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Abstract. By considering uncertainties in the input parameters (e.g., magnitude,
location, wave path, etc.), the Probabilistic Seismic Hazard Analysis (PSHA) aims to
compute annual rate of various exceeding ground motions at a site or a map of sites of all
anticipated given earthquakes. Uncertainties may be originated due to inherent randomness
of the phenomena or variability in the mean values of di�erent models parameters, mainly
due to use of �nite-sample size of observations. The �rst, in literature reviews, is commonly
named aleatory uncertainty; the second is known as epistemic uncertainty. The total
probability numerical integration, generally employed to calculate PSHA, only considers
aleatory uncertainties, and variability in the models' parameters is neglected to simplify
calculation. In this paper, as an alternative to the total probability numerical integration,
matured and standard reliability methods tailored to e�ortlessly consider both types of
uncertainties are put forward to compute site-speci�c PSHA. Then, as an application
study, the peak ground acceleration hazard curve for the site, at which a historical bridge
is located, is developed and compared with those obtained from the total probability
numerical integration.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

The Probabilistic Seismic Hazard Analysis (PSHA)
is an approach broadly applied to describe probable
future ground shakings at a site. In this approach,
annual rate of exceeding for a given ground motion
hazard parameter �(im) at a speci�c site is estimated
by quantifying uncertainties in the characteristics of
seismic source such as magnitude, distance, and wave
pathway. The mathematical description of the PSHA
was �rst set up by Cornell [1]. The formulation
was based on total probability theorem. Eq. (1)
demonstrates general form of the formulation:
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�(im) =
nX
i=1

viP (IM > im)

=
nX
i=1

vi
x

P (IM > imjM = m;

R = r)fM (m)� fR(r)dm:dr; (1)

where vi is the mean annual rate of occurrence of
all earthquakes which are greater than or equal to
the minimum magnitude, IM denotes a ground mo-
tion hazard parameter. Since, in this study, there
is more emphasis on the methodology rather than
the hazard parameter, the well-known Peak Ground
Acceleration (PGA) is chosen as the ground motion
measure. n describes number of seismic sources and
P (IM > imjM = m;R = r) is the conditional
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probability of exceeding the chosen IM for a given
magnitude and distance. In this term, dispersion
around the mean value of the IM is addressed using
lognormal distribution. Finally, fM (m) and fR(r)
indicate probability density functions of magnitude
and distance, respectively. These probabilistic models
reect variability inherent in the characteristics of
seismic source (i.e., magnitude and location). However,
probabilistic models developed based on �nite-sample
size observations pose another type of uncertainty,
which is known as epistemic uncertainty. This type
of uncertainty is technically considered by employing
probabilistic model with random, rather than con-
stant, parameters. It is obvious that considering both
mentioned uncertainties in the conventional framework
makes calculation extremely di�cult. Since impacts
of epistemic uncertainties on performance evaluation
and design have recently received serious attention [2],
employing a framework, which is capable of considering
both types of uncertainties, would be interesting.

Recently, reliability framework has been widely
applied in literature to explicitly address aleatory
and epistemic uncertainties in engineering reliability
analysis and reliability-based design [3-6]. Haukaas [7]
proposed the \uni�ed reliability analysis" as an
alternative to the seismic risk analysis based on
conditional probabilities. In this approach, First
Order Reliability Method (FORM) is implemented
to carry out design optimization for a system with
limit-state function developed in terms of monetary
loss. Du [8] quanti�ed the e�ects of the aleatory and
epistemic uncertainties with belief and plausibility
measures in the context of the evidence theory. He
implemented the �rst order reliability method for
probabilistic analysis and nonlinear optimization
for interval analysis to handle black-box functions.
As an application of the methodology proposed by
Haukaas [7], Bohl [9] developed loss curve for an
example building and compared the result with the
one obtained from Paci�c Earthquake Engineering
Research (PEER) center approach. Der Kiureghian
and Ditlevsen [10] focused on the inuence of the
two types of uncertainties on reliability assessment,
codi�ed design, performance-based engineering, and
risk-based decision-making. Two examples were
studied to demonstrate the inuence of statistical
dependence arising from epistemic uncertainties
on systems and time-variant reliability problems.
Koduru and Haukaas [11] studied the viability of the
FORM in the context of both static and dynamic
�nite-element problems. It was concluded that
FORM is not an appropriate reliability method for
time-variant reliability problems. Xiao et al. [12]
proposed an optimization model for sensitivity analysis
under both aleatory and epistemic uncertainties.
The parameters with su�cient information were

