
Scientia Iranica B (2017) 24(3), 1100{1107

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

A reliable implicit di�erence scheme for treatments of
fourth-order fractional sub-di�usion equation

K. Sayevand� and F. Arjang

Faculty of Mathematical Sciences, Malayer University, Malayer, P.O. Box 16846-13114, Iran.

Received 12 October 2015; received in revised form 17 December 2015; accepted 18 June 2016

KEYWORDS
Ji Huan He's
fractional derivative;
Convergence;
Finite di�erence
approximation;
Fractional di�erential
equations;
Stability.

Abstract. In this paper, a reliable implicit di�erence scheme is proposed to analyze the
fractional fourth-order subdi�usion equation on a bounded domain. The time-fractional
derivative operator is characterized in the Ji Huan He's sense, and the space derivative
is approximated by the �ve-point centered formula. The numerical parameters, i.e.
consistency, stability, and convergence analyses of the considered scheme, are proven.
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1. Introduction

The fractional calculus was invented over three cen-
turies ago. Recently, the fractional calculus has become
a very important topic to the development of promising
analytical and numerical schemes (e.g., the homotopy
perturbation method, the variational iteration method,
�nite di�erence approximation, etc.). It is noted that
some new foundation in fractional calculus can be
found in [1-19].

In recent decades, for modeling the anomalous
subdi�usion equation, a theoretical framework has
been examined based on the fractional calculus and
the physics of continuous time random walk [20].
Anomalous subdi�usion process can appear in spatially
disordered systems, fractal media, biological media
with traps, porous media, turbulent 
uids and plasmas,
binding sites or macro-molecular crowding, etc. For
more details, see [21-24].

Finding proper solutions to anomalous subdif-
fusion equations is a very important matter in the
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theory of fractional calculus. In this paper, to present
solutions to fractional subdi�usion equation, a �nite
di�erence approximation is investigated. As we know,
this approach replaces the appropriate estimate for
each derivative in the di�erential equations based on
nodal values and estimates derivatives of a known
function only by values of the function itself at these
discrete points. We recall the time when fractional
di�usion equations were scrutinized in both analytical
and numerical frames by several authors (see for exam-
ple [25-28]). But, according to fundamental role of this
class of equations in science and engineering, we will
talk about it again.

In the theory of fractional partial di�erential
equations, we have the 2n-order subdi�usion equation
as in the following (initial and boundary values) prob-
lem:8>>>>>>>><>>>>>>>>:

@� 
@t� (x; t) + �(��)n (x; t) = g(x; t);

in 
� [0; T ]; 0 < � < 1; n 2 N;
�k (x; t) = 0;

on @
� [0; T ]; k = 0; 1; � � � ; n� 1;
 (x; 0) = v(x);

in 
;

(1)
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and it is very important in applications from both
theoretical and numerical points of view. The data of
the problem, v and g, are su�ciently smooth functions,
and � is the fractional di�usion coe�cient. For x =
(x1; � � � ; xd), � is the Laplacian de�ned by � =Pd
j=1

@2 
@x2
j

, and 
 is a bounded domain in d-dimensional

Euclidean space Rd with boundary @
 (see [8]).
The generalized equation in (Eq. (1)) is shown to

be put on the propagation of stress waves in viscoelastic
solids, presenting a power low creep of degree p when
1 < p < 2, and then 0 < � = 2 � p < 1 (for more
details, see [8]). This generalization was applied to
introduce a method to describe subdi�usive anomalous
phenomena associated with mechanical behavior of
certain materials [29].

In this article, based on the �nite di�erence
approximation, we devise an accurate and precise
numerical scheme to solve the sub-di�usion equation
de�ned in Eq. (1) for cases d = 1 and n = 2. For
convenience, assume 
 = [a; b].

