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Abstract. In this article, modi�ed Korteweg-de Vries (mKdV) equation is solved
numerically by using lumped Petrov-Galerkin approach, where weight functions are
quadratic and the element shape functions are cubic B-splines. The proposed numerical
scheme is tested by applying four test problems including single solitary wave, interaction of
two and three solitary waves, and evolution of solitons with the Gaussian initial condition.
In order to show the performance of the algorithm, the error norms, L2, L1, and a
couple of conserved quantities are computed. For the linear stability analysis of numerical
algorithm, Fourier method is also investigated. As a result, the computed results show that
the presented numerical scheme is a successful numerical technique for solving the mKdV
equation. Therefore, the presented method is preferable to some recent numerical methods.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

The theory of nonlinear evolution equations (NLEEs)
is a very popular and fascinating area of research in the
�eld of applied mathematics and theoretical physics [1-
9]. A few of the focused areas of research with
NLEEs are 
uid dynamics, nonlinear optics, nuclear
physics, plasma physics, mathematical biosciences, and
several others. This paper will focus on the numerical
aspects of the dynamics of shallow water waves along
lakes' shores and beaches modeled by a very popular
NLEE. This is the modi�ed Korteweg-de Vries (mKdV)
equation [10-21].

While several forms of numerical analyses were
reported in the past, this paper addresses mKdV
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equation with a very popular and e�ective numerical
scheme. This is the cubic B-spline Petrov-Galerkin
method. The topics covered in this paper are linear
stability analysis, the dynamics of single solitary wave
of mKdV equation, interaction of two solitary waves
and three solitary waves, and evolution of solitons.
Several numerical examples are given to illustrate this
powerful algorithm. In conclusion, the error analysis is
also investigated in detail.

2. Cubic B-spline Petrov-Galerkin method

In this study, we will consider the modi�ed Korteweg-
de Vries (mKdV) equation:

Ut + "U2Ux + �Uxxx = 0; (1)

with the boundary conditions U ! 0 as x ! �1,
where " and � are positive parameters, and subscripts
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x and t denote the di�erentiation.
Let us consider the solution domain is limited to

a �nite interval a � x � b. The interval [a; b] is divided
into N equal subinterval by the points xm, such that
a = x0 < x1 � � � < xN = b and length h = b�a

N =
(xm+1 � xm), m = 1; 2; � � � ; N . The mKdV equation
(Eq. (1)) is considered with respect to the boundary
conditions:

U(a; t) = 0; U(b; t) = 0;

Ux(a; t) = 0; Ux(b; t) = 0; t > 0; (2)

and the initial condition:

U(x; 0) = f(x); a � x � b; (3)

where f(x) is a prescribed function. Physical boundary
conditions require U and Ux ! 0 that U ! 0
for x ! �1. The cubic B-spline functions �m(x),
m = �1(1)N + 1, are de�ned at the knots xm by the
relationships [22]:

�m(x)

=
1
h3

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

(x� xm�2)3 x 2 [xm�2; xm�1];

h3 +3h2(x�xm�1)
+3h(x�xm�1)2

�3(x�xm�1)3
x 2 [xm�1; xm];

h3 +3h2(xm+1�x)
+3h(xm+1�x)2

�3(xm+1�x)3
x 2 [xm; xm+1];

(xm+2 � x)3; x 2 [xm+1; xm+2];

0 otherwise:

(4)

The set of functions f��1; �0; �1; �2g forms a basis for
functions de�ned over the interval a � x � b. So,
the numerical solution UN (x; t) to the exact solution
UN (x; t) is given by:

UN (x; t) =
N+1X
j=�1

�j(t)�j(x); (5)

where �j is time-dependent quantities to be determined
from the boundary and weighted residual conditions.
Each cubic B-spline covers four elements so that each
element [xm; xm+1] is covered by four splines. Applying
a local coordinate system to typical �nite element
[xm; xm+1] is de�ned by:

h� = x� xm; (6)

such that 0 � � � 1, the �nite interval [xm; xm+1] is

converted to a more easily workable interval [0; 1]. In
this case, the cubic B-spline shape functions depending
on variable � over the element [0; 1] can be de�ned in
the following form:

�m�1 = (1� �)3;

�m = 1 + 3(1� �) + 3(1� �)2 � 3(1� �)3;

�m+1 = 1 + 3� + 3�2 � 3�3;

�m+2 = �3: (7)

All splines, apart from �m�1(x); �m(x); �m+1(x), and
�m+2(x), are null over the element [xm; xm+1]. Over
the typical element [xm; xm+1], the numerical solution
UN (x; t) is given by:

UN (x; t) =
m+2X
j=m�1

�j(x)�j(t); (8)

where �m�1; �m; �m+1, and �m+2 act as element pa-
rameters and B-splines �m�1; �m; �m+1, and �m+2 as
element shape functions. The values of �j(x) and its
derivative may be tabulated as in Table 1.

