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Abstract. The trustworthy service selection is a typical Multi-Attribute Group Decision-
Making (MAGDM) problem. The aim of this paper is to develop a novel method for
MAGDM with Triangular Intuitionistic Fuzzy Numbers (TIFNs) and apply it to the
trustworthy service selection problem. Firstly, we de�ne the mean-index, variance-index,
and standard deviation of TIFN. Moreover, a new distance measure of TIFNs is proposed,
and the corresponding proofs are given. Based on these concepts of mean-index and
standard deviation, a ranking method for TIFNs is developed considering the risk preference
of Decision Maker (DM). Further, according to the crisp relative closeness coe�cient
matrix with respect to the normalized TIFNs decision matrix, we use entropy measure
to obtain attribute weights. The DMs' weights are calculated by the similarity between
the individual and the average decisions. Then, a decision procedure is described to solve
the MAGDM under triangular intuitionistic fuzzy environment. Finally, a real trustworthy
service selection example is analyzed to verify the practicality and e�ectiveness of the
developed method.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In the ever-increasingly business competitiveness, elec-
tronic commerce has become a main stream practice in
global business operations. Online service trading usu-
ally takes place between parties who are autonomous
in an environment where the buyer often does not have
enough information about the seller and goods. Many
scholars think that trust is a prerequisite to successful
trading. Therefore, it is very important that the buyers
can identify the most trustworthy seller. The real-life
trustworthy service evaluation often involves multiple
di�erent types of attributes (or indices, factors). It
is not easy for Decision-Makers (DM) or experts to
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give the precise numerical assessment information.
Therefore, trustworthy service selection problems may
be ascribed to a kind of fuzzy Multi-Attribute Group
Decision-Making (MAGDM) problems.

The concept of fuzzy numbers, introduced by
Dubois and Prade [1], has received a great deal of
attention due to its capability of representing fuzzy
opinions [2]. Various methods have been developed
to solve Multi-Attribute Decision-Making (MADM)
problems with fuzzy numbers [3]. Intuitionistic Fuzzy
Number (IFN) [4-6] is a special case of Intuitionistic
Fuzzy Set (IFS) [7-10]. As an extension of fuzzy
number, IFN may express the imprecise or uncertain
decision information more abundantly and exibly
compared to the fuzzy set [11]. Recently, the Trian-
gular Intuitionistic Fuzzy (TIF) Numbers (TIFNs) [12-
27], as a kind of typical IFNs, have attracted more and
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more considerations through a large amount of litera-
ture. A number of achievements on TIFNs have been
proposed. Roughly, these achievements may be divided
into two types: ranking methods of TIFNs and their
applications to decision making problems [13-21] and
aggregation operators of TIFNs and their applications
to decision making problems [22-27], which are briey
reviewed in the following, respectively.

The �rst type is the ranking of TIFNs. Li [13]
presented a ranking method on the basis of the concept
of a ratio of the value index to the ambiguity index and
applied it to MADM problems in which the ratings of
alternatives on attributes are expressed with TIFNs.
Li et al. [14] de�ned the value-index and ambiguity-
index based ranking method for TIFNs. Zhang et
al. [15] de�ned the distance measure of TIFNs and gave
a ranking method based on TOPSIS. Wan et al. [16-
18] introduced the concepts of the weighted possibility
mean, variance, and covariance of TIFNs, and they
proposed some ranking methods of TIFNs and applied
them to deal with MADM problems. Based on the
possibility method, Wan and Dong [19] developed a
method for MAGDM based on TIFNs with incomplete
preference information. In addition to other methods,
Nan et al. [20] investigated the ranking order relations
of TIFNs, which are applied to matrix games with
payo�s of TIFNs.

