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1. Introduction

Abstract.

production and transportation scheduling of jobs, which are allowed to be transported

The multi-factory supply chain problem is investigated to determine the

by batches. This is a mixed-integer optimization problem, which could be challenging
The problem incorporates two parts: (1) assigning jobs to the appropriate
batch, and (2) scheduling jobs of batches for production and transportation. Based on the

to solve.

problem structure and because of its NP-hardness characteristics, Benders decomposition is
recognized as a suitable approach. This approach decomposes the problem into assignment
master problem and scheduling sub-problem. This would facilitate the solution procedure.
By comparing performance of the proposed algorithm with an exact approach, i.e. Branch
and Bound, it is demonstrated that it is able to find the near-optimal solution in low
computational times in comparison with the Branch and Bound.

(© 2017 Sharif University of Technology. All rights reserved.

Moon et al. [1]. Designing the supply chain in such

Global manufacturing systems play an important role
in maintaining competitive position in modern mar-
kets. Many industries, such as the steel corpora-
tions, electric power generating industries, automotive
companies, food, and chemical industries, can take
advantages of these systems. Establishing factories
in different positions can reduce the system’s cost
significantly. Material should be transferred among
factories and should be delivered to the customers
via transportation systems. Therefore, transportation
becomes a very significant factor in such problems.
Thus, scheduling production and transportation in
such integrated systems would cause a trade-off be-
tween these factors.

Thus, many manufacturing companies have been
transformed into global chains covering multi-factory
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systems becomes very significant and crucial because
it would affect performance, reliability, and costs of
the system. Planning and scheduling activities have
become much more complex than the conventional
single-factory scheduling problems since they involve
many companies or factories across the entire supply
chain Moon and Seo [2]. In such systems, factories
can be structured in parallel or in series. Each factory
is able to produce the finished goods (performs the
whole production process) in parallel structure, but it
is only able to perform parts of goods processing in
a series structure. Finished goods of each factory are
the raw material of the next factory in this structure.
Karatza [3], Moon et al. [4], Jia et al. [5], Chan
et al. [6], Chan et al. [7], Chung et al. [8], and
Sun et al. [9] are some examples of parallel structure
of factories. However, studies on serial structure
are limited to H'Mida and Lopez [10], Huang and
Yao [11], and Karimi and Davoudpour [12]. Here,
serial multi-factory structure is investigated to fill
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the gap of studies in this field. Interrelatedness of
factories would cause high complexity of the structure,
because material shortage in the upstream factories
would affect the whole supply chain and cause delay
in production of the downstream factories. Similarly,
inventory accumulation and, therefore, stopping the
production in the downstream factories would cause
decrease or stop in production of upstream factories.
Though, the jobs transportation among factories plays
an important role in the scheduling of the whole
system. Transporting a single job or batch of jobs,
which is subject to a vehicle capacity, would have
different effects on the system’s cost. Although using
batch would lead to lower transportation cost, it would
increase the total completion time (cost) of jobs. For
this reason, transportation cost is considered as a
function of number of deliveries for transferring all jobs.
There are some studies in the literature that consider
joint production scheduling and batching for delivery.
A coordination of production and delivery scheduling,
which can improve performance of the supply chain,
has recently been considered by researchers [13-16].
Mahdavi-Mazdeh et al. [17] investigated minimizing the
sum of the total weighted flow time and delivery cost
in a single machine with batch delivery to a customer.
The same problem considering multiple customers with
zero and non-zero ready times was studied by Mahdavi-
Mazdeh et al. [18], Mahdavi-Mazdeh et al. [19]. Rasti-
barzoki and Hejazi [20] studied an integrated due date
assignment, single-machine production, and batch de-
livery scheduling problem for make-to-order production
system.

All the above-cited references assume that jobs
are delivered from the machine to the customer(s)
in the single-machine scheduling problem. But, the
transportation and delivery of jobs in a shop scheduling
or multi-factory scheduling are not considered, except
in our previous work [12]. We studied the multi-factory
scheduling problem in which jobs transportation in
the system (among the factories) and their delivery
at the end of the system (from the last factory to
the customer) were considered to minimize the sum
of tardiness and transportation costs. As the problem
is NP-hard, a Branch and Bound (B&B) method was
presented, which could find the solution only for small
to medium sizes of the problem.