The paper is organized as follows. In Section 2,
we use the modi�ed �nite di�erence formula for the
time and space derivatives and obtain an approximate
solution of Eq. (1). Section 3 is devoted to investigate
some error analyses of the numerical approach, that
is, we show that the proposed method is uncondi-
tionally stable and convergent. Section 4 contains
a numerical example to illustrate the accuracy and
robustness of the proposed �nite di�erence approx-
imation. The concluding remarks are collected in
Section 5.

2. Analysis of the implicit di�erence method

tk = k� , k = 0; 1; 2; � � � ; N , and xi = ih, i =
0; 1; 2; � � � ;M , are denoted, where h = L

M and � =
T
N are space and time steps, respectively. For two
independent variables, x and t, (xi; tk) is the coordinate
of (i; k) node of this mesh. Let  (xi; tk) be the
exact solution to the proposed equation at (xi; tk), and
application of the �nite di�erence approximation,  ki ,
be the numerical approximation of it. We also suppose
that:
4t (xi; tk) =  (xi; tk+1)�  (xi; tk): (2)

The fractional derivative (in time dimension) proposed
here is the Ji Huan He's fractional derivative [1]. This
derivative is de�ned as:

D�
t  (t) =

1
�(m� �)

dm

dtm

tZ
t0

(� � t)m���1

( 0(�)�  (�)) d�;

m� 1 < � < m; (3)

where � is the order of the derivative which can be real
or complex. Prof. Ji Huan He in [1] showed that:

1. For a continuous and di�erentiable function,  0(t),
the following relation holds:

 0(t) = (t0) + (t� t0) 0(t0) +
1
2

(t� t0)2 00(t0)

+� � �+ 1
(m� 1)!

(t� t0)n�1 (m�1)(t0):
(4)

2. If  0(t) is continuous but not di�erentiable any-
where, Eq. (3) can be presented in the following
form:

 0(t) = (t0) +
(t� t0)

�(1 + �)
 (�)(t0)

+
(t� t0)2

�(1 + 2�)
 (2�)(t0) + � � �

+
(t� t0)m�1

�(1 + (m� 1)�)
 ((m�1)�)(t0): (5)

3. Eq. (3) has the following property for continuous
and di�erentiable functions:

D�
t  (t) =

1
�(m� �)

dm

dtm

Z t

t0
(� � t)m���1

 
m�1X
i=0

1
i!

(� � t0)i (i)(t0)�  (�)

!
d�:

(6)

4. Also, for continuous and non-di�erentiable func-
tions, Eq. (3) can be equivalent to the following
relation:

D�
t  (t) =

1
�(m� �)

dm

dtm

Z t

t0
(� � t)m���1

 
m�1X
i=0

(��t0)i

�(1+i�)
 (i�)(t0)� (�)

!
d�:

(7)

We advise readers to see more scienti�c results of Ji
Huan He's fractional derivative in [3,4], respectively.

Hereunder, for containing the discretized form of
fractional derivative operator in time dimension, we
use a backward �nite di�erence approximation (L1-
concept) as [27]:

@� (xi; tk+1)
@t�

� ���
�(2� �)

kX
j=0

bj 4t  (xi; tk�j); (8)

where bj = (j + 1)1��� j1��, j = 0; 1; � � � ; N , and the
following relations hold:
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1. bj > 0, j = 1; 2; � � � ,
2. bj > bj+1, j = 1; 2; � � � .
For the fourth-order fractional derivative in space di-
mension, we apply the centered �nite di�erence concept
at tk+1 as follows:

@4 (xi; tk+1)
@x4 =

1
h4

h
 k+1
i�2 � 4 k+1

i�1 + 6 k+1
i

� 4 k+1
i+1 +  k+1

i+2

i
+O(h2): (9)

Furthermore, we set these notations for simplicity:8>>>>>>>>>><>>>>>>>>>>:

gk+1
i = g(xi; tk+1) = g(ih; (k + 1)�);

dki = ���(2� �)gki ;

r = r(i; k) = ���(2��)�
h4 ;

r1 = ���(2� �):

