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Abstract. This paper studies a warm standby repairable system including two dissimilar
units: one repairman and imperfect switching mechanism. Times to failure and times to
repair of active and standby units are assumed to be exponentially distributed. Two cases
of unreliable switching mechanism are considered. In case one, the failed active unit will
be replaced by the available warm standby unit with coverage probability c. However,
in case two, the switching mechanism is repairable, and its failure time and repair time
are also exponentially distributed. Using Markov process and Laplace transforms, the
explicit expressions of the mean time to failure, MTTF, and the steady-state availability of
the two systems are derived analytically. Finally, by solving a numerical example, the two
systems are compared based on various reliability and availability characteristics. Moreover,
sensitivity analyses of the reliability and availability indexes are accomplished with respect
to the model parameters.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Reliability and availability are essential factors for
evaluating the performance of engineering systems.
Improving system reliability and availability is a
fundamental requisite in power plants, production,
manufacturing, and industrial systems. Enhancing
system reliability and availability can be achieved by ei-
ther increasing the reliability of each component in the
system or adding redundant units. In general, redun-
dancy strategy can be in two forms: active and standby.
In active redundancy, all units operate simultaneously,
whereas in standby redundancy, one of the redundant
units will be put into operation when the active one
fails. There are two categories of standby redundancy:
cold and warm. In cold standby, the redundant units
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do not fail before being put into full operation, whereas,
in warm standby, the inactive units may fail while
they are in standby state. In standby redundancy, a
switching mechanism is required to detect the failed
active unit and replace it by the standby unit if one is
available. This switching mechanism can be perfect or
imperfect. In the case of perfect switching mechanism,
two-unit standby repairable systems under di�erent
assumptions were extensively studied in the past [1-6].
Lewis [7] introduced the concept of imperfect or unreli-
able switching in standby systems. Coit [8,9] explained
two cases of imperfect switching mechanism. In one of
the cases, switching failure can only occur in response
to an active component failure with probability, 1� c.
Therefore, the probability of successful detection and
replacement is denoted by parameter c which is known
as the coverage factor (see Trivedi [10]). In the other
case, the switching mechanism continuously monitors
active components functionality to detect a failure.
In this case, the switching mechanism may fail at
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any time, and its time to failure is often presented
by a probability distribution function. As long as the
switching mechanism is in working state, the active
unit failure is successfully detected and immediately
replaced by the available standby unit. Switching
mechanism failure does not necessarily lead to the
system failure because no switching may be required
during the remainder of the system mission time.

By considering imperfect switching, Soltani et
al. [11] and Sadjadi and Soltani [12] presented a
nonlinear redundancy allocation model with the choice
of redundancy strategy and component type in se-
rial parallel systems in which component's time to
failure follows an Erlang distribution with imprecise
scale parameter. Wang and Chiu [13] performed the
cost bene�t analysis of three availability systems with
warm standby units, imperfect coverage, exponentially
distributed failure time, and general repair time distri-
bution. Using the supplementary variable technique, a
recursive method was presented to derive the explicit
expressions of the steady state availability of three
models for various repair time distributions, such as
exponential, k-stage Erlang, and deterministic. Wang
et al. [14] performed a comparison of the MTTF and
the steady-state availability between four con�gura-
tions with warm standby units, unreliable switching,
and exponentially distributed failure and repair times.
Trivedi [10] introduced the concept of reboot delay for
repairable systems. Ke et al. [15] studied the relia-
bility measures of a warm standby repairable system
with coverage probability and reboot delay. In their
analysis, times to failure, times to repair, and reboot
time were assumed to be exponentially distributed.
They provided a Laplace transform method for deriving
the system reliability characteristics. In addition,
a sensitivity analysis for the system reliability and
MTTF along with changes in the system parameters
was performed.

Wang and Chen [16] compared the steady-state
availability of three di�erent systems with warm
standby units, standby switching failure, reboot delay,
exponentially distributed failure time, and general
repair time distribution. The explicit expressions of the
steady-state availability of three con�gurations were
derived, and comparative analysis for three various
repair time distributions, such as exponential, gamma,
and uniform, was also performed. Ke et al. [17,18]
considered a repairable system with two primary units:
one standby, imperfect coverage and reboot delay. In
their works, times to failure, times to repair, and
reboot delays were assumed to follow exponential
distribution with fuzzy parameters. Using paramet-
ric nonlinear programming approach, the membership
function of the system MTTF and the system steady-
state availability were obtained analytically. Ke and
Liu [19] studied a warm standby repairable system

with imperfect coverage, reboot delay, exponentially
distributed time to failure, and general repair time
distribution. They constructed an e�cient algorithm
to compute the steady-state availability and provided
numerical examples for various repair time distribu-
tions, such as exponential, gamma, log-normal, and
Weibull. Wang et al. [20] examined the reliability
and sensitivity analysis of a repairable system with
imperfect coverage under a service pressure condition.
Times to failure, times to repair, and reboot delay
were assumed to be exponentially distributed in this
work. Moreover, they assumed that under the pressure
of long queue, the repair rate increases to reduce the
queue length. The explicit expressions for the system
reliability and MTTF were derived, and sensitivity
analysis of reliability characteristics with respect to the
system parameters was performed.