The second type is the aggregation operators of
TIFN. Zhang and Liu [21] de�ned the concepts of TIFN
in which the membership and the non-membership
degrees are denoted by triangular fuzzy number. Then,
the weighted geometric averaging operator and the
weighted arithmetic average operator are presented
and used for the decision-making area. Robinson and
EC [22] investigated Triangular Intuitionistic Fuzzy
Ordered Weighted Averaging (TIFOWA) operator and
the Triangular Intuitionistic Fuzzy Hybrid Aggregation
(TIFHA) operator. Chen and Li [23] developed a
new distance measure between two TIFNs to aid in
determining attribute weights, and they presented the
Weighted Arithmetic Averaging operator on TIFNs
(TIFN-WAA), and then proposed a dynamic MADM
model with TIFNs. Wang et al. [24] proposed new
arithmetic operations and logic operators for TIFNs
and applied them to fault analysis of a printed circuit
board assembly system. Yu and Xu [25] de�ned
the concepts of Intuitionistic Multiplicative Triangular
Fuzzy (IMTF) set and intuitionistic multiplicative tri-
angular fuzzy number, and then discussed their opera-
tional laws and some desirable properties. Based on the
operational laws, they developed a series of aggregation
operators for IMTF information. Combining the fuzzy
measure and Choquet integral, Wan and Dong [26]
de�ned the TIF Choquet integral aggregation operator
and investigated some desirable properties for this
operator.

Based on the above, the existing research stud-
ies have mainly focused on ranking method and ag-
gregation operators of TIFNs. The aforementioned
methods are very appropriate for solving the MADM
and MAGDM problems with TIFNs. However, some
limitations of the above methods are listed as follows:

(i) The existing ranking methods of TIFNs [14,15] do
not take into account the risk preference of DM.
In fact, the risk preference of DM may a�ect the
�nal ranking order of fuzzy numbers [3]. Thus, it
is necessary to capture the DM's risk preference
during the process of ranking TIFNs;

(ii) There is no su�cient amount of literature data
on the method for determining DMs' weights and
attribute weights under TIFN environments. Wan
et al. [27] proposed an extended VIKOR method
for MAGDM in which the attributes values are
TIFNs, and the attribute weights and DM weights
are completely unknown, but the decision informa-
tion may be lost in the process of calculation.

In actual trustworthy service evaluation, the product
quality of a seller can be assessed by a TIFN ((3.1,
4.2, 9.2); 0.6, 0.1), which means that the minimum
value of product quality is 3.1, the maximum value is
9.2, and the most possible value is 4.2. Meanwhile,
the maximum membership degree for the most possible
value is 0.6, the minimum non-membership degree is
0.1, and the indeterminacy is 0.1. Moreover, it is very
di�cult for DM to accurately give the attribute weights
due to various subjective and objective reasons. Thus,
the trustworthy service selection is a typical MAGDM
problem with TIFNs and incomplete preference infor-
mation.

To overcome the aforementioned limitations, in
this paper, we devote to solving the following four
issues:

1. De�ne a new distance measure for TIFNs;
2. Develop a novel ranking method for TIFNs consid-

ering the risk preferences of DMs;
3. Determine the attribute weights using the entropy

measure;
4. Calculate the DMs' weights employing the similar-

ity between the individual decisions and the average
decisions. Thereby, a new method is proposed
for solving MAGDM with TIFNs and applied to
trustworthy service selection.

The rest of this paper is organized as follows.
Section 2 introduces basic concepts and de�nitions
of TIFNs, and a new distance measure for TIFNs is
de�ned. Section 3 gives the de�nitions of mean-index,
variance-index as well as standard deviation of TIFNs.
Hereby, a new ranking method of TIFNs is developed.
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Section 4 describes the MAGDM problems with TIFNs,
determines the attribute weights and DMs weights, and
then proposes the corresponding decision procedure. A
trustworthy service selection example and a comparison
analysis are given in Section 5. Finally, we conclude the
paper in Section 6.

2. Basic concepts of triangular intuitionistic
fuzzy numbers

2.1. The de�nition and operations of TIFNs
In this section, the concepts and operations of TIFNs
are introduced as follows.

De�nition 1 [13]. A TIFN ~a = ((a; b; c);u~a; v~a) is
a special IFS on real number set, R, whose member-
ship and non-membership functions are, respectively,
de�ned as follows and depicted in Figure 1:

�~a(x) =

8>>><>>>:
(x� a)u~a=(b� a) if a � x < b
u~a if x = b
(c� x)u~a=(c� b) if b < x � c
0 otherwise

(1)

and:

�~a(x) =

8>>><>>>:
[b�x+�~a(x�a)]=(b�a) if a � x < b
�~a if x = b
[x�b+�~a(c�x)]=(c�b) if b < x � c
1 otherwise

(2)

where values u~a and �~a represent the maximum de-
gree of membership and the minimum degree of non-
membership, respectively, such that they satisfy the
following conditions: 0 � u~a � 1, 0 � �~a � 1,
0 � u~a + �~a � 1. Let �~a(x) = 1 � �~a(x) � �~a(x)
which is called as IF index of element x in ~a. It is the
degree of indeterminacy of element x in ~a.