A similar problem is considered here, which op-
timizes the sum of maximum completion cost of the
jobs and transportation costs. In order to find the so-
lution to this complex problem, Benders decomposition
method is presented, which is a well-known technique
for solving large-scale Mixed Integer Programming
(MIP) problems Benders [21]. TIts successful imple-
mentation in some planning and scheduling problems
is presented in [22-24].

The rest of this article is organized as follows. In

Section 2, the problem is described and the mathe-
matical formulation is presented. Section 3 provides
the Benders decomposition as a solution procedure to
the problem. The experimental results are presented
in Section 4. Conclusion and future directions are
presented in Section 5.

2. Problem definition

A multi-factory production and transportation
scheduling problem is addressed here, where factories
are positioned in the series. There are n given jobs
to be processed through I serial factories. The final
products of each factory are considered as raw material
of the next factory. They are transported and delivered
to the next factory by means of transportation vehicle,
which can transport a number of jobs as a batch at
the same time. The batch transportation and delivery
would reduce the transportation cost of the system,
but they may increase the completion cost. The total
transportation cost is an increasing function of the
number of batches transported in the system. Though
finding a batching scheme (the optimal number of
batches and also the assignment of jobs to batches)
and scheduling of batches in the whole system are the
main aims of the problem, which help to minimize
the sum of maximum completion cost and total
transportation cost.

When processing of a job is finished in a factory,
it should remain there until processing of the same
batch’s uncompleted jobs is completed, and this will
cause the increase in the maximum completion time
of batches. The completion time of the last job in
the batch is considered as the completion time of a
batch. For this problem, it is assumed that: there
are an infinite number of transportation vehicles with
the same capacity and cost. All jobs are available
at zero time. Jobs processing in each factory cannot
be interrupted. Factories are always available with
no breakdowns or scheduled /unscheduled maintenance.
Infinite buffer exists around factories, before the first
and after the last factories. Setup times are negligible.
Jobs are available for processing in a factory immedi-
ately after arriving at the factory. FEach factory can
process at most one job at a time. A job cannot be
processed in more than one factory at the same time.
Number of jobs in each batch is at most equal to the
batch (vehicle) capacity. Completion time of a batch is
the time when processing of the last job in the batch
is completed. Transportation times between factories
are considered. Jobs are available for transferring
between factories immediately after completion of the
processing of the whole batch included in the previous
factory. There are sufficient numbers of vehicles for
transportation. All data are known deterministically.
There is no limitation on the number of batches.
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By considering single machine in each factory and
neglecting the transportation time between factories
and also considering a single job per transportation
instead of batch of jobs, the problem can be simplified
to a typical flowshop scheduling problem. As Rinnooy
Kan [25] proved that a flowshop scheduling problem
was NP-hard, the mentioned problem is NP-hard
too.

2.1. Mathematical formulation

Mathematical formulation of a serial multi-factory
scheduling problem with batch delivery (transporta-
tion) is presented for more description of the problem
and as a basis for the solution approach. The notations
that are used in the model are introduced below:

Indices
f Factory
j Job
h Batch
Parameters
F Number of factories
n Number of jobs to be processed
B Capacity of each vehicle (maximum
number of jobs in a batch)
Dif Processing time of job j in the
factory f
7! The transportation time between
factories f and f+1
7 The cost of completion time
Jé] The cost of transportation
Decision variables
Tin Equal to 1 if job j is positioned in
batch h, and 0 otherwise
Ay Equal to 1 if there is at least a job in
batch h, and 0 otherwise
C,’: Completion time of the batch A in
factory f
Ap The time that batch h arrive at
customer
C max Maximum completion time of jobs in
the system

The problem is formulated as a mixed integer
programming model, which is as follows:

Minimize Z = n x Cmax+8 x Y _ Ay, (1)
h=1

n
Zajhzl j=1,..,n, (2)
h=1

Ap > Apypr h=1,..,n—1, (3)

io'jh <Bx Ay

Jj=1

h=1,..n, (4)