Hsu et al. [21] statistically investigated an avail-
ability system consisting of two active components and
one warm standby with reboot delay, standby switching
failures, and an unreliable repair facility. Times to
failure and the reboot time were assumed to follow
exponential distribution, whereas times to repair of
failed components and repair time of the service station
were assumed to be generally distributed. They devel-
oped a consistent and asymptotically normal estimator
of the availability. Wang et al. [22] analyzed the
warm standby M/M/R machine repair problem with
multiple imperfect coverage and service pressure coe�-
cients. Using a recursive method to develop the steady-
state analytical solutions, various system performance
measures, such as the expected number of failed ma-
chines, the expected number of idle servers, machine
availability, and operative utilization, were calculated.
Moreover, Quasi-Newton method and PSO algorithm
were implemented to determine the optimal number
of servers, the optimal number of warm standbys, and
the optimal service rate at the maximum pro�t. Ke
et al. [23] considered a machine repair problem with
warm standbys, imperfect coverage, service pressure
coe�cient, and R non-reliable servers. Developing a
Markov chain model, the stationary distribution was
obtained through matrix recursive method, and various
system performance measures were computed. In addi-
tion, the Quasi-Newton and probabilistic global search
Lausanne methods were used to search for the global
optimal system parameters. Hsu et al. [24] studied an
M/M/R machine repair problem with warm standbys,
switching failures, reboot delays, and repair pressure
coe�cient. Adopting the matrix-analytic method,
the steady-state analytic solutions were obtained to
calculate system performance measures. Moreover,
probabilistic global search Lausanne method was uti-
lized to determine the optimal values which maximize
the function of expected pro�t per unit time. Kuo
and Ke [25] studied the steady-state availability of a
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repairable system with standby switching failure and
an unreliable server. Time to failure of the components
and time to breakdown of the server were assumed to
follow exponential distribution, while the repair time of
the failed components and the repair time of the break-
down server were assumed to be generally distributed.
Using supplementary variable method and integro-
di�erential equations, they derived the steady-state
availability for three di�erent system con�gurations.

Recently, two-unit standby repairable systems
under di�erent assumptions have been studied. Kakkar
et al. [26] investigated a parallel framework consisting
of two dissimilar units under the presumption that a
framework's unit may also fail during the preventive
maintenance. Kakkar et al. [27] also studied this sys-
tem under the assumption that active unit cannot fail
after post-repair inspection and replacement. Consid-
ering the concepts of preventive maintenance, priority
and maximum repair time, Kumar et al. [28] developed
a stochastic model for a two-unit cold standby system.
Moreover, Kumar and Malik [29] analyzed a computer
system consisting of two identical units with indepen-
dent hardware and software component failures.

All of the above-described studies about imperfect
switching in repairable systems were concerned with
the case related to coverage factor, whereas the other
case, in which times to failure of switching mechanism
follows a speci�ed distribution, was rarely addressed.
In this regard, Yuan and Meng [30] considered a warm
standby repairable system with two dissimilar units:
one repairman and unreliable switching mechanism.
Working time and repair time of primary and standby
units were assumed to follow exponential distribution,
and unit one had priority in use. Moreover, time to
failure and time to repair of switching mechanism were
also exponentially distributed. They assumed that the
switch failure leads to the failure of the whole system
immediately, whereas in many real-world engineering
system examples, switching mechanism failure does
not necessarily lead to the system failure, because no
switching may be required during the remainder of the
system mission time, or the switching mechanism may
be repaired before the time of the active unit failure.
This issue motivates us to release the assumption of
failing the whole system due to the switching mech-
anism failure. Moreover, imperfect coverage is also
considered for the repairable system.

A practical example related to smart grid is
presented for illustrative purposes. In power industry,
improving the e�ciency, reliability, economics, and
safety of grids is a fundamental requisite. Therefore,
in recent years, smart grid as an e�ective solution,
in which upgrading and automating the generation,
transmission, distribution, and management of elec-
tricity are performed through incorporating advanced
computing and communication technologies, has been

extensively deployed worldwide [31]. Fan and Gong [31]
illustrated the architecture of a typical smart grid me-
tering and control system consisting of utility company,
substation/data concentrator network, Home Area
Network (HAN), smart meter and third party. Herein,
we consider substation/data concentrator network as a
subsystem of smart grid, which consists of a number
of smart meters and data concentrators employed in
a speci�c area. Di�erent communication technologies,
such as Wi-Fi, Zigbee, Power Line Career (PLC), etc.,
can be used to establish a link between smart meters
and data concentrators. The smart meter readings
are forwarded to the data concentrator, and then
the accumulative data are transmitted to the utility
company through data concentrators. Ancilloti et
al. [32] identi�ed the basic requirements that should be
satis�ed by smart grid communication infrastructures,
in which reliability is one of the key communication
requirements. To ensure achieving a satisfactory level
of reliability, redundancy is known as one of the most
e�cient approaches.