(10)

In the present approximate scheme, to solve the
problem, Expressions (8), (9), and (10) are substituted
into Eq. (1). This operation leads to a recurrence
relationship between successive time levels of related
unknown element parameters  k+1

i (i = 1; 2; � � � ;M �
1; k = 1; 2; � � � ; N) that can be presented in the
following form:

kX
j=0

bj [ k�j+1
i �  k�ji ]

+ r
h
 k+1
i�2 � 4 k+1

i�1 + 6 k+1
i � 4 k+1

i+1 +  k+1
i+2

i
= dk+1

i : (11)

Since the points are at i = 1 and i = M � 1, we
need points outside the domain associated with the
calculation. We apply boundary conditions @2 (0;t)

@x2 =

�1(t) and @2 (L;t)
@x2 = �2(t) to overcome this problem.

Finally, these relations can be seen in matrix form of
system (Eq. (11)) as follows:8>>>>>>>><>>>>>>>>:

A	1 = 	0 + d1;

A	k+1 =
k�1P
j=0

(bj � bj+1)	k�j + bk	0 + dk+1;

	0 = �;

(12)

where:

	k=

266666664
 k0
 k1
 k2
...

 kM�1
 kM

377777775 ; dk=

26666666666666666666664

0

r1gk1 � rh2�k1

r1gk2

...

r1gkM�2

r1gkM�1 � rh2�kM�1

0

37777777777777777777775

;

� =

266666664
�(0)
�(h)
�(2h)

...
�((M � 1)h)
�(Mh)

377777775 ; (13)

and A is the coe�cients matrix where it is de�ned as
shown in Box I.

Theorem 1. Let  ki (1 � i � M;k � 1) be
the numerical solution of Eq. (1), then the di�erence
scheme considered here is uniquely solvable.

A =

266666666666664

1
�2r 1 + 5r �4r r
r �4r 1 + 6r �4r r

r �4r 1 + 6r �4rr
. . . . . . . . . . . . . . .

r �4r 1 + 6r �4r r
r �4r 1 + 6r �4r r

r �4r 1 + 5r �2r
1

377777777777775
:

Box I
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Proof. Eq. (11) together with boundary conditions
 k0 = 0 and  kM = 0 will construct a penta-diagonal
matrix system whose coe�cients' matrix is positively
de�nite and invertible. After that, the related matrix
system can be solved iteratively. In this regard,
initial vector 	0 must be calculated using the initial
condition of Problem (1). Hence, the di�erence scheme
is uniquely solvable and this completes the proof.

2.1. The physical understanding of the
fractional derivative

Now, we consider an arbitrary plane with fractal
structure [5]. As we know, the shortest path between
two di�erent points on the plane, namely X and Y , is
not a line, and consequently, the actual distance (dsE)
between X and Y can be presented in the following
form:
dsE = cds� ; (14)

where � is the �nite dimension and c is an arbitrary
constant. In [5], the author showed that the projection
of dsE into the horizontal axis implies the Cantor sets,
and the length has the following form:

�tXY = cdt� : (15)

On the other hand, Eq. (14) has the following trans-
form:
sE = cs� : (16)

3. Error analysis

Hereunder, we consider the di�erence form of equation
de�ned in Eq. (11) and estimate the order of accuracy
or the rate of convergence as O(�2��; h2). So, the
consistency of our scheme is obtainable.

Theorem 2. The numerical scheme, considered
here, has (2��)-order accuracy in time dimension and
second-order accuracy in space dimension.

Proof. By using the Taylor expanding on Eq. (11)
around (xi; tk+1) and summarizing the formula, the
following relations can be obtained:

kX
j=0

bj

( 
 k+1
i �j� @ 

@t

����k+1

i
+
j2�2

2!
@2 
@t2

����k+1

i
+ � � �

!

