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Abstract. In this paper, an analytical formulation is presented to study an exponentially
graded transversely isotropic tri-material under applied axisymmetric point-load and patch-
load with the aid of Hankel transform and use of a potential function. The given formulation
is shown to be reducible to the special cases of (1) an inhomogeneous �nite layer on a rigid
base; (2) exponentially graded bi-material or half-space under applied buried loads; (3)
homogeneous tri-material or bi-material solid. Several numerical solutions are presented
to explain inhomogeneity e�ect on the stress transfer process in the inhomogeneous three-
layered medium by means of a fast and accurate numerical method.
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1. Introduction

Functionally Graded Materials (FGM) with continu-
ous variation of mechanical properties have extensive
industrial applications such as thermal barriers, oxi-
dation, and wear-resistant coatings due to improved
residual stress distribution, thermal properties, and
larger fracture toughness. Moreover, the better un-
derstanding of anisotropic and inhomogeneous char-
acteristics of rock formations and naturally deposited
layered soils is the reason for extensive studies of
stress transfer in this type of solids with broad ap-
plications in geomechanics and foundation engineer-
ing.

For the continuum modelling of inhomogeneity in
graded materials, di�erent types of continuous property
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variations have been proposed including linear, expo-
nential and power law, etc. [1].

Due to ease of formulation, for continuum model-
ing of FGMs, the exponential variation of the elastic
constants is broadly used in numerical and analyt-
ical analyses. For a detailed review of studies in
the �eld of anisotropic and nonhomogeneous isotropic
materials, one might refer to [2]. The fundamental
solutions concerning the exponentially graded elastic
solids may be found in [3-8]. Esandari and Shodja [9]
obtained fundamental solutions to an exponentially
graded transversely isotropic half-space for arbitrary
buried static loads.

Kashatalyan and Rushchitisky [10] presented two
displacement potential functions to analyze a trans-
versely isotropic inhomogeneous medium with func-
tionally graded Young's and Shear moduli and constant
Poisson's ratio. For the analysis of wave propagation
in an inhomogeneous cross-anisotropic solid, one may
refer to [11]. Also, Eskandari-Ghadi and Amiri-
Hezaveh [12] studied the wave propagation problem
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in an exponentially graded transversely isotropic half-
space by presenting two potential functions. Selvadurai
and Katebi [13] analyzed an incompressible elastic half-
space with the exponential variation of linear elastic
shear modulus along the depth under vertical loads and
studied the interaction of 
exible and rigid plate with
such media as [14-15].

Also, the contact analysis in graded materials
is an interesting topic. Some of recent studies of
this type may be found in [16-20], and the Reissner-
Sagoci problem for an arbitrary functionally graded
solid in [21].

In the case of tri-materials, Kulchytsky-Zhyhailo
and Bajkowski [22] studied a three-layered medium
with two coating layers resting on half-space, where on
the top layer, the circular normal and tangential loads
are applied, and the interlayer is functionally graded
by ensuring the continuous change of Young's modulus
between the layers.

In this paper, with the aid of displacement po-
tential functions presented by Eskandari-Ghadi and
Amiri-Hezaveh [12], under axisymmetric condition, an
exponentially graded transversely isotropic tri-material
is analyzed for di�erent types of vertical point, patch,
and ring load patterns. Green's functions of stress
and displacement components are given in terms of
explicit line-integral representations. The results are
veri�ed to be in exact agreement with the solutions
of inhomogeneous transversely isotropic half-space,
homogeneous transversely isotropic tri-material full-
space, and incompressible inhomogeneous isotropic
half-space [9,23,13], respectively. Also, in the case of
homogeneous transversely isotropic �nite layer on a
rigid base, the results are con�rmed with the study
by Small and Booker [24].

In this paper, the results may be utilized for
the boundary integral equation formulation of geome-
chanical and foundation engineering problems and the
interfacial fracture analysis in composite materials, or
they may be used as benchmark solutions for the
development of numerical methods for the analysis of
inhomogeneous anisotropic materials.