TIFN ~a = ((a; b; c);u~a; �~a) may describe an ill-
known quantity, which is approximately equal to b.

Figure 1. a-cut set of membership function and �-cut set
of membership function.

That is to say, the most likely value is b with degree u~a
of membership and degree �~a of non-membership.

It is easy to see that �~a(x) + �~a(x) = 1 for
any x 2 R if u~a = 1 and �~a = 0. Hence, TIFN
~a = ((a; b; c);u~a; �~a) degenerates to ~a = ((a; b; c); 1; 0),
which is just about a TFN. Therefore, the concept of
the TIFN is a generalization of that of the TFN.

De�nition 2 [13]. Let ~a1 = ((a1; b1; c1);u~a1 ; �~a1)
and ~a2 = ((a2; b2; c2);u~a2 ; �~a2) be two TIFNs, and �
be a real number. Some arithmetical operations are
de�ned as follows:

1. ~a1 + ~a2 = ((a1 + a2; b1 + b2; c1 + c2); minfu~a1 ; u~a2g;
maxf�~a1 ; �~a2g);

2. ~a1 � ~a2 = ((a1 � a2; b1 � b2; c1 � c2); minfu~a1 ; u~a2g;
maxf�~a1 ; �~a2g);

3. �~a1 =

(
((�a1; �b1; �c1);u~a1 ; �~a1) if � > 0
((�c1; �b1; �a1);u~a1 ; �~a1) if � < 0

2.2. Cut sets of TIFNs
De�nition 3 [12]. (�; �)-cut set of TIFN ~a =
((a; b; c);u~a; �~a) is a crisp subset of R, which is de�ned
as ~a�;� = fxj�~a(x) � �; �~a(x) � �g, where 0 � � � u~a,
�~a � � � 1, and 0 � �+ � � 1.

De�nition 4 [12]. �-cut set of TIFN ~a =
((a; b; c);u~a; �~a) is a crisp subset of R, which is de�ned
as ~a� = fxj�~a(x) � �g, where 0 � � � u~a. Denoted
by ~a� = [L~a(�); R~a(�)], it can be calculated as follows:

[L~a(�); R~a(�)] =
�
a+

�(b� a)
u~a

; c� �(c� b)
u~a

�
: (3)

De�nition 5 [12]. �-cut set of TIFN ~a =
((a; b; c);u~a; �~a) is a crisp subset of, which is de�ned
as ~a� = fxj�~a(x) � �g, where �~a � � � 1. Denoted by
~a� = [L~a(�); R~a(�)], it can be calculated as follows:

[L~a(�); R~a(�)]

=
�

(1��)b+(���~a)a
1� �~a

;
(1��)b+(���~a)c

1� �~a

�
: (4)

2.3. A new distance measure of TIFNs
To deal with attribute value with TIFNs, several
distance measures between TIFNs have been proposed
and researched in recent years. Based on the Haus-
dor� distance proposed by Grzegorzewski [28], Wan et
al. [27] proposed the following two distance measures
between two TIFNs:

The Hamming distance:
1. dh(~a1; ~a2) = 1

3 (ja1 � a2j+ jb1 � b2j+ jc1 � c2j) +
max(ju~a1 � u~a2 j; j�~a1 � �~a2 j);
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The Euclidean distance:

2. de(~a1; ~a2) =
q

1
3 [(a1 � a2)2 + (b1 � b2)2 + (c1 �

c2)2 + max((u~a1 � u~a2)2; (�~a1 � �~a2)2]1=2.

But, these above distance measures have some limita-
tions.

Example 1. Consider the three TIFNs: ~a1 =
((0:1; 0:5; 0:8); 1; 0), ~a2 = ((0:1; 0:5; 0:8); 0; 1), and ~a3 =
((0:1; 0:5; 0:8); 0; 0). Obviously, the di�erence between
~a1 and ~a2 is larger than the di�erence between ~a1
and ~a3. However, according to the distance measures
de�ned by Wan et al. [27], we have dh(~a1; ~a2) =
dh(~a1; ~a3) and de(~a1; ~a2) = de(~a1; ~a3), which are not
reasonable.