The mentioned subsystem can be composed of
two dissimilar and repairable data concentrators. The
active data concentrator is called the primary concen-
trator; the backup one is called the spare concentrator.
At the beginning, the primary data concentrator is
in working state, and the spare data concentrator
is in warm standby state. The primary and spare
data concentrators may fail due to the environmental
inuences. The subsystem also consists of an imper-
fect switching mechanism. There are two cases for
switching mechanism. In one case, when the active
data concentrator fails, it can be immediately replaced
by the available warm standby one with coverage
probability; in the other one, there is a repairable
switch. As long as the switch is in working state, the
failed active data concentrator is immediately replaced
by the available warm standby data concentrator.
The switch failure does not lead to the subsystem
failure. In this paper, we assume that the working time
and repair time of the active and the warm standby
data concentrators are exponentially distributed. In
addition, working time distribution and repair time
distribution of the case two of switching mechanism
are exponential.

The rest of this paper is organized as follows:
Section 2 describes the model assumptions. Using
Markov process and Laplace transforms, the explicit
expressions of the MTTF and the steady-state avail-
ability for the system with the two cases of imperfect
switching mechanism are obtained in Sections 3 and 4,
respectively. In Section 5, a numerical example is
provided. The inuence of system parameters on the
reliability and availability characteristics of the system
with the two cases of imperfect switching mechanism is
studied. Moreover, a sensitivity analysis is conducted
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to compare the two cases. Conclusions are drawn in
Section 6.

2. Model assumptions

A redundant repairable system, consisting of one active
unit, a warm standby unit, a repairman, and an imper-
fect switching mechanism, is studied by considering the
following assumptions.

Assumption 1. Active and warm standby units are
dissimilar. At �rst, unit one is in working state,
whereas unit two is in warm standby state;

Assumption 2. Operating unit, i (i = 1; 2), has an
exponential time to failure distribution with parameter
�i. Warm standby unit i may fail before being put
into full operation and has an exponential time to
failure distribution with parameter "i (0 < "i < �i).
Moreover, the repair time of unit i is exponentially
distributed with parameter �i;

Assumption 3. Two cases of imperfect switching
mechanism are considered as follows.

Mechanism 1. When the active unit fails, it can be
immediately replaced by the available warm standby
unit with coverage probability c;

Mechanism 2. The switching mechanism has an
exponential time to failure distribution with param-
eter �. This switching mechanism is repairable and
the repair time is also exponentially distributed with
parameter �. As long as the switching mechanism is
in working state, the failed active unit is immediately
replaced by the available warm standby unit. Switching
mechanism failure does not necessarily lead to the
system failure, because no switching may be required
during the remainder of the system mission time, or
the switching mechanism may be repaired before the
time of the active unit failure.

Assumption 4. When one of the units or Mecha-
nism 2 of switching fails, it is immediately repaired if
the repairman is idle. For the active and the warm
standby units, repair is performed based on the �rst

come and �rst repaired discipline. But, Mechanism 2
of switching has priority in repair than the units;

Assumption 5. When the standby unit successfully
replaces the failed one, its failure characteristics turn
into those of an active unit. Moreover, the failed units
will be in warm standby state after performing repair;

Assumption 6. A fault-detecting device continuously
monitors the warm standby unit to identify its failure;

Assumption 7. For the system consisting of Mecha-
nism 1 of switching, reboot delay, which is exponen-
tially distributed with parameter �, occurs after an
unsuccessful switching. The other events cannot take
place during a reboot;

Assumption 8. Time to failure and repair time of
units and Mechanism 2 of switching are independent
from each other.

Henceforth, the systems, consisting of Mecha-
nisms 1 and 2 of switching, are called as System 1 and
System 2, respectively.

3. The reliability function and MTTF

Let N(t) indicate the state of the repairable systems
at time t. Then, for reliability models, fN(t); t �
0g is a continuous-time Markov process whose states
corresponding to Systems 1 and 2 are presented in
Tables 1 and 2, respectively.

The state transition diagrams of two systems are
also depicted in Figure 1(a) and (b). In accordance
with these �gures, the transition rate matrices of
Systems 1 and 2 can be respectively obtained as follows:

Q1 =
�
A1 B1
O1 0

�
; Q2 =

�
A2 B2
O2 0

�
;

in which O1 and O2 are zero row vectors, and the other
matrices are de�ned as shown in Box I.
Herein, Pr(N(t) = j) is represented by Pj(t) for
j = 0; 1; 2; 3; F in the case of System 1 and j =
0; 1; 2; 3; 4; 5; 6; 7; F in the case of System 2. The
Kolmogorov forward equations (see [33]) of Systems 1
and 2, respectively, are given by:

Table 1. The states of Markov process of reliability models related to System 1.