2. Statement of the problem and the
governing equation

With reference to Figure 1, a tri-material solid, con-
sisting of a �nite layer of arbitrary thickness (h)
perfectly bonded to two half-spaces, is considered for a
cylindrical coordinate system (r; �; z). All layers are
assumed to be composed of di�erent linearly elastic
transversely isotropic materials where z-axis is the
common axis of symmetry of materials, which is normal
to the horizontal interfaces of the domains. Upper
half-space (z < 0) is denoted as Layer I, middle �nite
layer (0 < z < h) as Layer II, and the lower half-

Figure 1. Functionally graded transversely isotropic
tri-material under arbitrary interfacial vertical load.

space (z > h) as Layer III. The elasticity constants
of the layers are designated as CIij(z), CIIij (z), and
CIIIij (z), where the superscripts I, II, and III indicate
the properties of Layers I, II, and III, respectively.
The inhomogeneity is considered with the arbitrary
exponential variation of material properties along z-
axis in each layer. Therefore, the elasticity constants
are expressed as:

in Layer I:

cIij(z) = CIije
2�Iz; (1)

in Layer II:

cIIij (z) = CIIij e
2�IIz; (2)

in Layer III:

cIIIij (z) = CIIIij e2�IIIz; (3)

where CIij , CIIij , and CIIIij are the elasticity constants
corresponding to depths z = 0�, z = 0+, and z = h+,
respectively, and relation C66 = (C11 � C12)=2 exists
between the constants. Term � is the exponential
factor characterizing the alteration made to material
properties along z where � = 0, representing a ho-
mogenous transversely isotropic tri-material.

For an exponentially graded transversely isotropic
elastic material, in the absence of body forces and
axisymmetric static condition, the governing equilib-
rium equations in terms of displacement components
and cylindrical coordinate system may be expressed
as:



968 Y. Zafari et al./Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 966{978

C11 =
�
@2ur
@r2 +

1
r
@ur
@r
� ur
r2

�
+ C44

@2ur
@z2

+ (C13 + C44)
@2uz
@r@z

+2�C44

�
@ur
@z

+
@uz
@r

�
=0

C44

�
@2uz
@r2 +

1
r
@uz
@r

�
+ C33

@2uz
@z2

+ (C13 + C44)
�
@2ur
@r@z

+
1
r
@ur
@z

�
2�C33

@uz
@z

+ 2�C13

�
@ur
@r

+
ur
r

�
= 0; (4)

where ur and uz are the displacement components in
radial (r) and vertical (z) directions, respectively. In
order to uncouple the above equilibrium equations,
displacement potential function (F ), introduced in
[12], is used. This potential function is related to
displacement components ur and uz as:
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Here, s1 and s2 are the roots of the following equation
and are not zero or pure imaginary numbers [25]:
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The zeroth-order Hankel transform is de�ned as [26]:
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where J0 is the Bessel function of the �rst kind of
order zero. By applying such a transform to Eq. (8)
with respect to the radial coordinate, the following
ordinary di�erential equation is obtained for F :�
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By means of Eq. (5) and the identities involv-
ing Hankel transforms, the transformed displacement-
potential relations may be written compactly as:

~u1
r = �3�

@ ~F 0(�; z)
@z

+ 2�2�� ~F 0

~u0
z =

�
�2

@
@z

(2� +
@
@z

)� �2(1 + �1)
�

~F 0: (15)

The similar expressions for stress-potential functions
may be expressed as:
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The general solution to Eq. (13) can be written as:
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Consistent with the regularity condition at in�nity, the
general solution to F , Eq. (17), can be rearranged as:

in Layer I:
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Therefore, determination of the above 8 coe�cients
for the exponentially graded tri-material full-space
problem of interest is required.