Wan and Dong [26] de�ned a new hamming
distance between two TIFNs:

dh1 (~a1; ~a2) =
1
6

[j(1+u~a1��~a1)a1�(1+u~a2��~a2)a2j
+ j(1 + u~a1 � �~a1)b1 � (1 + u~a2 � �~a2)b2j
+ j(1 + u~a1 � �~a1)c1 � (1 + u~a2 � �~a2)c2j]:

Although it can di�erentiate the above three
TIFNs, it also has some disadvantages. If the max-
imum membership degree and the minimum non-
membership degree of some TIFNs are equal, then the
distances between them are the same.

Example 2. Consider the three TIFNs: ~a4 =
((0:1; 0:5; 0:8); 0:1; 0:1), ~a5 = ((0:1; 0:5; 0:8); 0:3; 0:3),
and ~a6 = ((0:1; 0:5; 0:8); 0:5; 0:5). By using the distance
measure de�ned by Wan and Dong [26], we have
dh1(~a4; ~a6) = dh1(~a4; ~a5) = dh1(~a6; ~a5). Obviously, the
distance method also has shortcomings.

To overcome the dilemma of the above distance
measures, we provide a new distance measure based on
the method of Wang and Xin [29].

De�nition 6. Let ~a1 = ((a1; b1; c1);u~a1 ; �~a1) and
~a2 = ((a2; b2; c2);u~a2 ; �~a2) be two TIFNs. The distance
between ~a1 and ~a2 is de�ned as follows:

d (~a1; ~a2) =
1
6

(ja1 � a2j+ jb1 � b2j+ jc1 � c2j)

+
1
8

(ju~a1 � u~a2 j+ j�~a1 � �~a2 j)

+
1
4

max(ju~a1 � u~a2 j; j�~a1 � �~a2 j): (5)

If u~ai = 1 and �~ai = 0, then the TIFNs in De�nition 1
reduce to Triangular Fuzzy Numbers (TFNs). More-
over, Eq. (5) reduces to Hamming distance of TFNs.

Theorem 1. The above distance, d(~a1; ~a2), satis�es
the following properties:

(i) 0 � d(~a1; ~a2) � 1;
(ii) d(~a1; ~a2) = 0 if and only if ~a1 = ~a2;
(iii) d(~a1; ~a2) = d(~a2; ~a1);
(iv) If ~a3 = ((a3; b3; c3);u~a3 ; �~a3) is any TIFN, then

d(~a1; ~a3) � d(~a1; ~a2) + d(~a2; ~a3).

Proof. Obviously, the proposed distance measure
meets (i)-(iii) of Theorem 1. We need only to prove
(iv).

It is easy to see that:

ju~a1 � u~a3 j � ju~a1 � u~a2 j+ ju~a2 � u~a3 j;
and:

j�~a1 � �~a3 j � j�~a1 � �~a2 j+ j�~a2 � �~a3 j;
so we have:

max(ju~a1 � u~a3 j; j�~a1 � �~a3 j)
2

� max(ju~a1 � u~a2 j; j�~a1 � �~a2 j)
2

+
max(ju~a2 � u~a3 j; j�~a1 � �~a3 j)

2
:

By the same reason, we can get:

ja1 � a3j � ja1 � a2j+ ja2 � a3j;
jb1 � b3j � jb1 � b2j+ jb2 � b3j;

and:

jc1 � c3j � jc1 � c2j+ jc2 � c3j:
Hence,

d(~a1; ~a3) � d(~a1; ~a2) + d(~a2; ~a3):

That is to say, the proposed distance measure satis�es
(iv) of Theorem 1.