State index Unit 1 status Unit 2 status

0 Working Warm standby
1 Warm standby Working
2 Working Under repair
3 Under repair Working

F None of the two units is in working status.
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Table 2. The states of Markov process of reliability models related to System 2.

State index Unit 1 status Unit 2 status Switch status

0 Working Warm standby Good
1 Warm standby Working Good
2 Working Under repair Good
3 Under repair Working Good
4 Working Warm standby Under repair
5 Warm standby Working Under repair
6 Working Waiting for repair Under repair
7 Waiting for repair Working Under repair

F None of the two units is in working status.

A1 =

2664�("2 + �1) 0 "2 c�1
0 �("1 + �2) c�2 "1
�2 0 �(�2 + �1) 0
0 �1 0 �(�1 + �2)

3775 ; B1 =

2664(1� c)�1
(1� c)�2

�1
�2

3775 ;

A2 =

266666666664

�(�1 + "2 + �) 0 "2 �1
0 �(�2 + "1 + �) �2 "1
�2 0 �(�2 + � + �1) 0
0 �1 0 �(�1 + � + �2)
� 0 0 0
0 � 0 0
0 0 � 0
0 0 0 �

� 0 0 0
0 � 0 0
0 0 � 0
0 0 0 �

�(�+ "2 + �1) 0 "2 0
0 �(�+ "1 + �2) 0 "1
0 0 �(�+ �1) 0
0 0 0 �(�+ �2)

377777777775
;

B2 =
�
0 0 �1 �2 �1 �2 �1 �2

�T :
Box I

dP (t)
dt

= P (t)Q1;
dP (t)
dt

= P (t)Q2;

where:
P (t) =

�
P0(t) ::: PF (t)

�
:

If we assume that the process is initially in state 0,
one can have P0(0) = 1 and Pj(0) = 0, j 6= 0; hence,
the system di�erential equations, employing Laplace
transforms for Systems 1 and 2 are attained by Eqs. (1)
and (2) respectively:

s ~P0(s)� 1 = �(�1 + "2) ~P0(s) + �2 ~P2(s); (1a)

s ~P1(s) = �(�2 + "1) ~P1(s) + �1 ~P3(s); (1b)

s ~P2(s) = "2 ~P0(s) + c�2 ~P1(s)� (�1 + �2) ~P2(s); (1c)

s ~P3(s) = c�1 ~P0(s) + "1 ~P1(s)� (�2 + �1) ~P3(s); (1d)

s ~PF (s) =(1� c)�1 ~P0(s) + (1� c)�2 ~P1(s)

+ �1 ~P2(s) + �2 ~P3(s); (1e)

s ~P0(s)�1=�(�1+"2+�) ~P0(s)+�2 ~P2(s)+� ~P4(s);
(2a)
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Figure 1. State transition diagram for reliability models related to: (a) System 1 and (b) System 2.

s ~P1(s)=�(�2+"1+�) ~P1(s)+�1 ~P3(s)+� ~P5(s); (2b)

s ~P2(s)="2 ~P0(s)+�2 ~P1(s)�(�2+�+�1) ~P2(s)

+� ~P6(s); (2c)

s ~P3(s) =�1 ~P0(s) + "1 ~P1(s)� (�1 + � + �2) ~P3(s)

+ � ~P7(s); (2d)

s ~P4(s) = � ~P0(s)� (�+ "2 + �1) ~P4(s); (2e)

s ~P5(s) = � ~P1(s)� (�+ "1 + �2) ~P5(s); (2f)

s ~P6(s) = � ~P2(s) + "2 ~P4(s)� (�+ �1) ~P6(s); (2g)

s ~P7(s) = � ~P3(s) + "1 ~P5(s)� (�+ �2) ~P7(s); (2h)

s ~PF (s) =�1 ~P2(s) + �2 ~P3(s) + �1 ~P4(s) + �2 ~P5(s)

+ �1 ~P6(s) + �2 ~P7(s): (2i)

Solving these two systems of equations leads to
~Pj(s) , which is not shown here due to the spacious
forms. The Laplace transform of the system reliability
is expressed by:

~R(s) =
X
j 6=F

~Pj(s): (3)

The mean time to failure of the system can be
achieved by evaluating ~R(s) at s = 0.

MTTF =
Z 1

0
R(t)dt = ~R(0): (4)

Therefore, the MTTF of two systems is obtained as:

MTTF1 =
f1(�1; �2; "1; "2; �1; �2; c)
g1(�1; �2; "1; "2; �1; �2; c)

; (5)

MTTF2 =
f2(�1; �2; "1; "2; �1; �2; �; �)
g2(�1; �2; "1; "2; �1; �2; �; �)

; (6)

in which functions f1 and g1 are de�ned in the Ap-
pendix and the functions f2 and g2 are too spacious to
be shown.