Cl > Cl_ +) (Pif x ojn)

Jj=1

Cl > AL+ (Pif x o)

j=1
h=1,..n, f=1,..F (6)
At >col 47l h=1,..n, f=1,.,F—1, (7)
Cmax>C/ h=1,..,n, f=1,..,F, (8)

1 if job j is assigned to batch h
j=1,.,n, h=1,...,n (9)
0 otherwise

(Tjh:

1 if it is not a null batch
Ah = h:17...777, (10)
0 otherwise

cl,Al>0 h=1,..,n, f=1,..,F (11)

The objective function minimizes the maximum com-
pletion cost and total transportation cost. The maxi-
mum completion cost is shown in Eq. (1) by 7 x C max.
As it is clear, >, _, A denotes the number of batches
transferred between factories and also delivered to the
customers. As each job should be assigned to only
one batch, Constraint (2) is correct. Constraint (3)
indicates that a job cannot be assigned to a batch if the
previous batch is empty. The transportation vehicle
has the limited capacity (B); thus, the number of jobs
contained in each batch is limited. This limitation is
insured by Constraint (4). This constraint also asso-
ciates the number of jobs in the batch to the state of the
batch. It denotes that if a batch is null (A, = 0), no job
should be assigned to it (0,5, = 0). Constraints (5) and
(6) prevent beginning the processing of the hth batch in
a factory unless it is delivered from the previous factory
and processing of the previous batch is completed at
this factory. Constraint (7) guarantees that arrival
time of a batch at a factory is at least the sum of
completion time of that batch at the previous factory
and its transportation time to the current factory.
Constraint (8) determines the value of ¢'max. In order
to assign jobs to batches, the required binary variables
are defined by Constraint (9). Constraint (10) defines
A, to denote the batch condition; it means that if
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there is at least one job in the batch h, A, is equal
to 1. In order to schedule batches, two non-negative
continuous variables Ai and C’,{ are defined, which
are the arrival time and completion time of batch h
to factory f, respectively; these variables are defined
using Constraint (11).

3. Benders decomposition

Benders decomposition is a well-known approach for
handling complicating variables, which increase com-
putational difficulty of the problem. In fact, it is
appropriate for modeling of the problem, which can
be partitioned into smaller ones. In this approach,
the overall formulation of the problem should be
decomposed into smaller problems: master problem
and sub-problem(s); and, then, they should be solved
iteratively. At each iteration, solution of the master
problem is used in the sub-problem as input data and
solution of the sub-problem is inserted into the master
problem as a new constraint, which is named ‘Benders’
Cut’. When the sub-problem cannot find a feasible
solution, the feasibility cut is added to the master
problem. It directs the master solution to feasible
region. Otherwise, the optimality cut is added to the
master problem to enhance the quality of the solution
by guiding the search to the optimal region. At the end
of each iteration, convergence criteria of the method are
checked.

3.1. Basics of Benders decomposition
Suppose the following original problem, which contains
two sets of decision variables x and y:

min bz + dy, (12)
Az + Ey < B, (13)
0<x <", (14)
0<y<y"r, (15)

where x is the set of complicating variables, which
make the solution procedure of the model complex.
Thus, separating these variables from the model would
help the model to be solved in a simpler way. Master
problem consists of only complicating variables and
sub-problems contain other variables.

By considering  as the fixed value for the com-
plicating variables z, the sub-problem of the original
problem can be defined as follows:

min bT + dy, (16)
Ey < B - Az, (17)
0<y<y"™. (18)

The dual form of the sub-problem can be written as
follows:

max (B — Az)\, (19)
ET) < d, (20)
A>0. (21)