�
 
 k+1
i � (j + 1)�

@ 
@t

����k+1

i

+
(j + 1)2�2

2!
@2 
@t2

����k+1

i
+ � � �

!)
+ r

( 
 k+1
i + 2h

@ 
@x

����k+1

i
+

4h2

2!
@2 
@x2

����k+1

i

+
8h3

3!
@3 
@x3

����k+1

i
+ � � �

!
� 4

 
 k+1
i + h

@ 
@x

����k+1

i
+
h2

2!
@2 
@x2

����k+1

i
+ � � �

!

+ 6 k+1
i � 4

 
 k+1
i � h @ 

@x

����k+1

i
+
h2

2!
@2 
@x2

����k+1

i

� h3

3!
@3 
@x3

����k+1

i
+ � � �

!
+ ( k+1

i � 2h
@ 
@x

����k+1

i
+

4h2

2!
@2 
@x2

����k+1

i

� 8h3

3!
@3 
@x3

����k+1

i
+ � � � )

)
= dk+1

i :
(17)

According to Expressions (8)-(10), Eq. (17) can be
rewritten in this form:

���(2� �)

(
@� 
@t�

����k+1

i
+ �

@4 
@x4

����k+1

i
� gk+1

i

+
�2��

�(2� �)
@2 
@t2

����k+1

i

kX
j=0

bj
2j + 1

2!

� h2

6
@6 
@x6

����k+1

i
+ � � �

)
= 0: (18)

Consequently:

@� (x; t)
@t�

+�
@4 (x; t)
@x4 �g(x; t) +O(�2��; h2) = 0:

(19)

On the other hand, the order of accuracy of our
suggested scheme is O(�2��; h2), and the di�erence
equation (Eq. (11)) is consistent with partial di�eren-
tial equation (Eq. (1)).

3.1. Stability analysis
Now, the stability of our scheme is investigated by
using the properties of the Fourier stability analysis.
We remind that in di�erential equations, a reliable
analytical tool to check the stability of �nite di�erence
approximation is the Fourier stability analysis.

Lemma 1. The stability analysis of our scheme is
independent of the source term g(x; t).

Proof. Let  (xi; tk) and  ki be the exact and nu-
merical solutions to the proposed problem, respectively.
Then, the approximate equation has the following form:
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@� k+1(x; t)
@t�

+ �
@4 k+1(x; t)

@x4 = g(x; t); (20)

where substituting Eqs. (8) and (9) into Eq. (20)
implies that:

���
�(2� �)

kX
j=0

bj
h
 k�j+1
i �  k�ji

i
+

�
h4

�
 k+1
i�2

�4 k+1
i�1 + 6 k+1

i � 4 k+1
i+1 +  k+1

i+2
�

+O(h2 + �2��) = g(xi; tk+1): (21)

Assuming eki =  (xi; tk)�  ki , one will set:

���
�(2� �)

kX
j=0

bj [ (xi; tk�j+1)�  (xi; tk�j)]

+
�
h4 [ (xi�2; tk+1)� 4 (xi�1; tk+1)

+  (xi; tk+1)� 4 (xi+1; tk+1) +  (xi+2; tk+1)]

+O(h2+�2��)=
���

�(2��)

kX
j=0

bj
h
ek�j+1
i �ek�ji

i
+

�
h4

�
ek+1
i�2 � 4ek+1

i�1 + 6ek+1
i � 4ek+1

i+1 + ek+1
i+2
�

+ g(xi; tk+1); (22)

and therefore:

���
�(2� �)

kX
j=0

bj
h
ek�j+1
i � ek�ji

i
+

�
h4

�
ek+1
i�2

�4ek+1
i�1 + 6ek+1

i � 4ek+1
i+1 + ek+1

i+2
�

= 0: (23)

So, the scheme's stability is independent of source term
g and the proof is completed. For more details, one can
refer to [30,31].