4. The steady-state availability

Considering N(t) be the state of the repairable system
at time t, then fN(t); t � 0g is a continuous-time
Markov process for availability models with the states
described in Tables 3 and 4 for Systems 1 and 2,
respectively.

According to the state transition diagrams shown
in Figure 2(a) and (b), the transition rate matrices are
respectively attained as follows:

Q3 =
�
A1 C1
D1 E1

�
; Q4 =

�
A2 C2
D2 E2

�
;

Table 3. The states of Markov process of steady-state
availability models related to system one.

State index Unit 1 status Unit 2 status

0 Working Warm standby
1 Warm standby Working
2 Working Under repair
3 Under repair Working
4 Warm standby Under repair
5 Under repair Warm standby
6 Under repair Waiting for repair
7 Waiting for repair Under repair
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Table 4. The states of Markov process of steady-state availability models related to System 2.

State index Unit 1 status Unit 2 status Switch status
0 Working Warm standby Good
1 Warm standby Working Good
2 Working Under repair Good
3 Under repair Working Good
4 Working Warm standby Under repair
5 Warm standby Working Under repair
6 Working Waiting for repair Under repair
7 Waiting for repair Working Under repair
8 Under repair Waiting for repair Good
9 Waiting for repair Under repair Good
10 Warm standby Waiting for repair Under repair
11 Waiting for repair Warm standby Under repair
12 Waiting for repair �rstly Waiting for repair after unit 1 Under repair
13 Waiting for repair after unit 2 Waiting for repair �rstly Under repair

Figure 2. State transition diagram for steady-state availability models related to: (a) System 1 and (b) System 2.

in which:

C1 =

2664 0 (1� c)�1 0 0
(1� c)�2 0 0 0

0 0 0 �1
0 0 �2 0

3775 ;
D1 =

26640 0 � 0
0 0 0 �
0 0 0 0
0 0 0 0

3775 ;
E1 =

2664�� 0 0 0
0 �� 0 0
�1 0 ��1 0
0 �2 0 ��2

3775 ;

C2 =

266666666664

0 0 0 0 0 0
0 0 0 0 0 0
0 �1 0 0 0 0
�2 0 0 0 0 0
0 0 0 �1 0 0
0 0 �2 0 0 0
0 0 0 0 0 �1
0 0 0 0 �2 0

377777777775
;

D2 =

26666664
0 0 �1 0 0 0 0 0
0 0 0 �2 0 0 0 0
0 0 � 0 0 0 0 0
0 0 0 � 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

37777775 ;
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E2 =

26666664
�(�1 + �) 0 0

0 �(�2 + �) 0
0 0 �(�+ "1)
0 0 0
� 0 0
0 � 0

0 � 0
0 0 �
0 0 "1�(�+ "2) "2 0
0 �� 0
0 0 ��

37777775 :
The corresponding balanced equations are given by the
two following systems of equations:�

�0 ::: �7
�
Q3 =

�
0 ::: 0

�
7X
j=0

�j = 1; (7)

�
�0 ::: �13

�
Q4 =

�
0 ::: 0

�
;

13X
j=0

�j = 1: (8)

The steady-state availability of System 1 is de�ned as:

A1 =
3X
j=0

�j : (9)

Therefore, the expression of the steady-state availabil-
ity of System 1 can be obtained explicitly through
solving Eq. (7):

A=
��1�2(�1+�2)(�1+�2+"2)(�2+�1+"1)

k1(�1; �2; "1; "2; �1; �2; c)
; (10)

where:

k1(�1; �2; "1; "2; �1; �2; c) =
3X
i=1

k1;i; (11a)

k1;1 =
�

((2�2+�)�1+��2)�2
2

+
�

((2�c)�2+�)�2
1 +

�
(2"1

+ �)�2 + �"1

�
�1 + ��2"1

�
�2

+ ��1�2(�1 + "1)
�
�2

1; (11b)

k1;2 =
���

(2� c)�2
2 + (2"2 + �)�2 + �"2

�
�1

+ ��2(�2 + "2)
�
�2

2 +
��

(2� 2c)�2
2

+
�
� + (2� c)"2

�
�2 + �"2

�
�2

1

+
��

� + (2� c)"1

�
�2

2 +
�

("1 + "2)�

+ 2"1"2

�
�2 + �"1"2

�
�1

+ ��2"1(�2 + "2)
�
�2

+ ��1�2(�1 + "1)(�2 + "2)
�
�1; (11c)

k1;3 = ��1�2�2(�2 + "2)(�1 + "1 + �2): (11d)

In the case of System 2, the steady-state availability is
determined by:

A2 =
7X
j=0

�j : (12)

Solving Eq. (8) and then substituting the resulting
answers in Eq. (12) gives the steady-state availability
of System 2 which is too ample to be shown here. How-
ever, a numerical example is presented in the following
section to calculate the steady-state availability of this
case.