Using cubic B-splines (Eq. (7)) and trial function
(Eq. (8)), the nodal values of U;U 0, and U 00 at the knot
xm are given in terms of the element parameters �m by:

Um = U(xm) = �m�1 + 4�m + �m+1;

U 0m = U 0(xm) =
3
h

(��m�1 + �m+1);

U 00m = U 00(xm) =
6
h2 (�m�1 � 2�m + �m+1); (9)

where the symbols 0 and 00 denote the �rst and second
di�erentiations with respect to x, respectively. The
splines �m(x) and their two principle derivatives vanish
outside the interval [xm�2; xm+2]. The weight function
 m is taken a quadratic B-spline. Quadratic B-spline
 m at the knots xm is de�ned over the interval [a; b]
by:

Table 1. Cubic B-splines and its derivatives at nodes xm.

x xm�2 xm�1 xm xm+1 xm+2

�m(x) 0 1 4 1 0

�0m(x) 0 3
h 0 � 3

h 0

�00m(x) 0 6
h2 � 12

h2
6
h2 0
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 m(x) =
1
h2

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(xm+2 � x)2

� 3(xm+1 � x)2

+ 3(xm � x)2
[xm�1; xm];

(xm+2 � x)2

� 3(xm+1 � x)2 [xm; xm+1];

(xm+2 � x)2 [xm+1; xm+2];

0 otherwise:

(10)

Using the local coordinate transformation for the �nite
element [xm; xm+1] by h� = x � xm, 0 � � � 1,
quadratic B-spline  m can be de�ned as:

 m�1 = (1� �)2;

 m = 1 + 2� � 2�2;

 m+1 = �2: (11)

Applying the Petrov-Galerkin approach to Eq. (1), we
obtain the weak form of Eq. (1):Z 1

0
 (Ut + "U2Ux + �Uxxx)dx = 0: (12)

For a single element [xm; xm+1], using transformation
in Eq. (6) into Eq. (12), we obtain:Z 1

0
 
�
Ut+"

�
U2

h

�
U�+�

�
1
h3

�
U���

�
d�=0: (13)

Integrating Eq. (13) by parts and using Eq. (1) lead to:Z 1

0
[ (Ut + �U�) + �	�U�t)]d� = �	U�tj10; (14)

where � = U2

h and � = �
h3 Taking the weight function,

	i, with quadratic B-spline shape functions given by
Eq. (11) and substituting approximation in Eq. (8) into
integral Eq. (14), we obtain the element contributions
in the form:

m+2X
j=m�1

�Z 1

0
 i�jd�

�
_�ej +

m+2X
j=m�1

" 
"�
Z 1

0
 i�0jd�

!

�
 
�
Z 1

0
 0i�00j d�

!
+
�
� i�00j j10�#�ej = 0; (15)

which can be written in a matrix form as follows:

[Ae] _�e + ["�Be � �(Ce �De)]�e = 0; (16)

where �e = (�m�1; �m; �m+1; �m+2)T are the element
parameters, and the dot denotes di�erentiation with

respect to t. The element matrices Ae, Be, Ce, and De

are rectangular 3� 4 given by the following integrals:

Aeij =
Z 1

0
 i�jd� =

1
60

2410 71 38 1
19 221 221 19
1 38 71 10

35 ;
Beij =

Z 1

0
 i�0jd� =

1
10

24 �6 �7 12 1
�13 �41 41 13
�1 �12 7 6

35 ;
Ceij =

Z 1

0
 0i�00j d� =

24�4 6 0 �2
2 �6 6 �2
2 0 �6 4

35 ;
De
ij =  i�00j j10 =

24�6 12 �6 0
�6 18 �18 6
0 6 �12 6

35 ;
where i takes only the values 1, 2, and 3; j takes only
the values m� 1, m, m+ 1, and m+ 2 for the typical
element [xm; xm+1]. A lumped value for � is found
from 1