According to the Lemma 1, to investigate the
stability analysis, we can suppose that g = 0. By
applying ekj de�ned in Lemma 1, we can rewrite
Eq. (23) as follows:

kX
j=0

bj
h
ek�j+1
i � ek�ji

i
+ r

�
ek+1
i�2 � 4ek+1

i�1 + 6ek+1
i

�4ek+1
i+1 + ek+1

i+2
�

= 0; (24)

and therefore, by replacing i to s:

rek+1
s�2 � 4rek+1

s�1 + (1 + 6r)ek+1
s � 4rek+1

s+1 + rek+1
s+2

= bke0
s +

k�1X
j=0

(bj � bj+1)ek�js : (25)

Error eks can be described by a discrete Fourier series
eks =

P
q �
k
qeiqsh, where q is the spatial wave number

supported by lattice, � is the time dependence of the
solution, and sh is the position along the grid [31]. We
also assume that the coe�cients of the equation are so
slowly changing that they can be considered constant
in both space and time dimensions.

The solution is stable in time if we have j�j � 1.
Otherwise, since k is a positive integer, �k will be a
quickly growing amount and corresponding to it, the
error will increase (see [31]). So, we assay that under
what circumstances j�j � 1.

Substituting general mode eks = �kqeiqsh into
di�erence form (Eq. (25)) leads to:

�k+1
q

�
1 + 32r sin2

�
qh
2

�
sin2

�
qh
4

��
=

kX
j=0

(bj � bj+1)�k�jq : (26)

Theorem 3. The �nite di�erence approximation
obtained in Eq. (11) is unconditionally stable.

Proof. According to Eq. (26) and that j1 + 32r sin2

( qh2 ) sin2( qh4 )j � 1, these relations are true:

���k+1
q
��� kX

j=0

(bj�bj+1)
���k�jq

��� ����fkgq ���
max

kX
j=0

(bj�bj+1)

=
����fkgq ���

max
(b0 � bk+1) <

����fkgq ���
max

; (27)

where:����fkgq ���
max

= max
����0q�� ; ���1q�� ; ���2q�� ; � � � ; ���kq ��	 : (28)

Thus:���k+1
q
�� < ���0q�� : (29)

Now, by using the Parseval's relation [31], jjekjj22 =P
q j�kq j2; therefore, stability condition (29) can be

rewritten as:

ek

2 <


e0



2 : (30)

So, the perturbation of the general mode in any time
level, k, does not grow and is smaller than or equal to
its initial perturbation, i.e. our �nite di�erence approx-
imation is unconditionally stable. This completes the
proof.

3.2. Convergence analysis
Two important conditions that are usually discussed



K. Sayevand and F. Arjang/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 1100{1107 1105

in �nite di�erence approximations are consistency
and stability analyses. Furthermore, we know that
the convergence of a fractional di�erence method
can be obtained using its consistency and stability
under relatively weak conditions. Hereunder, we
check the convergence condition of the suggested
method.

Theorem 4. The solution of �nite di�erence ap-
proximation (Eq. (11)) is unconditionally convergent
with the exact solution of Problem (1).

Proof. According to Eq. (12), we consider the homo-
geneous case in the following form:8>>>>>>>><>>>>>>>>:

	1 = A�1	0;

	k+1 =
k�1P
j=0

(bj � bj+1)A�1	k�j + bkA�1	0;

	0 = �:

(31)

Substituting error vector ek = [ek1 ; ek2 ; � � � ; ekM�1]T into
this matrix system, we obtain:

ek+1 =(b0 � b1)A�1ek + (b1 � b2)A�1ek�1 + � � �
+(bk�1�bk)A�1e1+bkA�1e0+A�1Rk+1;

(32)

where Rk is the error vector obtained from the di�er-
ence scheme. By applying the property of 2-norm, the
following results can be obtained:

ek+1



2 � (b0 � b1)


A�1



2



ek

2

+ (b1 � b2)