5. Numerical examples

One way to obtain the results of reliability character-
istics is using the inverse Laplace transform which is
a tedious task. On the other hand, the corresponding
explicit expressions are also very spacious. Thus, an
e�cient numerical scheme called Runge-Kutta [34] is
employed herein to investigate the e�ects of system
parameters on the system reliability characteristics. It
should be noted that the reliability of Systems 1 and 2
is calculated from the following equations:

R1(t) =
3X
j=0

Pj(t); R2(t) =
7X
j=0

Pj(t);

in which Pj(t) related to Systems 1 and 2 is obtained
from the numerical solutions of dP (t)

dt = P (t)Q1

and dP (t)
dt = P (t)Q2, respectively. Furthermore, the

availability of Systems 1 and 2 is evaluated from
the two preceding equations in which relevant Pj(t)
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is determined numerically from dP (t)
dt = P (t)Q3 and

dP (t)
dt = P (t)Q4, correspondingly.

In the following numerical examples, the values of
system parameters used in [30] are considered. These
parameters are �1 = 0:01, �2 = 0:05, "1 = 0:002, "2 =
0:003, �1 = 0:2, and �2 = 0:5. Furthermore, � is set as
10.

5.1. Numerical analysis of System 1
The reliability and availability of System 1 with dif-
ferent values of parameter c are shown in Figure 3(a)
and (b), respectively. As depicted, this parameter has
considerable e�ect on both reliability and availability
of System 1, such that they increase with increasing
parameter c for a given time. Obviously, reliability
vanishes and availability approaches a constant value
named steady-state availability as time goes to in�nite.

In Figure 4(a) and (b), the MTTF and steady-
state availability of System 1 are respectively plotted
with respect to parameter c. From Figure 4(a), the
behavior of MTTF with parameter c is rising. When
c = 0, there is no e�ective switching, so the system
becomes a non-redundant system including unit one.
Thus, in this case, the MTTF of system equals the
expected value of unit one working time exponential
distribution, i.e. 1=�1 = 100. For c = 1, the switching

mechanism becomes perfect and the MTTF of system
equals 536.2 (days). With respect to Figure 4(b), it
can be seen that steady-state availability increases from
0.9894 to 0.9909 as parameter c varies from 0 to 1.

5.2. Numerical analysis of System 2
The reliability of System 2 with di�erent values of
parameters � and � is depicted in Figure 5(a) and (b),
respectively. As seen, the system reliability is sensitive
to the changes of these parameters and increases as
parameters � and � decrease and increase, respectively.
As time goes to in�nity, the system reliability tends to
zero. The availability of System 2 with di�erent values
of parameters � and � is correspondingly represented in
Figure 6(a) and (b). From this �gure, one can observe
that these two parameters have signi�cant e�ect on the
system availability. Decreasing parameter � leads to
higher values for system availability, which can be also
achieved by increasing parameter �. As time goes to
in�nity, the system availability tends to steady-state
availability.

In Figure 7(a) and (b), the MTTF of System 2
is plotted with respect to parameters � and �, respec-
tively. From Figure 7(a), the behavior of MTTF with
parameter � is descending. In the case of � = 0,
the switching mechanism becomes reliable and the

Figure 3. E�ect of parameter c on (a) reliability and (b) availability of System 1.

Figure 4. Variations of (a) MTTF and (b) steady-state availability of System 1 with parameter c.
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Figure 5. E�ect of parameters (a) � and (b) � on the reliability of System 2.

Figure 6. E�ect of parameters (a) � and (b) � on the availability of System 2.

Figure 7. Variations of MTTF of System 2 with parameters (a) � and (b) �.

MTTF of system equals 536.2 (days). With increasing
parameter �, the system turns to be a non-redundant
system consisting of unit one. Therefore, the MTTF of
system tends to the expected value of unit one working
time exponential distribution which is equal to 100
(days). In addition, for a given value of parameter �,
the system MTTF intensi�es as parameter � increases.
Figure 7(b) indicates that the behavior of MTTF is as-
cending with respect to parameter �. When � = 0, the
switching mechanism will not be repaired after the �rst
failure. In this case, the MTTF of system equals 100.4,
109.3, and 210.4 (days) for � = 0:5, � = 0:05, and
� = 0:005, respectively. With increasing parameter �,
the switching mechanism becomes reliable. Therefore,

the MTTF of system tends to 536.2 (days). Moreover,
for a �xed value of parameter �, the system MTTF
declines as parameter � increases.