For Example 1, by using Eq. (5), we have
d(~a1; ~a2) = 0:5 and d(~a1; ~a3) = 0:375. Thus,
d(~a1; ~a2) > d(~a1; ~a3). It is expected that the distance
between ~a1 and ~a2 is larger than the distance between
~a1 and ~a3, since they are ordered as ~a1 > ~a3 >
~a2 according to ranking method proposed by Li et
al. [13,14]. Similarly, for Example 2, by using Eq. (5),
we have d(~a4; ~a5) = 0:1, and d(~a4; ~a6) = 0:2. Thus,
d(~a4; ~a5) < d(~a4; ~a6), which is in agreement with
the ranking method [13,14]. Therefore, the proposed
distance measure is more reasonable.
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2.4. Weighted average operator of TIFNs
De�nition 7 [26]. For a set of TIFNs ~ai (i = 1;
2; � � � ; n) that has associated importance weight vector
w = fw1; w2; � � � ; wngT with wi 2 [0; 1] and

Pn
i=1 wi =

1, we call:

TIF-WA (~a1; ~a2; � � � ; ~an) =
nX
i=1

wi~ai

=

  
nX
i=1

wiai;
nX
i=1

wibi;
nX
i=1

wici

!
;

min
1�i�nfu~aig; max

1�i�nf�~aig
!
; (6)

the Triangular Intuitionistic Fuzzy Weighted Average
operator (TIF-WA).

3. A new value index of TIFNs and ranking
method

3.1. The mean value of TIFNs
In this subsection, analogous to the idea of Nan et
al. [20], the mean value index of a TIFN is de�ned
as follows.

De�nition 8. Let ~a� and ~a� be a �-cut set and a
�-cut set of a TIFN ~a = ((a; b; c);u~a; �~a), respectively,
and m(~a�) and m(~a�) be the average values of ~a� and
~a� , i.e.:

m(~a�)=
1
2

[L~a(�)+R~a(�)]=
2�b+(u~a��)(a+c)

2u~a
; (7)

and:

m (~a�) =
1
2

[L~a(�) +R~a(�)]

=
2(1� �)b+ (� � �~a)(a+ c)

2(1� �~a)
: (8)

Then, the mean values of the membership and non-
membership functions are, respectively, de�ned as:

M�(~a) =
u~�Z
0

m (~a�) f(�)d�; (9)

and:

M� (~a) =
1Z

�~�

m (~a�) g(�)d�; (10)

where function f(�) is non-negative and non-
decreasing on the interval [0; u~a] and satis�es the
conditions: f(0) = 0 and

R u~a

0 f(�)d� = �~a; function
g(�) is non-negative and non-increasing on the interval
[�~a; 1] and satis�es the conditions: g(1) = 0 andR 1
�~a
g(�)d� = 1� �~a.

De�nition 9. For TIFN ~a = ((a; b; c);u~a; �~a), the
mean-index is de�ned as:

M (~a) =
1
2

[M� (~a) +M� (~a)] : (11)

Obviously, M(~a) synthetically reects the value of
membership and non-membership functions.

Remark 1. If f(�) and g(�) are, respectively, chosen
as follows:

f(�) =
2�
u~a

(� 2 [0; u~a]); (12)

and:

g(�) =
2(1� �)
1� �~a

(� 2 [�~a; 1]): (13)

According to Eqs. (7) and (12), the mean value of the
membership function of TIFN ~a is calculated as follows:

M� (~a) =
u~�Z
0

2�b+ (u~a � �)(a+ c)
2u~a

2�
u~a
d�

=
1
6

(a+ 4b+ c)u~a: (14)

By Eqs. (8) and (13), the mean value of the non-
membership function of TIFN ~a is calculated as follows:

M� (~a) =
1Z

�~�

2(1��)b+(���~a)(a+c)
2(1� �~a)

2(1��)
1� �~a

d�

=
1
6

(a+ 4b+ c)(1� �~a): (15)

Further, by Eqs. (11), (14), and (15), we have:

M (~a) =
1
12

(a+ 4b+ c)(1� �~a + u~a): (16)

According to the condition 0 � u~a + �~a � 1, it is
directly derived from Eqs. (14) and (15) that 1

6 (a +
4b+ c)u~a � 1

6 (a+ 4b+ c)(1� �~a), i.e., M�(~a) �M�(~a).
Thus, the mean values of the membership and non-
membership functions of TIFN ~a = ((a; b; c);u~a; �~a)
can be expressed as interval-valued form ~M(~a) =
[M�(~a);M�(~a)].