modeled using probability distributions, while others
were modeled using a pair of upper and lower
cumulative distributions (the so-called P-box).
Mahsuli and Haukaas [13] developed an open-source
reliability software, named \Rt" , as a computational
platform for evaluating reliability problems. This
software, which is available on the following website
link \http://www.inrisk.ubc.ca", is employed in the
present study to solve reliability-based PSHA problem.

According to the above description, in this paper,
reliability framework as an alternative to the conven-
tional approach is put forward to address problems
in Eq. (1). Contrary to the conventional approach,
this framework is able to e�ortlessly and explicitly
address both aleatory and epistemic uncertainties.
Magnitude model with random parameters is de�ned
as an example to address the ability of the framework
to reect both types of uncertainties within calculation
of PSHA. This ability would be more notable when
attenuation relations with random model parameters
are implemented in calculating PSHA. Furthermore,
availability of reliability software, such as \RT", ef-
fortlessly capable of carrying-out reliability analysis,
makes the reliability-based PSHA more interesting
and appealing. This paper starts with describing
reliability analysis and limit-state function in detail.
Next, magnitude and location models are developed
to be applied to conventional and reliability-based
framework to develop seismic hazard curve. The results
are presented and compared at the end to provide
insight into the accuracy and e�ciency of the suggested
reliability methods.

2. Reliability analysis

In classical structural reliability analysis, the system
reliability R and probability of failure pf are de�ned
as [4-6]:

R = P [G(X) � 0] =
Z
g(X)�0

:::
Z
fX(X)dX; (2)

pf = P [G(X) < 0] =
Z
g(X)<0

:::
Z
fX(X)dX; (3)

where P [:] denotes a probability indicator, G(:) is
a limit-state function which de�nes the performance
event for which the probability is being assessed, and
X = (X1; X2; :::; Xn) is the vector of random variables.
fX(X) denotes the joint probability density function
(pdf) of X. Reliability is graphically interpreted as
the volume underneath the surface (hyper-surface for
higher than 2-D problems) of fX(X) on the side of
safe region [6] (Figure 1). The direct evaluation of the
probability integration is extremely di�cult. The main
reasons given in di�erent reliability texts are [3-5]:



M. Kia and M. Banazadeh/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 933{941 935

Figure 1. Graphical interpretation of the probability
integration [6].

� fX(X) is practically impossible to obtain; evalu-
ating the multiple integral is di�cult even if this
information is available.

� In many engineering applications, integration
boundary (i.e., G(X) = 0) is not de�ned explicitly.
Even if this function is available, it is usually a
nonlinear and complicated function of X.

According to the above reasons, numerical solu-
tions are the only choice available. Several reliability
methods are introduced to estimate the probability
integration numerically. Gradient-based methods, i.e.
FORM and Second-Order Reliability Method (SORM)
along with more sophisticated Monte Carlo Simulation
(MCS), are such techniques broadly applied to solve
the probability integration in Eq. (3). MCS generates
random outcomes of the random Variables and eval-
uates G(X) for each realization. Then, it counts the
number of times a failure occurred and estimates the
probability of failure by [3,5,9]:

pf =
Number of failure

Total number of sampling
: (4)

This method is extremely robust. It can solve probabil-
ity integration in Eq. (3) with any type of limit-state
functions, even those with discontinuities. However,
the main disadvantage of MCS is that it requires a
large number of evaluations of the limit-state function
to obtain the failure probability. Hence, the MCS
is time-consuming, especially for random event with
small probability of failure. This de�ciency reduces
the use of MCS in structural reliability analysis. In
contrast, gradient-based methods are highly e�cient
due to their search for only the point with the highest
contribution to the probability integration; no time is