The advantage of using this dual model is that its
solution space is not dependent on 2 and it is only
related to the objective function. In other word,
different values of x would not affect the solution space.
The unbounded solution (extreme ray) of the dual
problem shows the infeasibility of the sub-problem.
Thus, the feasibility cut is needed to be added to
the master problem. Otherwise, the optimality cut is
generated to lead the search space to better solution
and to close the optimality gap. The master problem
is composed of all constraints of the problem, which
are just related to the complicating variable. It also
consists of cuts, which are added at each iteration:

min « (22)
NE(b —az) +dyt < a i=1,..iter — 1, (23)
N —az) +dyt <0 i=1,.. iter — 1, (24)
0<x<z"P, (25)

where A% and A. are the extreme points and the
extreme rays obtained from the dual sub-problem at
iteration i. Constraint (23) shows the optimality cut
of the problem, where « is an auxiliary continuous
variable, which approximates the original objective
function using the solution achieved from the sub-
problem. Constraint (24) is the feasibility cut of the
problem, which guides the search to feasible region.
The iter in Constraints (23) and (24) is related to the
number of iterations (note that in the first iteration, the
master problem is solved without any benders cuts). In
fact, these constraints cause the relation between the
sub-problem and master problem.

As mentioned earlier, convergence criteria should
be investigated at the end of each iteration. One of
these criteria is the predetermined gap between upper
and lower bounds (optimality gap). The optimal value
of the master problem provides us with the lower bound
for the original problem (lower bound: «). The upper
bound of the problem is estimated by sum of master
problem and sub-problem objective function (note that
the objective function value of the sub-problem is equal
to the objective function value of its dual problem
axi) + dy*). In addition, the
index ¢ is used to show the value of variable in iteration
1. The other criterion is maximum number of iterations
of the method. When the method meets one of the
criteria, it is converged and should stop.

(upper bound: \° (b -
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3.2. Benders reformulation

Since our problem contains binary variables, which are
considered as complicating variables, Benders decom-
position is a suitable method for solving it. Thus, by
fixing their values, complexity of the problem would
decrease considerably. One can observe that once the
jobs assignment has been fixed, one can solve the
scheduling problem in a simpler way. Thus, the role
of master problem in this context is recognizing the
good assignments of jobs to batches and determining
the required number of batches. The sub-problem
schedules batches production and delivery in the whole
system. To decompose the considered model to be
solvable by Benders decomposition, a master and a sub-
problem would be created.

Constraints only related to the complicating vari-
ables are assigned to the master problem and the others
are assigned to the sub-problem. The primal Benders
Sub-Problem (SP) is as follows:

SP:
Minimize Z; = n x C max +0 X 2": Ap, (26)
h=1
Cr>Cl_ + Z (Pjs X 05n)
j=1

h=2..n f=1,..F (27)

cl > Al + En:(ij X 07n)
j=1

h=1,..n, f=1,... F, (28)
AT > of 417

h=1,..n, f=1,.,F—1, (29)
C max > C,{

h=1,..n, f=1,..,F, (30)
cl Al >0

h=1,..n, f=1,..,F (31)

A, and o;p are the fixed values of A, and oj, achieved
from master problem (for the first iteration of the
method, these values are set arbitrarily). Defining
the dual variables s£7 u£7 v,{f, w,{ associated with
Constraints (27)-(30) the dual model of the SP (DSP)

can be described as follows:

DSP:

NB F =n NB F n
A 3) 3) LIS 3) ) Bl
h=2 f=1j=1 h=1 f=1j=1
NB F
X Pip x o+ >y vl xrl, (32)
h=1 f=1
Shy1 T Uy v/}:SO h =1,
1<f<F (33)

1< f<F (34)

s£+u£—v,{§0 h=NB,

1<f<F, (35)
—ul <0 h<NB, f=1, (36)
vl ' —w/ <0 W< NB, f=F, (37)
—ul +0/7'<0 W< NB, 1<f<F, (38)
wl<n 1<h<NB, 1<f<F, (39)

shoul ol wl >0 1<h<NB, 1<f<F (40)
where NB is the number of non-empty batches; in
other words, by number of batches with A, = 1,
which is obtained from the MP solution, Eq. (32) is
objective function of the maximization dual problem
subject to Constraints (33)-(40). The Benders cut is
deduced from the solution of the DSP at the end of
each iteration and it is added to the Master Problem
(MP):

MP :