3.2. The variance value and standard
deviation value of TIFNs

De�nition 10. The variance indices of the mem-
bership and non-membership functions for TIFN ~a =
((a; b; c);u~a; �~a) are, respectively, de�ned as:

V� (~a) =
u~�Z
0

[m (~a�)�M� (~a)]2 f(�)d�; (17)
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and:

V� (~a) =
1Z

v~�

[m (~a�)�M� (~a)]2 g(�)d�: (18)

De�nition 11. For TIFN ~a = ((a; b; c);u~a; �~a), the
variance-index is de�ned as:

V (~a) =
1
2

[V� (~a) + V� (~a)] : (19)

Obviously, V (~a) synthetically reects the variance
value of membership and non-membership functions.

Remark 2. Weighting functions f(�) and g(�) are
chosen as Eqs. (12) and (13), respectively. According
to Eqs. (7), (8), and (16)-(18), we have:

V� (~a)=
�

1
36

(a+4b+c)2(1�u~a)2+
1
72

(2b�a�c)2
�
u~a;

(20)

and:

V�(~a)=
�

1
36

(a+4b+c)2(�~a)2+
1
72

(2b�a�c)2
�
(1��~a):

(21)

Further, by Eqs. (19)-(21), we have:

V (~a)=
1
72

(a+4b+c)2 �u~a(1�u~a)2+(1��~a)(�~a)2�
+

1
144

(2b� a� c)2(1 + u~a � �~a): (22)

De�nition 12. The standard deviation indices of the
membership and non-membership functions for TIFN
~a = ((a; b; c);u~a; �~a) are, respectively, de�ned as:

D� (~a) =
q
V� (~a)

=

s�
1
36

(a+4b+c)2(1�u~a)2+
1
72

(2b�a�c)2
�
u~a;

(23)

and:

D� (~a) =
p
V� (~a)

=

s�
1
36

(a+4b+c)2(�~a)2+
1
72

(2b�a�c)2
�
(1��~a):

(24)

De�nition 13. For TIFN ~a = ((a; b; c);u~a; �~a), the
standard deviation index is de�ned as:

D (~a) =
1
2

[D� (~a) +D� (~a)] : (25)

Similarly, D(~a) synthetically reects the standard
deviation value of membership and non-membership
functions.

3.3. A novel ranking method of TIFNs
In this subsection, a novel order relation of TIFNs is
de�ned as follows.

De�nition 14. Let M(~a) and D(~a) be the compre-
hensive mean-index and standard deviation index of
TIFN ~a = ((a; b; c);u~a; �~a). The rank index for TIFN
~a is de�ned as follows:
R� (~a) = M (~a)� �D (~a) ; (26)

where � 2 [0; 1] is a weight, which represents the DM's
risk preference. � 2 [0; 1=2) shows that the DM prefers
risk; � 2 (1=2; 1] shows that the DM prefers keeping
conservative; � = 1=2 shows that the DM maintains
neutrality. Therefore, the rank index may reect the
DM's subjective attitude to the TIFN.

Let ~a1 = ((a1; b1; c1);�~a1 ; �~a1) and ~a2 = ((a2; b2;
c2);�~a2 ; �~a2) be two TIFNs. According to their com-
prehensive mean-index and standard deviation index,
we propose a new lexicographic ranking method for
TIFNs, which can be summarized as follows:

(i) If R�(~a1) < R�(~a2) for the same given �, then ~a1
is smaller than ~a2, denoted by ~a1 < ~a2;

(ii) If R�(~a1) > R�(~a2), then ~a1 is bigger than ~a2,
denoted by ~a1 > ~a2;

(iii) If R�(~a1) = R�(~a2), then ~a1 and ~a2 represent the
same information, denoted by ~a1 = ~a2.

Example 3. Consider two TIFNs:

~a1 = ((0:3; 0:45; 0:9); 0:9; 0:1)

and:
~a2 = ((0:2; 0:5; 0:8); 0:9; 0:1):

Intuitively, the ranking order is not equal. However,
by method [14], we have V�(~a1) = V�(~a1) = 0:405,
V�(~a2) = V�(~a2) = 0:405, A�(~a1) = A�(~a1) = 0:081,
A�(~a2) = A�(~a2) = 0:081, and obviously, V�(~a1) =
V�(~a2) and A�(~a1) = A�(~a2); therefore, the ranking
order is ~a1 = ~a2. Namely, the ranking method [14]
cannot distinguish these fuzzy numbers. According to
De�nition 1, the ranking order is ~a1 < ~a2 intuitively.
By the proposed method in this paper, we get R�(~a1) =
0:45 � 0:058�, R�(~a2) = 0:45 � 0:047�, obviously,
R�(~a1) < R�(~a2); thus, the ranking order is also
~a1 < ~a2, which shows the validation of the proposed
method in this paper.