Figure 2. Comparison of the �rst order and second
reliability methods [6].

wasted in calculations and they do not signi�cantly
contribute to the probability of failure. This charac-
teristic of the gradient-based methods making them
tailored to compute probability of rare event would be
greatly interesting for practical purposes. Since the
approximation of the limit-state function in SORM
is better than that in FORM (Figure 2), SORM is
generally more accurate than FORM, especially for
highly nonlinear limit-state function. However, SORM
is not as e�cient as FORM due to computing the
second-order derivatives. Therefore, a great number
of solutions are proposed to improve e�ciency of the
SORM using various quadratic approximations, one
of which is the Breitung's improved formula using
the theory of asymptotic approximations [14]. This
simple closed-form solution, applied to the present
study as the second-order analysis, modi�es failure
probability of the FORM using the �rst principle
curvature. Generally, gradient-based methods take
the three following steps to estimate probability of
failure [3,6,12].

1. The vector of random variables, X = (X1; X2; :::;
Xn), in their original random space is trans-
ferred into independent standard normal vector,
U = (U1; U2; :::; Un), in standard normal space (U -
space). After transformation, limit-state function
G(X) is changed to ~G(U) in U -space. Note that
mathematical formulation of limit-state function
after transformation is di�erent from that in the
original space.

2. Next, a point located on ~G(U) = 0 and has the
highest contribution to the probability integration
must be sought. In reliability text, this point is
named Maximum Probable Point (MPP), or design
point, and computed by an iterative optimization
process as:
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Figure 3. Probability integration in the U -space [6].(
Max ~f(U) = �n
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(5)

where ~f(U) demonstrates the mathematical de-
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i . Accordingly, MPP is the point

on the integral boundary, i.e. ~G(U) = 0, which
has the shortest distance to the origin in U -space
(Figure 3). In technical texts, this minimum
distance is called reliability index and is shown by
�.

3. Finally, based on the obtained reliability index, the
probability of failure is estimated by the following
equations:

pf =

8>>><>>>:
�(��)! If FORM selected
�(��)�n�1

i=1 (1 + ��i)
1
2 ! If SORM

(Breitung's improved formulation)
selected

(6)

where �i denotes the principal curvatures of the
limit-state function, i.e. ~G(U), at the minimum
distance point.

3. Limit-state function

According to the previous section, limit-state function
de�ning desired event is the core of the reliability
methods. A limit-state function consists of two main
parts: threshold and probabilistic models. Threshold

is the value assigned by analyst, but probabilistic
model is an equation (or algorithm) that simulates all
possible scenarios of physical phenomena. In addition,
probabilistic models implemented in a reliability anal-
ysis should have other characteristics that are fully
described in [7,9,13]. A few of these characteristics
include: accounting for both aleatory and epistemic
uncertainties in terms of random variables and being
continuously di�erentiable. Since the foundation of
all reliability algorithms are based on several trial
realizations of random variables, probabilistic models
must be able to yield deterministic output(s) for a given
realization of input variables. The exact number of
realizations depends on the e�ciency of the algorithm
employed to solve a reliability problem.

Depending on the objective performance, the
number of probabilistic models required to de�ne
desired limit-state function would be di�erent. For
example, in a seismic risk analysis which computes
exceedance probability of monetary loss, three intensi-
ties, demand, and consequence models are required to
develop limit-state function. But, for seismic hazard
analysis which is the subject of this paper, only proba-
bilistic intensity model would be adequate. Therefore,
following limit-state function is extended in this paper
to address the problem of calculating Eq. (1):

G() = pga� PGA(�;M;R); (7)

where pga indicates peak ground acceleration thresh-
old, pga(�;M;R) represents an intensity model pre-
dicting peak ground acceleration at a designated site.
In this model, �, M , and R indicate model param-
eters, earthquake magnitude, and wave propagation
e�ects, respectively. Fortunately, most of attenuation
relations proposed in the literature comply with the
mentioned characteristics of a probabilistic model and
can be directly amenable to a reliability analysis.
One example is the following ground-shaking intensity
model predicting peak ground acceleration at a site [15]
and implemented in this paper to describe reliability-
based PSHA. It is noteworthy that analyst would
be autonomous in the use of his developed or other
probabilistic intensity model:

Log(PGA) =aMw � bp(R2 +H2)

� d:Log �pR2+H2
�

+cisi+�:": (8)

In the above equation, a; b; ci; and si are the parameters
of the intensity model; Mw; R; and H represent earth-
quake magnitude, focal depth, and epicentral distance,
respectively; " is the standard normal random variable
representing the model error; and � is the standard
deviation of the model error. Furthermore, the model
yields a unique deterministic value of PGA for a given
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realization of input variables and is continuously di�er-
entiable. Hence, Eq. (8) can be directly implemented
in reliability analysis. It is worthwhile to mention that
the above model is not capable of addressing epistemic
uncertainty due to use of constant parameters. In other
words, variability in the model parameters, i.e. a; b; ci;
and si, is ignored when the model is developed. By
utilizing the above relationship, the limit-state function
G() is rewritten to address the problem of calculating
the probability that PGA at a site exceeds a speci�c
threshold value:

G() =

pga�10
h
aMw�b

p
(R2+H2)�d:Logp(R2+H2)+cisi+�:"

i
: (9)

4. Case study example

In this section, both traditional and reliability-based
methodologies are implemented to develop peak ground
acceleration hazard curve at a site of a historical bridge.
This bridge, dating back to about 250 years, is located
at 52:665� east and 36:525� north. Seismicity catalog
of the site was �rst developed based on all historical
and systematic earthquakes occurred at a distance up
to 150 km from the site. For the sake of simplicity,
three circular area sources with di�erent radii were
de�ned. Only major excitations were considered,
and near-source e�ects are limited by de�ning lower
bound radius being equal to 10 km (Figure 4). Next,
both magnitude and location probability functions are
developed for each seismic zone. These probability
density functions are then utilized in the intensity
model proposed in the previous section to formulate
limit-state function, Eq. (9), for each seismic zone. Af-
ter extending limit-state function, reliability methods
are employed to calculate the probability that peak
ground acceleration exceeds certain ground motion
levels.

Figure 4. Concentric circular seismic sources.

4.1. Magnitude model
The relative frequency of various-sized earthquakes
has been usually speci�ed by a truncated exponential
distribution function developed based on Gutenberg
and Richter's recurrence law:

Ln(N(m)) = a� b:m! N(m) = ea:e�b:m; (10)

where N(m) indicates the number of earthquake with
magnitude equal to or greater than \m"; \a" and
\b" are the recurrence model parameters. Accord-
ing to Eq. (10), cumulative distribution function of
earthquake magnitude and consequently its probability
distribution function can be computed as:

Fm(m) = P (M � mjmmin < M < mmax)

=
(n(mmin)� n(m))
n(mmin)� n(mmax)

=
1� e�b(m�mmin)

1� e�b(mmax�mmin) ; (11)

fm(m) =
@Fm(m)
@m

=
b:e�b(m�mmin)

1� e�b(mmax�mmin)

mmin < m < mmax; (12)

where mmin indicates lower bound value of earthquake
magnitude selected based on engineering judgment
and seismicity catalog of the site; mmax is the upper
bound value of magnitude used to demonstrate that
maximum magnitude may be generated by seismic
source. Magnitude model parameters, i.e. mmax; b; and
mmin, for each of the above three seismic zones are
presented in Table 1. Except for the latter, the other
parameters are computed by a sophisticated procedure
which considers uncertainty in the input magnitude
data [16,17].

4.2. Location model
To predict ground motion intensity at a site location, it
is also necessary to describe probability distribution of
site to source distance as a more common parameter
applied to reect wave propagation e�ects. Since
rupture can be extended over ten kilometers, various
distance measures have been developed to estimate
ground motion parameters at a site (Figure 5). In
Eq. (9), the epicentral distance R associated with focal
depth H is used to reect wave propagation e�ects.
Probabilistic description of epicentral distance can be
easily computed by assuming that earthquakes occur
with equal probability anywhere at a seismic zone.
Considering the above assumption, the probability of
locating an epicenter at a distance of less than \r" and
greater than rmin can be calculated by:
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Table 1. Parameters of magnitude model for each seismic zone.