4 (Um + Um+1)2 as:

� =
1

4h
(�m�1 + 5�m + 5�m+1 + �m+2)2: (17)

By considering together contributions from all ele-
ments, the following matrix equation becomes:

[A] _� + ["�B � �(C �D)]� = 0; (18)

where � = (��1; �0; � � � ; �N ; �N+1)T is a global element
parameter. The matrices A, B, and �D are rectangular
and m of each row has the following form:

A =
1
60

(1; 57; 302; 302; 57; 1);

�B =
1
10

(��1;�12�1 � 13�2; 7�1 � 41�2

� 6�3; 6�1 + 41�2 � 7�3; 13�2 + 12�3; �3);

C = 2(1; 1;�8; 8;�1;�1);

D = (0; 0; 0; 0; 0; 0; 0);

where:

�1 =
1

4h
(�m�2 + 5�m�1 + 5�m + �m+1)2;

�2 =
1

4h
(�m�1 + 5�m + 5�m+1 + �m+2)2;

�3 =
1

4h
(�m + 5�m+1 + 5�m+2 + �m+3)2:
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Substituting the Crank-Nicolson approach, � = 1
2 (�n+

�n+1), and the forward �nite di�erence, _� = �n+1��n
�t ,

in Eq. (18), we obtain the following matrix system:�
A+ ["�B � �(C �D)]

�t
2

�
�n+1

=
�
A� ["�B � �(C �D)]

�t
2

�
�n; (19)

where �t is the time step. Applying the boundary
condition (2) to the system (19), we make the matrix
equation square. The resulting system can be e�-
ciently solved by a variant of the Thomas algorithm.
Two or three inner iterations are applied to �n� =
�n + 1

2 (�n � �n�1) at each time in order to improve
the accuracy. A typical member of the matrix system
(19) may be written in terms of the nodal parameters
�n and �n+1 as:


1�n+1
m�2 + 
2�n+1

m�1 + 
3�n+1
m + 
4�n+1

m+1 + 
5�n+1
m+2

+ 
6�n+1
m+3 = 
6�nm�2 + 
5�nm�1 + 
4�nm

+ 
3�nm+1 + 
2�nm+2 + 
1�nm+3; (20)

where:


1 =
1
60
� "��t

20
� ��t;


2 =
57
60
� 25"��t

20
� ��t;


3 =
302
60
� 40"��t

20
+ 8��t;


4 =
302
60

+
40"��t

20
� 8��t;


5 =
57
60

+
25"��t

20
+ ��t;


6 =
1
60

+
"��t

20
+ ��t;

which all depend on �n.
To evaluate the vector parameters, �n, the initial

vector �0 must be determined from the initial and
boundary conditions. So, the approximation in Eq. (8)
can be rewritten for the initial condition:

UN (x; 0) =
N+1X
m=�1

�m(x)�0
m; (21)

where the parameters �0
m will be determined. Using

relations at the knots:

UN (xm; 0) = U(xm; 0);

U 0N (x0; 0) = U 0(xN ; 0) = 0; m = 0; 1; � � � ; N; (22)

together with derivative condition, the initial vector �0

can be determined from the following matrix equation:2666664
�3 0 3
1 4 1

. . .
1 4 1
�3 0 3

3777775
2666664
�0�1
�0
0
...
�0
N

�0
N+1

3777775 =

2666664
U 0(x0;0)
U(x0;0)

...
U(xN;0)
U 0(xN;0)

3777775 ;
which can be solved using a variant of the Thomas
algorithm.

3. Stability analysis

For the linear stability analysis of the numerical al-
gorithm, we use the Fourier method and assume that
the quantity U in the non-linear term U2Ux is locally
constant. In this case, the mKdV equation can be
linearized. The growth factor � of the error in a typical
mode of amplitude,

�nm = �neijkh; (23)

where k is the mode number, and h is the element size.
Substituting the Fourier mode (Eq. (23)) into Eq. (20)
gives the growth factor, �, of the form:

� =
a� ib
a+ ib

; (24)

where:

a = 302 cos
�
kh
2

�
+ 57 cos

�
3kh

2

�
+ cos

�
5kh

2

�
;

b =[(120"�� 480�)�t] sin
�
kh
2

�
+ [(75"�+ 60�)�t] sin

�
3kh

2

�
+ [(3"�+ 60�)�t] sin

�
5kh

2

�
: (25)

The modulus of j�j is 1; therefore, the linearized scheme
is unconditionally stable.