The steady-state availability of System 2 ver-
sus parameters � and �, respectively, is graphically
illustrated in Figure 8(a) and (b). As shown, the
behavior of steady-state availability is descending with
parameter � and is ascending with parameter �. In
the case of � = 0, which is equivalent to the case
of considerably increasing parameter �, the switch-
ing mechanism becomes reliable, and the steady-state
availability of system equals 0.9911. As previously
observed, the steady-state availability of System 1
equals 0.9909 for c = 1. This deviation is due to the
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Figure 8. Variations of steady-state availability of System 2 with parameters (a) � and (b) �.

reboot delay parameter. With increasing parameter �,
the steady-state availability of System 1 also converges
to 0.9911. In the case of � = 0, which is equivalent
to the case of signi�cantly increasing parameter �,
the steady-state availability of System 2 equals zero.
The deviation between the steady-state availability of
System 1 in the case of c = 0 and this case is owing
to the reboot delay parameter, too. With decreasing
parameter �, the steady-state availability of System 1
vanishes. In Figure 8(a), considering a constant value
for parameter �, the system steady-state availability
increases with increasing parameter �. In Figure 8(b),
for a �xed value of parameter �, the system steady-
state availability declines as parameter � gets larger.

5.3. Comparison of reliability characteristics
between Systems 1 and 2

In this section, comparisons concerning the reliability,
availability, MTTF, and steady-state availability of the
two systems are made. At �rst, parameters c, �,
and � are set as 0.8, 0.05, and 0.2, respectively, and
the other parameters are �xed as mentioned above.
The reliability and availability of systems are depicted
in Figure 9(a) and (b), respectively. In the case of
reliability, System 2 is preferred, while in the case of
availability, System 1 is dominant. The MTTF and
steady-state availability of systems are represented in

Table 5. MTTF and steady-state availability of System 1
and 2.

System MTTF A

1 231.5089 0.9906
2 233.2412 0.9725

Table 5. It can be seen that System 2 has a greater
MTTF, whereas the steady-state availability of System
1 is more than that of System 2.

Then, in order to compare the MTTF and steady-
state availability of two systems, the values of systems
parameters are �xed as mentioned above, and in each
case, one of the parameters is variable. Numerical
results of MTTF and steady-state availability are
presented in Tables 6 and 7, respectively.

Finally, it is assumed that the values of all
parameters except c and � are �xed as mentioned
above. By replacing the parameters in the equations
obtained for MTTF and steady-state availability of two
systems, one can arrive at equations shown in Box II.

By equating Eqs. (13) and (14) and solving them
numerically, Figure 10(a) is plotted. For all of the
points on the curve, MTTF of two systems is the same.
In Region 1, the MTTF of System 1 is higher than
that of System 2; in Region 2, the opposite behavior is
observed. It can be seen that by increasing parameter

Figure 9. (a) Reliability and (b) availability of System 1 and System 2.
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MTTF1 =
2000(0:0001c2 + 0:0012852c+ 0:00646380)

�0:1c2 + 0:129276
; (13)

MTTF2 =
100(� + 8:39673)(� + 1:21525)(� + 0:26834)(� + 0:23899)

(� + 8:40618)(� + 1:15384)(� + 0:50143)(� + 0:02509)
; (14)

A1 =
2154600

2177626� 3175c
; (15)

A2 =
3:42857(� + 8:38493)(� + 1:21120)(� + 0:25209)(� + 0:21049)

(� + 1:51492)(� + 0:24494)(� + 0:20000)(�2 + 9:04646� + 25:12183)
: (16)

Box II

Table 6. Comparison for MTTF of the two systems.

Comparison result
Range of �1

0 < �1 < 0:0010218 MTTF1 > MTTF2

�1 > 0:0010218 MTTF2 > MTTF1

Range of �2

�2 > 0 MTTF2 > MTTF1

Range of "1

0 < "1 < 0:0236240 MTTF2 > MTTF1

0:0236240 < "1 < 0:3892404 MTTF1 > MTTF2

"1 > 0:3892404 MTTF2 > MTTF1

Range of "2

0 < "2 < 0:0211665 MTTF2 > MTTF1

0:0211665 < "2 < 2:700003 MTTF1 > MTTF2

"2 > 2:700003 MTTF2 > MTTF1

Range of �1

0 < �1 < 0:0007722 MTTF2 > MTTF1

0:0007722 < �1 < 0:1584121 MTTF1 > MTTF2

�1 > 0:1584121 MTTF2 > MTTF1

Range of �2

0 < �2 < 0:0012769 MTTF2 > MTTF1

0:0012769 < �2 < 0:1583571 MTTF1 > MTTF2

�2 > 0:1583571 MTTF2 > MTTF1

Range of �
0 < � < 0:0508775 MTTF2 > MTTF1

� > 0:0508775 MTTF1 > MTTF2

Range of �
0 < � < 0:1960735 MTTF1 > MTTF2

� > 0:1960735 MTTF2 > MTTF1

Range of c
0 < c < 0:8028090 MTTF2 > MTTF1

0:8028090 < c < 1 MTTF1 > MTTF2

c, the interval for parameter �, in which System 2 is
dominant, decreases. Similarly, by equating Eqs. (15)
and (16) and solving them numerically, Figure 10(b) is
graphed. For all of the points on the curve, two systems
have equal steady-state availability. In Region 1,

Table 7. Comparison for steady-state availability of the
two systems.