Seismic-zone Model parameter Median Standard deviation fm(m) with median
values of mmax and b

Zone 1
b 0.63 0.11

0:6844:e�0:63(m�3)mmax 7.02 0.16
mmin 3 |

Zone 2
b 1.16 0.07

1:167:e�1:16(m�3)mmax 7.37 0.12
mmin 3 |

Zone 3
b 1.13 0.12

1:173:e�1:13(m�3)mmax 5.92 0.28
mmin 3 |

Figure 5. Graphical interpretation of the epicentral distance.

FR(r) = P (rmin < R < r)

=

8><>:
0 r < rmin
�:r2��r2

min
�r2

max��r2
min

rmin � r � rmax

1 r � rmax

(13)

According to Eq. (13), the probabilistic description of
epicentral distance can be computed by:

fR(r) =
@FR(r)
@r

=

(
2�r

�r2
max��r2

min
rmin � r � rmax

0 Otherwise (14)

Based on the above equation, epicentral probability
function of the seismic zones is developed as follows:

f1(r) =
r

1750
10 � r < 60;

f2(r) =
r

5400
60 � r < 120;

f3(r) =
r

4050
120 � r < 150: (15)

It is strongly emphasized that the above description is
not only limited to circular area source, but also can
be extended to line source or area source with a more
general shape.

According to Eq. (9), to complete location model,
focal depth also requires to be speci�ed. Statistical
analysis of focal depth values presented in published
global earthquake catalogues shows that lognormal
distribution is a suitable distribution function to de-
�ne focal depth variability. However, focal depths
published in seismic catalogues are inaccurate by up
to 60 km for events in Iran and the surrounding re-
gions [18]. Therefore, it is recommended that only focal
depth values determined using accurate methods, such
as local network recordings or teleseismic wave form
inversion, be used instead of seismic catalogues values
in a PSHA [18]. Therefore, based on a study conducted
by Magge et al. [19], focal depth value, in this paper,
is considered constant and set equal to 12 km.

4.3. Comparison of analysis options
In this section, seismic hazard curve is derived us-
ing di�erent reliability methods, and the results are
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then compared with those obtained from conventional
method. The objective followed in this comparison is
to �nd the appropriate reliability model for computing
PSHA with respect to e�ciency and accuracy criteria.
To this end, for a given threshold, the exceedance
probability is �rst calculated for each zone using dif-
ferent reliability methods. Next, the probability of ex-
ceedance is converted to the annual rate of exceedance
by a simple modi�cation. To this end, it is enough to
multiply the probability by annual rate of occurrence
of earthquake at the site. Finally, hazard curve is
developed using direct summation of the annual rate of
exceedance over all seismic zones. The reliability of the
obtained results is investigated by its comparison with
the results of conventional approach. To demonstrate
di�erences between methods, vertical axes in Figure 6
are plotted in logarithmic space. According to Figure 6,
FORM, especially at the tail of the curves, tends to
overestimate the probability of failure compared with
conventional and other reliability methods. This is
quite reasonable and mainly due to the linearization
of the limit-state function in the FORM. To examine
the accuracy of the results better, PGA is computed
and compared with those obtained from conventional
method in terms of percentage errors by applying
Poisson occurrence model and reliability-based hazard
curves, according to di�erent occurrence probabilities
in 50 years (Table 2). According to the results of
Table 2, it is concluded that MCS is the most accurate
method. Figure 6 graphically con�rms this conclusion.
However, it is too time-consuming to be used for
practical purposes. To appreciate this fact, the number
of simulations and CPU time required to compute
the probability of exceeding a speci�c threshold value
is shown in Table 3 for di�erent reliability methods.
According to the results of Table 3, the computa-
tional cost of MCS increases dramatically when the
probability of rare event is sought. For example, to
achieve 2% coe�cient of variation of the probability
results, MCS requires 750616 realizations for threshold
equal to \0.75g" at the �rst seismic zone. The CPU
time corresponding to these numbers of simulations is
5665 seconds, namely 1.57 hours. In return, the run
time required to compute the probability of exceeding
\1.1g" is equal to 32849.02 seconds which is more than
6 times of the run time required for the threshold equals
\0.75g". It is noteworthy that the aforementioned
computational cost is relevant to only one threshold
value. By considering computational e�orts of di�erent
threshold values at all seismic zones, it is concluded
that MCS is too time-consuming to be applied for
practical purposes. In contrast, to compute the prob-
ability of exceeding \0.75g", gradient-based methods,
i.e. FORM and SORM (Breitung's improved formula),
only 11 realizations are required which are equivalent
to 0.102 and 0.149 seconds CPU time for FORM and