4. Numerical examples and results

Numerical results of the mKdV equation are obtained
for three problems: the motion of a single-solitary
wave, interaction of two and three solitary waves. We
use the error norm L2 as in the following:

L2 =


U exact�UN

2'

vuuth
NX
J=1

��U exact
j �(UN )j

��2; (26)
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and the error norm L1 as in:

L1 =


U exact � UN

1 ' max

j

��U exact
j � (UN )j

�� ;
j = 1; 2; � � � ; N � 1; (27)

so that we can calculate the di�erence between analyt-
ical and numerical solutions at some speci�ed times.
Three of the many in�nitely conserved quantities of
mKdV Eq. (1) are:

I1 =
Z b

a
Udx ' h

NX
J=1

Unj ;

I2 =
Z b

a
U2dx ' h

NX
J=1

(Unj )2;

I3 =
Z b

a

�
U4 � 6�

"
(Ux)2

�
dx

' h
NX
J=1

�
(Unj )4 � 6�

"
(Ux)nj

�
; (28)

which correspond to conversation of mass, momentum,
and energy, respectively [23,24]. In the simulation of
solitary wave motion, the invariants I1, I2, and I3 are
monitored to check the conversation of the numerical
algorithm.

4.1. The motion of single solitary wave
As the �rst problem, Eq. (1) is considered with respect
to the boundary conditions U ! 0 as x! �1 and the
initial condition:

U(x; 0) =
r

6c
"

sech
�r

c
�

(x� x0)
�
: (29)

The analytical solution of the mKdV can be written as:

U(x; t) =
r

6c
"

sech
�r

c
�

(x� ct� x0)
�
; (30)

where ", �, c, and x0 are arbitrary constants. The
conserved quantities of motion for a solitary wave of
amplitude

q
6c
" and width depending on

q
c
� may be

evaluated analytically as in [13]:

I1 =�
r

6�
"
; I2 =

12p�c
"

;

I3 =�64c2

"2

r
�
c
: (31)

The values of the parameters " = 3, � = 1, c = 0:845,
h = 0:1, and �t = 0:01 are chosen over the spatial
interval [0; 80] to coincide with that of [13]. For these
parameters, the solitary wave has an amplitude A =q

6c
" = 1:3. Numerical computations are done up to

time t = 20. The obtained results are tabulated in
Table 2. The conserved quantities and error norms
L2 and L1 are shown at selected times. Table 2
represents a comparison of the values of the invariants
and error norms obtained by the present method with
those obtained by other method [13]. It is clearly
seen from the table that the invariants remain almost
constant during the computer run. It is observed from
the table that the error norms obtained by our method
are smaller than those given in [13]. In Figure 1, the
numerical solutions are displayed at t = 0; 1; 2; � � � ; 20.
As seen from the �gure, the soliton moves to the right
at a constant speed and almost unchanged amplitude
as time increases, as expected. In Figure 2, the motion
of single soliton is plotted with " = 3, � = 1, c = 0:845,
h = 0:1, and �t = 0:01 at selected times from t = 0 to
t = 20. Errors distributions at time t = 20 are depicted
for solitary waves amplitudes 1.3 in Figure 3 to show
the errors between the analytical and numerical results
over the problem domain.

Table 2. Invariants and error norms for single solitary wave with " = 3, � = 1, c = 0:845, h = 0:1, and �t = 0:01,
0 � x � 80.

Results t 1 5 10 15 20

I1
Present 4.442866 4.442866 4.442866 4.442866 4.442866

[13] 4.443000 4.443138 4.444142 4.443420 4.443171

I2
Present 3.676941 3.676941 3.676941 3.676941 3.676941

[13] 3.677069 3.677535 3.678094 3.678642 3.679192

I3
Present 2.072795 2.073537 2.073699 2.073776 2.073846

[13] 2.073575 2.074357 2.075303 2.076232 2.077161

L2-Error Present 6.286951e-04 1.249516e-03 2.131860e-03 2.949376e-03 3.641638e-03
[13] | | | | |

L1-Error Present 3.630992e-04 8.397466e-04 1.399503e-03 1.880855e-03 2.285638e-03
[13] 1.206756e-03 3.621519e-03 5.942047e-03 7.626772e-03 8.642137e-03
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Figure 1. Single solitary wave with " = 3, � = 1,
c = 0:845, h = 0:1, �t = 0:010, and 0 � x � 80 at
t = 0; 1; 2; � � � ; 20.