With the aid of equations Eqs. (15) and (16), the
imposition interfacial stress and displacement compat-
ibility conditions associated with a tri-material FGM
under applied load are greatly facilitated, as illustrated
in the following sections.

3. Applying boundary conditions

3.1. Functionally graded tri-material under
loading at z = 0 or z = h

An axisymmetric vertical load on subdomain �0 or �h,
located at depth z = 0 or z = h, respectively, may be
written as a prescribed stress discontinuity:

�zz(r; 0�)� �zz(r; 0+) =

(�R(r); r 2 �0

0; r =2 �0

�rz(r; 0�) = �rz(r; 0+); 0 � r � 1;
or:

�zz(r; h�)� �zz(r; h+) =

(�R(r); r 2 �h

0; r =2 �h

�rz(r; h�) = �rz(r; h+); 0 � r � 1; (23)

where R(r) is the speci�ed interfacial traction in
vertical direction. Eight equations are obtained to
�nd unknown coe�cients AI ; :::; DIII with respect to
the aid of displacement, stress potential functions
(Eqs. (15) and (16)) and Relations (20) to (22),
stress discontinuity condition (Eq. (23)) along with the
continuity of stresses, and displacements along z = 0
and z = h. These equations are arranged in matrix
form as:

I(�)
�
AI(�) CI(�) AII(�) BII(�) CII(�) DII(�)

BIII(�) DIII(�)
�T

= S0(�); (24)

where I(�) is given in the Appendix, and S0(�) is the
source vector described by:

S0(�) =
�
0 0 0 0 0 �R0(�) 0 0

�T ; (25)

for loading at z = 0 and:

S0(�) =
�
0 0 0 0 0 0 0 �R0(�)

�T ; (26)

for loading at z = h. The term R0(�) is the
Hankel transformed function of the applied traction.
Setting �I = �II = �III = 0, the above formulation
degenerates exactly to the static analysis of an axially
loaded homogeneous transversely isotropic tri-material
by Khojasteh et al. [23].

3.2. Functionally graded �nite layer on a rigid
base under surface loading at z = 0

In the previously described analysis, the formulation of
an exponentially graded �nite layer on a rigid base is
obtained (see Figure 2) by removing Layer I, CIij ! 0,
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Figure 2. Functionally graded �nite layer on a rigid
half-space due under applied patch-load with a rough-rigid
condition at interface.

applying load to the top of Layer II, and extremely
increasing the elastic constants of Layer III to resemble
a rigid half-space. The stress boundary conditions on
the surface of layer, z = 0, are described as:

�zr(r; 0) = 0

�zz(r; 0) =

(�R(r); r 2 �0

0; r =2 �0
(27)

Here, the boundary conditions on the lower interface
are assumed to be the rough-rigid or smooth-rigid [27]
cases, de�ned as fully bonded or free sliding conditions,
respectively.

The rough-rigid case which resembles the in�nite
friction capacity at the interface is de�ned as:

ur(r; h) = uz(r; h) = 0; (28)

and the smooth-rigid condition may be described as:

uz(r; h) = 0; �zr(r; h) = 0: (29)

By applying these boundary conditions, the matrix
formation of the equations is given as:

I(�)
�
AII(�) BII(�) CII(�) DII(�)

�T
= S0(�); (30)

where I(�) is presented in Appendix A, and S0(�) is
written as:

S0(�) =
�
0 �R0(�) 0 0

�T : (31)

4. Axisymmetric Green's functions

In this section, the axisymmetric Green's functions for
di�erent types of loading are given.