Figure 6. Comparison of the results obtained from
di�erent methods.

SORM, respectively. This brief comparison demon-
strates how much faster the gradient-based methods
are than MCS, which would be greatly interesting for
practical purposes. However, according to Table 2,
SORM provides more accurate results than FORM,
especially at low probabilities. This is quite reasonable
and mainly due to considering limit-state curvature
when exceedance probability is sought. Therefore, the
second-order reliability analysis based on Breitung's
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Table 2. PGA according to di�erent occurrence probabilities in 50 years.

Occurrence probability
during 50 year

PGAconventional method PGAFORM Errora

90 0.0572 0.0549 -4.021%
75 0.0859 0.0852 -0.815%
50 0.1285 0.1325 3.113%
25 0.2161 0.2305 6.664%
10 0.3668 0.4137 12.786%
2 0.7416 0.8967 20.914%

Occurrence probability
during 50 year

PGAconventional method PGABreitung's formula Errorb

90 0.0572 0.0569 -0.527%
75 0.0859 0.0858 -0.117%
50 0.1285 0.1291 0.465%
25 0.2161 0.2194 1.504%
10 0.3668 0.3735 1.794%
2 0.7416 0.781 5.045%

Occurrence probability
during 50 year

PGAconventional method PGAMCS Errorc

90 0.0572 0.05723 0.052%
75 0.0859 0.0861 0.233%
50 0.1285 0.1288 0.233%
25 0.2161 0.2177 0.740%
10 0.3668 0.3699 0.845%
2 0.7416 0.7516 1.33%

a Error = PGAFORM�PGAconventional method
PGAconventional method

� 100; bError = PGABreitung's formula�PGA conventional method
PGAconventional method

� 100;

cError = PGAMCS�PGAconventional method
PGAconventional method

� 100.

Table 3. A comparison of computational e�orts of the di�erent reliability methods for computing probability of exceeding.

Threshold MCS FORM/SORM
Number of
evaluations

CPU time
(Second)

Number of
evaluations

CPU time
(Second)

Zone 1

0.25 71363 62.918 5 0.077 / 0.1
0.5 286548 783.961 8 0.086 / 0.116
0.75 750616 5664.16 11 0.096 / 0.112
1.1 2080833 32849.02 14 0.119 / 0.16

improved formula would be the authors' suggested
reliability method for computing PSHA.

5. Conclusion

In this paper, an alternative approach based on the
application of Reliability Methods is put forward to cal-
culate Probabilistic Seismic Hazard Analysis (PSHA).
The pioneering work (i.e., Eq. (1)) in PSHA is consid-
ered as a reference to exhibit e�ciency and accuracy of
the reliability methods. In both approaches, the results

are peak ground acceleration hazard curves for the site
at which a historical bridge in Iran is located. It is
concluded that the subsequent use of the SORM (Bre-
itung's improved formula) provides accurate results
with respect to conventional method with a fraction
of the computational e�orts involved in MCS. That is,
SORM can be adopted as an alternative approach to
calculate PSHA because of good balance between accu-
racy and e�ciency. The ability to explicitly account for
epistemic uncertainties associated with the capability
of e�ortlessly addressing correlation between random
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variables is another advantage, making the reliability-
based approach powerful for practical purposes com-
pared to conventional method. These advantages
are particularly signi�cant when attenuation relations
with random model parameters are implemented in
calculating PSHA.
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