Figure 3. Error with " = 3, � = 1, c = 0:845, h = 0:1,
and �t = 0:01; 0 � x � 80, t = 20.

Figure 2. Single solitary wave with " = 3, � = 1, c = 0:845, h = 0:1, �t = 0:010, and 0 � x � 80 at t = 0; 4; 8; 12; 16 and
20.
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4.2. Interaction of two solitary waves
As a second problem, we consider the interaction of two
solitary waves by using the initial condition given by
the linear sum of the two well-separated solitary waves
having various amplitudes:

U(x; 0) =
2X
i=1

�isech[�i(x� xi)]; (32)

where �i =
q

6ci
" , �i =

q
ci
� , i = 1; 2, and ci and xi

are arbitrary constants.
For the simulation, the parameters " = 3, � = 1,

h = 0:1, �t = 0:01, c1 = 2, c2 = 1, x1 = 15, and
x2 = 25 are chosen over the range 0 � x � 80 to
coincide with Ref. [13]. The experiment is run from t =
0 to t = 20 and the calculated values of the invariants
I1, I2, and I3 obtained by the present method with
those obtained in [13] are compared in Table 3. It is
seen that the obtained values of the invariants remain
almost constant during the computer run.

Figure 4 shows the development of the interaction
of two solitary waves. It is clear from the �gure
that at t = 0, the greater soliton is at the left
position of the smaller soliton in the beginning of the
run. With the increase in time, the greater soliton
catches up the smaller one until at time t = 7,
when the smaller soliton is absorbed. The overlapping

process continues until t = 8, while greater soliton has
overtaken the smaller soliton and gotten in the process
of the separating. At time t = 16, the interaction is
complete, and the greater soliton has been separated
completely.

4.3. Interaction of three solitary waves
As for the third problem, we study the behavior of
the interaction of three solitary waves with di�erent
amplitudes and traveling in the same direction. So,
we consider Eq. (1) with initial condition given by the
linear sum of three well-separated solitary waves of
di�erent amplitudes:

U(x; 0) =
3X
i=1

�isech[�i(x� xi)]; (33)

where �j =
q

6ci
" , �i =

q
ci
� , i = 1; 2; 3, ci, and xi are

arbitrary constants.
For the computational work, parameters " = 3,

� = 1, h = 0:1, �t = 0:01, c1 = 2, c2 = 1, c3 = 0:5,
x1 = 15, x2 = 25, and x3 = 35 are taken over
the interval 0 � x � 80. Simulations are done up
to time t = 20. Table 4 displays a comparison of
the values of the invariants obtained by the present
method with those obtained in [13]. It is seen from the
table that the obtained values of the invariants remain

Table 3. Comparison of invariants for the interaction of two solitary waves with " = 3, � = 1, h = 0:1, �t = 0:01, c1 = 2,
c2 = 1, x1 = 15, and x2 = 25, 0 � x � 80.

I t 1 5 10 15 20

I1
Present 8.885732 8.885732 8.885732 8.885732 8.885732

[13] 8.886014 8.886776 8.889742 8.885983 8.884880

I2
Present 9.659345 9.659345 9.659345 9.659345 9.659345

[13] 9.659527 9.663714 9.662547 9.661071 9.661224

I3
Present 10.270908 10.853235 10.954396 10.307195 10.338415

[13] 10.239870 10.249000 10.246790 10.242580 10.242030

Table 4. Comparison of invariants for the interaction of three solitary waves with " = 3, � = 1, h = 0:1, �t = 0:01, c1 = 2,
c2 = 1, c3 = 0:5, x1 = 15, x2 = 25, and x3 = 35, 0 � x � 80.