A�1



2



ek�1


2 + � � �

+ (bk�1 � bk)


A�1



2



e1


2

+ bk


A�1



2



e0


2 +



A�1


2



Rk+1


2

� (b0 � b1)


A�1



2




efkg



2

+ (b1 � b2)


A�1



2 kefkgk2 + � � �
+ (bk�1 � bk)



A�1


2




efkg



2

+ bk


A�1



2




efkg



2
+


A�1



2



Rk+1


2

=


A�1



2




efkg



2

�
(b0 � b1) + (b1 � b2)

+� � �+(bk�1�bk)+bk
	

+


A�1



2



Rk+1


2

� 

A�1


2




efkg



2

+


A�1



2



Rk+1


2 ;

and thus:

ek+1


2 �



A�1


2



e0


2 +



A�1


2



Rk+1


2 : (33)

Since the method is consistent, kRk+1k2 ! 0; while
kA�1k2 is bounded, then our scheme implies that
kek+1k2 ! 0, i.e. the method is convergent. This
proves the theorem.

4. Numerical experiments

In this section, we present a series of numerical tests
and provide some results to con�rm our theoretical
results. Our fundamental objectives are to investigate
the convergence analysis of the numerical solutions
with respect to � and h, the temporal and spatial step-
size, respectively. Therefore, to measure the accuracy,
we compute errors k (xi; tk) �  ki k in two norms: L2
and L1. Modeling this example e�ciently results
in the success of our numerical method. We have
evaluated the numerical results at T = 1.

Example. Let us consider a compact fourth-order
subdi�usion equation as in the following problem.8>>>>>>>>>>>>><>>>>>>>>>>>>>:

@� (x;t)
@t� = @4 (x;t)

@x4 + f(x; t);
x 2 I = [0; 1]; t � 0; 0 < � < 1;

 (0; t) =  (1; t) = 0;
t � 0;

@2 (0;t)
@x2 = @2 (1;t)

@x2 = 0;
t � 0;

(34)

where the corresponding force term is:

f(x; t) =
2t2��

�(3� �)
sin(2�x) + 16�4t2 sin(2�x);

with the initial condition:

 (x; 0) = 0; (35)

where the exact solution to Eqs. (34) and (35) is
 (x; t) = t2 sin(2�x).

For the convenience of calculations, two �gures
are presented. Figure 1(a) shows the surface of the
numerical solution obtained from the proposed scheme;
in Figure 1(b), we denote � = 0:5 and h = � = 0:025,
then the values of numerical solutions are plotted for
t = 0; 0:3; 0:5; 0:7; 1. In Figure 2(a) and (b), the nodal
values of the exact and numerical solutions have been
compared for two states, when x = 0:3 and x = 0:7 for
various t. These �gures show that the yielding solutions
by the new method are in high agreement with the
exact solutions.
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Figure 1. Numerical solutions of Eqs. (34) and (35): (a) For x = 0:5 and N = 40 at di�erent time levels, (b) surface of
the numerical solution for M = N = 40 and � = 0:5.

Figure 2. Comparison of the exact and numerical solutions of Eqs. (34) and (35): (a) For x = 0:3 and N = 40 at di�erent
time levels, and (b) for x = 0:7 and N = 40 at di�erent time levels.

5. Conclusions

In this paper, we consider a compact class of fourth-
order subdi�usion equations as an initial-boundary
value problem and solve it numerically. We presented
an implicit �nite di�erence scheme to estimate the
numerical solution. To discretize the suggested prob-
lem, we used a backward di�erence formula for the
fractional derivative in time dimension and a centered
di�erence formula for the space dimension derivative.
The obtained results showed that the proposed scheme
requires only small evaluations, and then provides
accurate solutions. Furthermore, our scheme is rapidly
convergent and it provides numerical solutions in good
agreement with exact ones. The numerical solutions
were obtained using Matlab.
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