order to prepare the
polymers, (NH4)6Mo7O24.4H2O (0.1 mmol, 0.124 g),
CuCl2.2H2O (0.3 mmol, 0.052 g), 4,40-bipy (0.3 mmol,
0.047 g), 1,10-phenanthroline (0.2 mmol, 0.036 g), and
KF (0.3 mmol, 0.017 g) were added to a Te
on-lined
stainless steel autoclave containing H2O (10 ml) and
stirred for 30 min. After adjusting the pH value of
the mixture by diluted ethylenediamine to 5.5, the
autoclave was sealed and heated at 165�C for 4 days.

The crystals containing the mixture of the coordina-
tion polymers were isolated by �ltration, washed with
distilled water, and annealed at 600�C for 2 h.

2.3. Epoxidation of ole�ns in the presence of
MoO3/CuMoO4 NPs

Epoxidation of ole�ns and allylic alcohols was con-
ducted using tert-butyl hydroproxide (TBHP, 70% in
water) as oxidant. TBHP was dried using CH2Cl2
according to the procedure mentioned in the litera-
ture [36]. Tert-butyl hydroproxide (TBHP, 14.4 mmol)
as oxidant was added to a mixture of catalyst (100 mg)
and substrate (8 mmol) in chloroform (10 ml). The
mixture was re
uxed at 60�C for a particular time, and
the products were analyzed using a gas chromatograph
(HP, Agilent 6890N) equipped with a capillary column
(HP-5) and a Flame Ionization Detector (FID). GC-
MS (Gas Chromatography-Mass Spectrometry) of the
products was acquired using a Shimadzu-14A with a
capillary column (CBP5-M25).

3. Results and discussion

3.1. Characterization of MoO3/CuMoO4
catalyst

The MoO3/CuMoO4 NPs were formed by thermal
decomposition of the mixture of [CuMoO4(N2C12H8)].
H2O and [Cu3

ICl (4,40-bipy)4][CuII(1,10-phen)2Mo8
O26] coordination polymers. The polymers were
characterized by X-ray single crystal analysis [35].
The XRD pattern of the nanoparticles, illustrated in
Figure 1, proves the formation of MoO3 (JCPDS No.
05-0508) and CuMoO4 (JCPDS No. 22-0242). The size
of the particles was calculated from the peaks in the
XRD patterns by means of Debye-Scherrer equation as
seen below:

d = (0:89�=� cos �); (1)

where d expresses the mean size of the particles, � is
the X-ray wavelength (1.5406 �Afor Cu K�), � is the
Full Width at Half Maximum (FWHM) of the peaks,

Figure 1. X-ray di�raction patterns of MoO3/CuMoO4

nanocatalyst.
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and � is the Bragg angle. The average crystal size is
calculated to be about 22 nm.

The SEM micrograph of MoO3/CuMoO4 NPs
is provided in Figure 2(a), where the particles have
spherical morphology with the size of 20-50 nm in
diameter. The NPs were dispersed in water upon
sonication, and their size distribution was identi�ed by
DLS analysis (Figure 2(b)). The result demonstrates
that the size of the NPs is about 15-40 nm with a
polydispersity index (PDI) of 0.255. As represented
in Figure 2(c), chemical analysis, using EDX, displays
the presence of molybdenum, copper, and oxygen in
the sample.

3.2. Catalytic activity studies
The research on the catalytic activity of MoO3/CuMo
O4 NPs was carried out in the epoxidation of ole�ns
and allylic alcohols. 3-methyl-2-butene-1-ol was des-
ignated as the typical substrate for the exploration
of the epoxidation reaction using di�erent solvents
and oxidants (Figure 3). When TBHP or CHP
was used as oxidant, MoO3/CuMoO4 NPs showed
more activity in CH2Cl2 and CHCl3 in comparison
to when CH3CN was used as solvent. The reason
could be more coordination ability of CH3CN and its
tendency to �ll the coordination sites of the catalyst.
Based on Figure 3, it can be seen that the catalytic
reaction can give better epoxidation conversions in
the presence of TBHP in comparison with CHP due
to more electrophilic nature of the peroxidic oxygen
in TBHP. These observations that are well matched