Minimize Z5 = a, (41)
do=1, j=1,..m, (42)
h=1

Ah ZA}L-I—l h:l,...,n—l, (43)
> o <BxA, h=1,..n, (44)
=1
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NB F n _ NB F n _
ZZZsixijxajh—l-ZZZuf;xij
h=2 f=1j=1 h=1f=1j=1
NB F _
Xth+ZZU;fLXTfSOé,
h=1 f=1 (45)

1 if job j is assigned to batch h

o = j=1,...,n, h=1,..,n (46)
0 otherwise
1 if it is not a null batch
Ay = h=1,...,n (47)
0 otherwise
SZ, uz, vz, and u;i are the solutions of DSP to S{L,

ui, v,{, and w£ are considered to have fixed values

in MP (note that since the SP would never generate
the infeasible solution to our problem, feasibility cut
is not required to be added to the MP). After solving
MP, the lower and upper bounds of the problem are
calculated to investigate whether the method should
be terminated or continued.

4. Experimental results

This section contains the computational experiments
for evaluation of the proposed Benders decomposition
method for the mentioned problem. The algorithm is
coded in commercial software GAMS and executed on
a PC with Intel Core 2 Duo and 2 GB of RAM memory.

To the best knowledge of the authors, this paper
is a novel research in the scheduling field; therefore,
there is lack of benchmark or competent study on
this problem for evaluating the method. Thus random
datasets for different sizes of the problem are generated
for assessing and checking efficiency of the method
against an adapted B&B presented in [12]. Features
of the generated test problems are described in the
following; then, the computational experiments are
presented.

We generate 10 random data sets of different
problem sizes with number of jobs ranging from 5
to 200 and number of factories ranging from 2 to 8.
All the processing times and transportation times are
generated randomly using uniform distribution with
parameters [1,99] and [50,200], respectively. Capacity
of each transportation vehicle has a uniform distri-
bution with parameters [2,20]. Coeflicient of trans-
portation is considered in cases of equal, greater, and
smaller than the coefficient of make-span using the
values 10 and 1000. The optimality gap and maximum
number of iterations of the Benders decomposition as
stopping criteria of the method are set to 0.01 and

Table 1. Size of instances according to different values of
number of jobs and factories.

[n] |F| Constraints Variables
5 2 76 88
5 5 133 118
10 2 177 112
10 5 288 170
15 2 334 142
15 5 478 185
20 2 541 172
20 5 763 269
50 2 2851 368
50 5 3538 748
100 2 10701 693
100 5 12003 1374
150 2 23563 1027
150 5 25798 1691
200 2 41401 1383
200 5 42913 1939

40, respectively. In order to show the size alteration
through different instances, Table 1 is presented, which
contains number of constraints and variables that are
involved for solving Benders decomposition.

Seeking to evaluate the performance of our ap-
proach, different experiments are considered in terms
of lower and upper bounds, objective function value,
computing times, and number of Benders cuts. First,
for illustrating the progression of upper- and lower-
bound values through iterations, Figure 1 is presented.
This figure shows these iterative values for the problem
instance with 100 jobs and 5 factories.

It is clear from the figure that deviation of the
lower and upper bounds narrows during iterations
until the algorithm meets the convergence criteria (the
allowed gap between lower and upper bounds) through
19 iterations and, then, it stops.

80000
|=——LB ——UB]
70000
—
60000 j
50000 s

40000 /
30000 /
20000 /
10000 /
ol

T T T T T
1 2 3 456 7 8

T T T T T T T T T
910111213 14151617 18 19

Figure 1. Iterative results for lower and upper bounds.
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For investigating computing times and quality of
the solution, the method is compared with an adapted
B&B algorithm [12] for this problem, which is capable
of finding exact solution. Note that the execution times
of both methods are limited to 6000 (s) and if the
method cannot find the solution for an instance in that
time limit, (-) is put in the relative cell of the table.

The columns O.F and R.T represent objective
function values and run times of each method and
the column cuts shows the number of cuts generated
by Benders method to find the solution. Vars and
Cons are representatives of numbers of variables and

constraints generated by the Benders decomposition
method and the Gap value is the relative deviation of
the Benders decompositions objective function value
from the objective function value of the exact solution
of B&B.