4.1. Point-load
A vertical point load with resultant Fv and the relevant
Hankel transformed loading coe�cient can be written

as:

R(r) =
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2�r
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: (32)

With the aid of inverse Hankel transform and using
Eqs. (15) and (16), the displacement and stress re-
sponses of solid due to vertical point-load may be
expressed as:
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ûzr = e2�z

Z 1
0

�
�
d
dz

�
C11�3�2

� C13�2(1 + �1) + �2C13
d
dz

(2� +
d
dz

)
�

+ 2�2�C11�2
�

~F 0J0(r�)d�;

�̂z��(r; z;�)�2e2�zC66

r
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where symbols ûzi and �̂zik (i; k = r; z) indicate the
displacement and stress Green's functions, respectively,
and superscript z indicates the direction of applied
point-load.
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4.2. Patch-load
For a vertical circular patch-load of radius a and
resultant Fv, displacement and stress Green's functions
may be obtained by Eqs. (33) and (34) with the
following relation for loading function:

R(r) =
Fv
�a2 ! R0(�) = Fv

J1(a�)
��a

: (35)

4.3. Ring-load
Similar to the patch-load analysis, the displacement
and stress responses under the action of a vertical ring-
load acting at radius a and resultant Fv are given by
Eqs. (33) and (34) with the following adaptation for
loading function:

R(r) = Fv�(r � a) ! R0(�) =
FvJ0(a�)

2�
: (36)

5. Special cases

By means of the previously obtained solution for an ex-
ponentially graded transversely isotropic tri-material,
some special cases of interest may be degenerated as
follows.

5.1. Exponentially graded transversely
isotropic bi-material

To obtain the formulation of an exponentially graded
transversely isotropic bi-material, one may set h =
0, which means omitting the middle �nite layer or
substituting CIij = CIIij and �I = �II . In this case,
by setting �I = �II = 0, the static Green's functions
of a homogeneous transversely isotropic bi-material are
obtained as in [28].

5.2. Homogeneous transversely isotropic
tri-materials

Upon setting �I = �II = �III = 0, the solutions for
homogeneous transversely isotropic tri-materials are
obtained as in [23] in static condition.

5.3. Exponentially graded half-space
Considering CIij ! 0, �II = �III = �, and CIIij =
CIIIij = Cij , under the action of surface or buried
loads, Green's functions of an exponentially graded
transversely isotropic half-space [9] or incompressible
isotropic solid [13] are obtained.

5.4. Homogeneous �nite layer on a rigid
half-space

By applying load at z = 0 and setting CIij ! 0 and
CIIIij ! 1, the response of a functionally graded
�nite layer on a rigid base is obtained which is exactly
identical to the results in [24] and [27] for a �nite layer
on a rough-rigid half-space.

6. Numerical evaluation

In the previous section, the axisymmetric Green's

functions associated with di�erent load con�gurations
have been expressed in terms of one-dimensional semi-
in�nite integrals. Since the closed-form integration
is not possible [29-33], a numerical quadrature tech-
nique has to be adopted. For such evaluations, it
is essential to consider the oscillatory nature of the
integration due to the presence of Bessel functions and
the singular nature of stress transfer. Here, an adaptive
quadrature rule has been utilized successfully by using
Wolfram Mathematica software. For veri�cation of
the present study with the existing numerical solutions
in the literature, three comparisons are made. First,
for a homogeneous tri-material, vertical displacement
of the medium due to point-load is determined and
compared with the results given by Khojasteh et
al. [23]. As shown in Figure 3, the solutions are
identical. Also, under applied buried vertical patch-
load, the axial displacement along the depth of an
exponentially graded half-space for di�erent inhomo-
geneity parameters (�) is compared with the results
by Eskandari and Shodja [9] (Figure 4). Here, it is
noteworthy that for an isotropic material, the elasticity
constants may be reduced to C11 = C33 = � + 2�,
C12 = C13 = �, and C44 = C66 = � where �
and � are the Lame's constants of the isotropic solid.
For an incompressible isotropic solid with the initial
shear modulus of �0 = 3:33, under applied patch-
load, vertical displacement along z-axis is shown in
Figure 5 and is compared with the results obtained
by Selavadurai and Katebi [13], which shows the good
agreement of results.