Figure 3. The investigation of oxidant and solvent nature
for the epoxidation. Reaction conditions: MoO3/CuMoO4

catalyst (100 mg), 3-methyl-2-butene-1-ol (8 mmol),
oxidant (14.4 mmol), re
uxing solvent (10 ml), and
temperature (solvent's boiling point).

with the previous reports [27,35] indicate that the use
of TBHP as oxidant and non-coordinating solvents,
such as chloroform or dichloromethane, results in more
reactivity of MoO3/CuMoO4 NPs. Therefore, the
epoxidation reaction for the other substrates was ac-
complished in CHCl3 using TBHP. The results for the
catalytic epoxidation of the selected ole�ns and allylic
alcohols indicate high activity of the catalyst (Table 1).
The MoO3/CuMoO4 nanocatalyst and its previously
reported coordination polymer precursorsexhibit good
catalytic activity [35].

Figure 2. (a) SEM image, (b) DLS, and (c) EDX of MoO3/CuMoO4 nanoparticles.
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Table 1. Catalytic epoxidation of ole�ns and allylic alcohols using MoO3/CuMoO4 NPs.

Entry Substrate Time (h) Conversiona (%) Selectivityb (%)

1 Cyclooctene 4 86 > 99

2 Cyclohexene 24 96 > 99

3 Norbornene 6 92 > 99

4 trans-Stilbene 6 96 > 99

5 cis-Stilbene 2 100 > 99

6 1-Hexene 24 71 > 99

7 3-methyl-2-butene-1-ol 4 100 > 99

8 Allyl alcohol 2 100 > 99

Reaction conditions: catalyst (100 mg), ole�ns or allyl alcohols (8 mmol), TBHP (14.4 mmol),

re
uxing chloroform (10 ml), temperature (60�C).
a: Gc yield based on starting substrate.
b: Selectivity toward the formation of epoxide determined by GC-Mass.

Figure 4. E�ect of time on 3-methyl-2-butene-1-ol
conversion. Reaction conditions: catalyst (100 mg),
substrate (8 mmol), TBHP (14.4 mmol), re
uxing
chloroform (10 ml), and temperature (60�C).

As displayed in Figure 4, 3-methyl-2-butene-1-
ol has rapidly undergone the epoxidation reaction
utilizing MoO3/CuMoO4 NPs within 30 min, and
then is mostly oxidized after 4 h. To elucidate the
catalytic e�ciency of the prepared MoO3/CuMoO4
nanomaterial, the reaction was accomplished without
the catalyst using TBHP as oxidant and CHCl3 as
solvent, and low conversion (28%) was obtained after
2 h.

The recyclability of MoO3/CuMoO4 catalyst was
explored in the epoxidation of 3-methyl-2-butene-1-ol
for four catalytic cycles within various reaction times.
After each catalytic test, the catalyst was isolated,
washed with CHCl3 completely, and then reused in the

Figure 5. Kinetic pro�le of the epoxidation reaction in
the presence of recycled MoO3/CuMoO4. Reaction
conditions: recycled catalyst (100 mg),
3-methyl-2-butene-1-ol (8 mmol), TBHP (14.4 mmol),
re
uxing chloroform (10 ml), and temperature (60�C).

next experiment under the same reaction conditions.
The results for the performance of the recycled catalyst
are given in Figure 5. The catalytic activity was found
almost the same as that of fresh catalyst after 5 hours
without observable decrease in the activity after four
cycles. These results were in good agreement with
ICP-OES analysis for which no distinguishable loss of
the metal content was observed after four consecutive
catalytic cycles (Table 2). Furthermore, the XRD
patterns of the fresh and recycled catalyst provided
in Figure 1 are almost the same, implying that the
catalyst is stable during the epoxidation reaction.

Table 2. Metal content of the catalyst obtained by ICP-OES analysis.

Fresh MoO3/CuMoO4 NPs Recycled MoO3/CuMoO4 NPs

Mo content (%) 36 33
Cu content (%) 21 19
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4. Conclusion

In the present work, direct calcination of the mixture
of two coordination polymers led to the formation of
MoO3/CuMoO4 NPs. The catalytic potential of the
NPs was explored in the epoxidation of some ole�ns
and allylic alcohols. The prepared NPs served as
heterogeneous catalyst and displayed high activity and
selectivity in the epoxidation reaction. The nanocata-
lyst could be separated by �ltration and reused for at
least four catalytic cycles without noticeable change in
its activity.
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