I t 1 5 10 15 20

I1
Present 13.328677 13.328677 13.328677 13.328677 13.328677

[13] 13.329060 13.330630 13.338780 13.332640 13.332060

I2
Present 12.519943 12.519943 12.519943 12.519943 12.519943

[13] 12.520280 12.526260 12.540860 12.526660 12.524900

I3
Present 11.321264 12.452085 12.476293 12.413843 11.499239

[13] 11.249790 11.261270 11.288040 11.259970 11.256730
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Figure 4. Interaction of two solitary waves with " = 3, � = 1, h = 0:1, �t = 0:01, c1 = 2, c2 = 1, x1 = 15, x2 = 25, and
0 � x � 80 at t = 0; 4; 6; 7; 8; 12; 16, and 20.

almost constant during the computer run. As seen
from Figure 5, interaction started about time t = 6,
overlapping processes occurred between time t = 6
and t = 20, and waves started to resume their original
shapes after the time t = 20.

5. Evolution of solitons

As for our last problem, evolution of the solitons has
been studied using the Gaussian initial condition:
U(x; 0) = exp(�x2); (34)
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Figure 5. Interaction of three solitary waves with " = 3, � = 1, h = 0:1, �t = 0:01, c1 = 2, c2 = 1, c3 = 0:5, x1 = 15,
x2 = 25, x3 = 35, and 0 � x � 80 at t = 0; 6; 7; 8; 10; 12; 16, and 20.

for various values of �. In this case, the behavior of
the solution depends on the values of �. Therefore, the
values of � = 0:1 and � = 0:04 are chosen at the region
of the �50 � x � 50. The numerical computations are
done up to t = 10. The values of the three invariants
of motion for di�erent � are presented in Table 5.

Also, Figures 6 and 7 illustrate the development of the
Gaussian initial condition into solitary waves.

6. Conclusion

In this paper, a numerical treatment of the mKdV
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Table 5. Invariants for Gaussian initial condition with � = 0:1 and � = 0:04, h = 0:1, �t = 0:01, and �50 � x � 50 at
0 � t � 10.

t
� = 0:1 � = 0:04

I1 I2 I3 I1 I2 I3

0 1.772454 1.253314 .2355683 1.772454 1.253314 0.1958645

2 1.772454 1.253314 .2456447 1.772454 1.253314 0.1845277

4 1.772454 1.253314 .2099601 1.772454 1.253314 0.1912904

6 1.772454 1.253314 .2066328 1.772454 1.253314 0.2079808

8 1.772454 1.253314 .2010120 1.772454 1.253314 0.2229795

10 1.772454 1.253314 .1747070 1.772454 1.253314 0.2363841

Figure 6. Gaussian initial condition with " = 3, � = 0:1, h = 0:1, �t = 0:01, and �50 � x � 50 at 0 � t � 10.

equation has been introduced using cubic B-spline
Petrov-Galerkin �nite element method. To examine
the performance of the scheme, four test problems have
been studied. To show the performance of numerical
scheme, the error norms L2 and L1 for single solitary
wave and conserved quantities I1 and I2 for three test
problems have been calculated. These calculations
represent that the obtained error norms are smaller
than the existing numerical results in the literature.
The changes of the invariants are su�ciently small
and the quantities of the invariants are consistent with
those of [12]. Also, the linearized numerical scheme is
unconditionally stable. Finally, the presented method
can be reliably applied to obtain the numerical solution
to the mKdV equation and similar types of non-linear
problems.

The results of this paper stand on a very strong
footing that is encouraged with a lot of future prospects
in this avenue. Later, mKdV equation will be general-
ized to KdV equation with power law nonlinearity, so
that KdV and mKdV equations will fall out as their
special cases. The results of this generalized version
will be disseminated elsewhere. In addition, potential
KdV equation will also be addressed numerically using
this scheme and other rich algorithms. Subsequently,
the extension of KdV equation will be touched upon.
These include Gardner's equation that is otherwise
known as KdV-mKdV equation.

In order to understand the double-layered shal-
low water wave dynamics, there are several proposed
models. A couple of them are Bona-Chen equation
as well as Gear-Grimshaw system. These vector-
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Figure 7. Gaussian initial condition with " = 3, � = 0:04, h = 0:1, �t = 0:01, and �50 � x � 50 at 0 � t � 10.

coupled models will also be illustrated numerically
to gain a better understanding of the dynamics of
Exxon-Valdez oil spill in Alaska. The results of such
research activities will be gradually and sequentially
reported.
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