Figure 3. Displacement Green's function ûzz along
z-direction due to point-load compared with the result by
Khojasteh et al. [23] for homogenous materials (�L = 0).
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Figure 4. Displacement Green's function ûzz along z-axis
compared with the study by Eskandari and Shodja [9] for
functionally graded transversely isotropic half space.

Figure 5. Displacement Green's function ûzz along r-axis
compared with the results by Selvadurai and Katebi [13]
for incompressible isotropic half-space.

In this study, three di�erent synthetic trans-
versely isotropic materials are considered for construct-
ing the parametric study of analysis results as listed in
Table 1.

In the following, three di�erent material con�gu-
rations in layers are considered:

Table 1. Elastic constants of transversely isotropic
materials.

Material
no.

C11

(Gpa)
C12

(Gpa)
C13

(Gpa)
C33

(Gpa)
C44

(Gpa)
Material 1 5.6 1.6 1.8 10.9 2
Material 2 5.5 1.5 1.8 15.9 2
Material 3 5.4 1.4 1.7 25.9 2

Figure 6. Displacement Green's function ûzz along z-axis
due to unit point-load (�L = 0:1).

- Case 1: Material 2 in all three layers;

- Case 2: Materials 1, 2, and 3 in Layers I, II, and III,
respectively;

- Case 3: Similar to Case 2, Layer 1 is omitted, CIij !
0, which resembles the two-layered half-space or may
be used for buried-load con�guration analysis.

By considering the described cases, Figures 6
and 7 depict displacement Green's function ûzz along
the depth of point-load with � � L = 0:1, thickness of
middle layer h = 2L, and patch-load with the resultant
of 1=�, � � a = 0:1 and h = 2a, respectively, where
L is the unit of length. Based on the �gures, one
should notice the continuity at interface as well as
the singularity of the response at point load location
accompanying the signi�cant e�ect of inhomogeneity
parameter.

Figures 8 and 9 depict the in
uence of thickness of
middle layer, h, on the displacement Green's function
ûzz along the depth and radial directions, respectively.
For higher thickness of middle layer, one may observe
the lower displacement response which is mainly the
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Figure 7. Displacement Green's function ûzz along z-axis
due to patch-load with resultant 1=�(�a = 0:1).

Figure 8. Displacement Green's function ûzz along
z-direction due to point-load for di�erent middle layer
thicknesses (�a = 0:1).

result of exponential increase of elasticity constant of
the layer.

To survey the e�ect of inhomogeneity parameter
only on the middle layer in Case 1, the inhomogeneity
parameter has been changed in Figures 10 to 12, with
� = 0 representing the homogeneous layer. Figure 10

depicts vertical displacement ûzz of the medium under
applied point-load along depth, which shows the lower

Figure 9. Displacement Green's function ûzz along
r-direction due to patch-load for di�erent middle layer
thicknesses (�a = 0:1).

Figure 10. Displacement Green's function ûzz along
z-axis due to unit point-load.

displacement in all three layers of higher inhomogeneity
parameter � as a result of higher sti�ness of the middle
layer. A similar trend is observed for the response in
Figure 11 for displacement under patch-load. For the
sustained vertical stress in the medium, Figure 12 is
presented which shows a more rapid stress transfer by
the increase of �.

For studying the response of an inhomogeneous
�nite layer on a rigid base, Figures 13-17 are included.
In these �gures, Layer I is omitted (i.e., CIij ! 0),
Material 1 is used in Layer II, and the material param-
eters are highly increased for Layer III to resemble the
rigid base layer (i.e., CIIIij ! 1). Also, the boundary
conditions on the interface of the two layers are de�ned



974 Y. Zafari et al./Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 966{978

Figure 11. Displacement Green's function ûzz along
z-axis due to patch-load with resultant 1=�.

Figure 12. Stress Green's function �̂zzz along z-axis due
to patch-load with resultant 1=�.

as rough and smooth, which means an interface with
in�nite and without friction capacity, respectively.