Tables 2-4 display the computational results of
the mentioned comparison. It is clear that, since B&B
achieves the exact solution, the quality of its solution
is better than the solution of Benders decomposition
but its procedure is too time-consuming in finding
the solution. Though, the performance of Benders
decomposition can be investigated by means of its

Table 2. Comparison of Benders decomposition performance with branch and bound for n = 3 (n = 10 and 8 = 10).

n X F  Branch and bound

Benders decomposition

O.F R.T O.F R.T Cuts Vars Cons GAP
5x 2 5940 0.267 6300 1.123 4 64 41 0.060606
5% 5 12040 0.424 12540 0.78 4 103 59 0.041528
5x 8 18200 0.438 18780 0.646 3 166 93 0.031868
10x 2 9410 0.38 9450 1.43 6 201 98 0.004251
10x 5 15330 2.658 16720 0.937 4 288 134 0.090672
10x 8 20400 6.636 21120 3.421 11 411 206 0.035294
15%x 2 11700 1.07 11730 1.43 4 334 106 0.002564
15%x 5 17730 174.65 19130 2.92 448 158 0.078962
15x 8 22960 275.48 25050 2.346 6 562 204 0.091028
20 2 14120 2.113 14120 2.27 5 571 162 0
20% 5 20100 2409.59 20520 5.282 13 823 304 0.020896
20x 8 - - 28200 3.876 8 1027 396 -
50% 2 29980 10.75 30070 3.21 5 2857 337 0.003002
50%x 5 35960 4466 37970 10.11 11 3238 499 0.055895
50%x 8 - - 43830 32.841 25 3811 805 -
100x 2 51720 81.688 51720 17.97 6 10923 843 0
100x 5 60330 258.59 60550 111.29 15 12003 1374  0.003647
100x 8 - - 71600 236.84 24 13275 2041 -
150x 2 78130 322.76 77600 28.028 3 24001 1355 0.00683
150x 5 - - 85130  2773.39 39 25798 2291 -
150 8 - - 96520 923.54 29 27259 2943 -
200%x 2 102670 784.1 103500  155.97 5 41407 1312 0.008084
200x 5 109640 2510.747 110290  2060.31 26 42913 1939 -
200% 8 - - 122230 3960 37 45403 3253 -
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Table 3. Comparison of Benders decomposition performance with branch and bound for n < 3 (n = 10 and 3 = 1000).

n X F  Branch and bound

Benders decomposition

O.F R.T O.F R.T Cuts Vars Cons GAP
5x 2 9060 0.337 9300 0.788 3 64 40 0.02649

16270 0.31 17150 0.651 3 103 58 0.05408
5x 8 22379 0.584 23590 0.753 3 142 76 0.05411
10x 2 14700 0.315 15270 0.994 4 177 76 0.03877
10x 5 22170 2.67 24180 0.669 3 243 100 0.09066
10x 8 28070 8.91 30090 1.256 4 339 148 0.07196
15x 2 19620 0.645 20120 1.497 4 340 111 0.02548
15%x 5 26990 61.25 28060 1.45 4 448 154 0.03964
15%x 8 33020 40.294 36390 9.992 4 562 202 0.10205
20% 2 24090 2.32 24600 2.086 4 541 136 0.02117
20%x 5 31030 28.015 32960 1.87 4 688 196 0.06219
20%x 8 38260 167.87 41670 2.783 5 859 274 0.08912
50%x 2 54730 15.315 55140 3.035 3 2851 330 0.00749
50%x 5 61400 107.25 64640 7.019 7 3253 506 0.05276
50%x 8 - - 70020 1567 10 3619 654 -
100x 2 101220 144.87 101710 10.07 2 10881 804 0.00484
100x 5 110620 24.94 113650  49.782 9 11658 1049  0.02739
100x 8 - - 124370  54.688 9 12939 1788 -
150x 2 152380 164.28 152470 69.55 4 23551 981 0.00059
150x 5 159350 1274.52 162920  363.41 15 24853 1574  0.02240
150x 8 - - 171690 620 20 26587 2458 -
200x 2 201670 961.331 209610 83.32 2 41509 1394  0.03937
200x 5 209200 758.34 218670  487.63 6 43363 2249  0.04526
200x 8 - - 225180 1078.98 14 44419 2533 -