Comparison result
Range of �1

�1 > 0 A1 > A2

Range of �2

�2 > 0 A1 > A2

Range of "1

"1 > 0 A1 > A2

Range of "2

"2 > 0 A1 > A2

Range of �1

�1 > 0 A1 > A2

Range of �2

�2 > 0 A1 > A2

Range of �
0 < � < 0:0011017 A2 > A1

� > 0:0011017 A1 > A2

Range of �
0 < � < 2:3710927 A1 > A2

� > 2:3710927 A2 > A1

Range of c
0 < c < 1 A1 > A2

Range of �
0 < � < 0:2539104 A2 > A1

� > 0:2539104 A1 > A2

System 1 is preferred, while System 2 is dominant in
Region 2.

Based on the performed study, some signi�cant
corollaries of this research can be attained as special
cases listed below:

� Case 1: When "1 = "2 = 0, Systems 1 and 2 turn
to be cold standby repairable systems consisting
of two dissimilar units and an imperfect switching
mechanism;

� Case 2: When "1 = "2 = 0, c = 1, and � = 0, the
systems turn to be cold standby repairable systems
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Figure 10. Comparison for (a) MTTF and (b) steady-state availability of two systems.

consisting of two dissimilar units and a perfect
switching mechanism;

� Case 3: When "1 = "2 = 0, �1 = �2 = 0, and
� = 0, the systems turn to be cold standby non-
repairable systems consisting of two dissimilar units
and an imperfect switching mechanism;

� Case 4: When "1 = "2 = 0, �1 = �2 = 0, � = 0, c =
1, and � = 0, the systems turn to be cold standby
non-repairable systems consisting of two dissimilar
units and a perfect switching mechanism;

� Case 5: When "1 = "2 = 0, �1 = �2 = �, and
�1 = �2 = �, the systems turn to be cold standby
repairable systems consisting of two identical units
and an imperfect switching mechanism.

6. Conclusion

In this study, two cases of imperfect switching mecha-
nism were investigated for a warm standby repairable
system consisting of two dissimilar units and one
repairman. In case 1, it was assumed that in case the
active unit fails, it can be immediately replaced by the
available warm standby unit with coverage probability
c. In case 2, however, it was assumed that the failure
time and the repair time of the switching mechanism
are exponentially distributed. In this case, so long as
the switching mechanism is in working state, the failed
active unit is immediately replaced by the available
warm standby unit. Switching mechanism failure does
not necessarily lead to the system failure, because no
switching may be required during the remainder of the
system mission time, or the switching mechanism may
be repaired before the time of the active unit failure.
This case of switching mechanism has priority in repair
than the units. In addition, times to failure and times
to repair of active and standby units were assumed to
be exponentially distributed. Using Markov process
theory and Laplace transforms, the explicit expressions
of the MTTF and the steady-state availability of two
systems were derived analytically. Sensitivity analyses
of the reliability and availability characteristics of each

system with respect to the switching mechanism pa-
rameters were performed through solving a numerical
example. It was illustrated that the reliability and
availability indexes are very sensitive to the changes of
the switching mechanism parameters. Moreover, two
systems were compared based on di�erent reliability
and availability characteristics.

Assuming exponential assumption for time to
failure and time to repair is often too restrictive to
most actual engineering systems consisting of units
with increasing hazard rate functions. Erlang dis-
tribution has superior characteristics than those of
exponential distribution by o�ering a wide variety of
di�erent increasing hazard functions. Therefore, for
future research, we can consider Erlang distribution
for time to failure and time to repair of units and
case two of switching mechanism. Moreover, in real-
world applications, estimating the model parameters
is usually accompanied with uncertainty. Therefore,
various forms of uncertainty, such as fuzzy and interval
uncertainties, can be incorporated into the system
parameters. This subject will be conducted in our
future work.
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Appendix

The de�nitions of f1 and g1 are given below.
f1(�1; �2;"1; "2; �1; �2; c) = (�1 + �2 + "2)�2

2

+
�
c�2

1 +
�
(1 + c2)�1 + c�2 + "1

�
�1

+ (�2 + "2)(�1 + "1)
�
�2

+ c�1(�1 + �2)("1 + �1); (A.1)

g1(�1; �2;"1; "2; �1; �2; c) = �1

�
(�1 + �2 + "2)�2

+ (�1 + "1)�1 +
�
(1� c2)�2 + "2

�
�1

+ "1(�2 + "2)
�
�2: (A.2)
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