Figure 13 depicts the vertical stress distribution
due to patch-load in a transversely isotropic �nite layer
bonded to a rigid base, compared with the solutions by
Small and Booker [24]. Figures 14 and 15 illustrate
the in
uence of inhomogeneity parameter on vertical
stress distribution (�̂zzz) due to a patch-load in vertical
direction and rough/smooth-rigid conditions, respec-

Figure 13. Stress Green's function �̂zzz beneath the edge
of a circular loading along z-direction for �nite layer on a
rigid half-space with rough-rigid conditions compared with
the results by Small and Booker [24].

Figure 14. Stress Green's function �̂zzz along z-axis due
to patch-load with resultant 1=� for a �nite layer on a
rigid half-space with rough-rigid condition.

tively. Based on the �gures, one should notice the
signi�cant e�ect of inhomogeneity as in sti�er medium,
i.e. the higher inhomogeneity factor is, the higher stress
reaches the interface. The in
uence of inhomogeneity
on vertical displacement of solid (ûzz) is shown in Fig-
ure 16. From the �gure, one should notice the decrease
of displacement along the depth and e�ect of rough
condition on the decrease of displacement, especially
for lower �. Finally, Figure 17 represents the radial
displacement component (ûzr) along the radial direction
at the interface with the smooth-rigid condition. From
the �gure, one should notice the signi�cant reduction
of displacement as the e�ect of higher sti�ness of the
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Figure 15. Stress Green's function �̂zzz along z-axis due
to patch-load with resultant 1=� for a �nite layer on a
rigid half-space with smooth-rigid condition.

Figure 16. Displacement Green's function ûzz along
z-axis due to patch-load with resultant 1=� for a �nite
layer with rough-rigid and smooth-rigid conditions.

Figure 17. Displacement Green's function ûzr along
r-axis direction due to the patch-load and for a �nite layer
with smooth-rigid conditions.

layer. It is trivial that ûzr at interface tends to zero for
the case of rough-rigid condition.

7. Conclusion

The axisymmetric response of an exponentially graded
transversely isotropic tri-material elastic solid due to
point-load and patch-load in static condition is pre-
sented in this study. By use of one displacement
potential function and Hankel transform, di�erent
components of response of the medium under applied
loads are given in terms of in�nite line-integrals. These
equations are useful for e�ective boundary element for-
mulations of elastostatic problems and mixed boundary
value problem formulations in inhomogeneous and
anisotropic composites. These Green's functions can be
degenerated analytically and numerically for di�erent
cases of exponentially graded transversely isotropic bi-
material, homogeneous full-space tri-material, expo-
nentially graded half space, and special case of �nite
layer on a rigid half-space. Numerical examples show
the signi�cant in
uence of the thickness of middle layer
and the degree of inhomogeneity of the material on all
aspects of the response.

Nomenclature

a Loading radius
Am; :::; Dm Constants of integration
Cij Elasticity constants
F Potential function
FGM Functionally Graded Material
Fv Vertical point-load resultant value
h Middle layer thickness
Jm Bessel function of the �rst kind and

m-th order
m Hankel integral transform
r Radial coordinate
R(r) Speci�ed interfacial traction in z-axis

direction
s1; s2 Roots of strain energy function
ur Displacement components in r-

directions
uz Displacement components in z-

directions
z0 Transformed loading coe�cient
� Exponential factor characterizing the

degree of material properties gradient
�0 Arbitrary area
�h Arbitrary area
�ij Stress components
� Lambs constant
� Lambs constant
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	II
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IIi = e�(�II+�IIi )h!IIi ;


IIIi = e�(�III+�IIIi )h!IIIi ;

pIIi = e(�II+�IIi )h�IIi ;

qIIi = e(�II��IIi )h�IIi ;

qIIIi = e(�III��IIIi )h�IIIi ;

nIIi = e(�II+�IIi )h�IIi ;

tIIi = e(�II��IIi )h�IIi ;

tIIIi = e(�III��IIIi )h�IIIi : (A.4)
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