run time and gap. By increasing the size of problem
instances, the advantage of Benders decomposition,
in terms of computational time, intensifies relative
to the B&B. For smaller sizes of the instances, it
expends larger computational time than B&B. As
B&B is an exact solution approach, it is not capable
of finding solution for large problem instances in a
reasonable time. It is obvious that for larger sizes of the
problem, Benders decomposition searches the solution
space in bigger number of iterations and, thus, bigger
number of cuts are generated for guiding the search
procedure.

From the objective function and gap values for
the Benders decomposition, it is understood that it can
find near-optimal solution in very smaller time than the
B&B.

5. Conclusion

In this paper, we have presented the Benders decom-
position to solve a multi-factory scheduling with batch
delivery among factories and also to the final customer.
The problem entails minimizing the costs associated
with maximum completion time and transportation in
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Table 4. Comparison of Benders decomposition performance with branch and bound for n > 3 (n = 1000 and 8 = 10).

n X F  Branch and bound

Benders decomposition

O.F R.T O.F R.T Cuts Vars Cons GAP
5x 2 590040 0.439 598050 1.157 4 70 46 0.01357
5% 5 1199050 0.483 1254050 0.757 3 103 58 0.04587
5% 8 1815050 0.721 1829050 1.034 6 190 113 0.00771
10x 2 935060 0.432 986070 1.799 183 83 0.05455
10x 5 1523100 2.786 1672080 0.765 288 133 0.09781
10x 8 2030100 7.907 2303090 1.099 339 148 0.13447
15x 2 1162080 1.48 1235120 1.932 5 334 107 0.06285
15x 5 1758150 76.78 1878150 2.804 7 478 179 0.06825
15x 8 2281150 303.21 2479140 15.79 15 706 315 0.08679
20x 2 1401110 1.791 1412200 2.76 6 541 138 0.00791
20x 5 1992180 1317.36 2242190 2.47 5 838 307 0.12549
20%x 8 - - 2700200 14.07 9 931 329 -
50x 2 2972260 12.29 3040380 7.63 9 2851 336 0.02291
50% 5 - - 3610500  498.89 80 3598 832 -
750% 8 - - 4282480 3342 20 4147 1038 -
100x 2 5121510 1277.4 5148990  20.183 8 10701 660 0.00536
100x 5 - - 6056000  169.18 20 12003 1379 -
100x 8 - - 7006980  118.97 17 13299 2051 -
150% 2 - - 7758460  115.56 11 23551 988 -
150x 5 - - 8495490  640.95 22 24688 1460 -
150 8 - 9488470  676.91 23 27499 3107 -
200% 2 - - 10199970 293.53 11 41401 1313 -
200x 5 - - 11187920 1113.8 18 44338 2976 -
200% 8 - 12038970 1624 27 45499 3311 -

the system and at the end of the system. The main
contribution of this paper is Benders reformulation of
the problem, which facilitates the solution approach
by decomposing the hard problem to two simpler prob-
lems. The objective function of the master problem can
also be considered as the lower bound of the original
problem.

Numerical experiments were conducted to eval-
uate the efficiency of the proposed method tackling
a large-scale real-world problem. The comparison of
this method with the exact solution approach, adapted
B&B method, presented in [12] is performed. The
experimental results confirm the superior performance

of our presented method in terms of the run time to
the B&B algorithm, especially for a larger number of
problem instances. It is clear that for larger sizes,
the B&B cannot find the solution in reasonable time;
but, Benders decomposition is capable of finding near-
optimal solution in the considered time.

For future research, we are seeking for ways to
accelerate the Benders decomposition algorithm, such
as developing a method to generate a set of cuts at
each iteration, for this problem. In addition, some
more research can be done with different assumptions
of this problem, like unlimited number of vehicles,
unlimited buffers, etc.
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