4. A new method for MAGDM with TIFNs
using the mean-index and variance-index
ranking procedures

In this section, we propose a new method for solving
MAGDM with unknown weight information under TIF
environment.
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4.1. The description of MAGDM problems
with TIFNs

MAGDM is the procedure to �nd the best alternative
among a set of feasible alternatives that are char-
acterized by usually multiple conicting attributes.
Let D = fD1; D2; � � � ; Dpg be a group of Decision-
Makers (DMs) that have associated importance weight
vector u = fu1; u2; � � � ; upgT with uk 2 [0; 1] andPp
k=1 uk = 1. Let S = fS1; S2; � � � ; Smg be a discrete

set of alternatives, and A = fa1; a2; � � � ; ang be a
set of attributes. The attribute weight vector given
by DM Dk is wk = (wk1 ; wk2 ; � � � ; wkn)T , such that
wkj 2 [0; 1] and

Pn
j=1 w

k
j = 1. Suppose that the

preference value of alternative Si (i = 1; 2; � � � ;m)
with respect to attribute aj (j = 1; 2; � � � ; n) is a
TIFN ~xkij = ((ak

0
ij ; bk

0
ij ; ck

0
ij );u~xkij

; �~xkij
), given by DM Dk

(k = 1; 2; � � � ; p). Thus, the MAGDM problem with
TIFNs can be expressed concisely in the matrix format
as ~Ak = (~xkij)m�n (k = 1; 2; � � � ; p).

Since di�erent physical dimensions may be mea-
sured in di�erent ways, matrix ~Ak = (~xkij)m�n needs
to be normalized into matrix ~Rk = (~rkij)m�n, where
~rkij = ((akij ; bkij ; ckij);u~rkij

; �~rkij
). In this paper, in order to

make the ranges of normalized TIFNs belong to [0; 1],
we employ the following normalized transformation:

~rkij =

  
ak
0
ij

c+j
;
bk
0
ij

c+j
;
ck
0
ij

c+j

!
;u~rkij

; �~rkij

!
(i = 1; 2; � � � ;m; j 2 B); (27)

and:

~rkij =

  
a�j
ck0ij

;
a�j
bk0ij

;
a�j
ak0ij

!
;u~rkij

; �~rkij

!
;

(i = 1; 2; � � � ;m; j 2 C); (28)

where:

c+j = maxfck0ij ji = 1; 2; � � � ;mg;
a�j = minfak0ij ji = 1; 2; � � � ;mg;
u~rkij

= u~xkij
; v~rkij

= �~xkij
:

B and C are the subscript sets of bene�t and cost
attribute sets, respectively.

4.2. The approach to determining attributes
weights

Entropy is based on the concept of probability and
measures the discrimination power of attributes when
applied to MADM [30]. The bigger the amount of
information is in each attribute, the less the entropy

is, and vice versa. In other words, if the entropy
measure for a given attribute is low, this attribute
will be given to a higher weight, and vice versa. To
deal with attribute value with TIFNs, fuzzy decision
matrix, ~Rk = (~rkij)m�n, should be transformed into a
crisp matrix. According to normalized decision matrix,
~Rk = (~rkij)m�n, we identify that + =< (1; 1; 1); 1; 0 >
and � =< (0; 0; 0); 0; 1 > are the largest TIFNs and
the smallest TIFNs. The reasons are:

1. Since ~Rk = (~rkij)m�n is a normalized decision
matrix, it is easy to de�ne + as the largest TIFN
and � as the smallest TIFN;

2. + and � can be regarded as a uni�ed bound for
all individual decision matrices.

By using Eq. (5), the separation measures of ~rkij
from the largest TIFNs are given as:

d
�
~rkij ; 

+� =
1
6

(jakij � 1j+ jbkij � 1j+ jckij � 1j)

+
1
8

(ju~rkij
� 1j+ j�~rkij

� 0j)

+
1
4

max(ju~rkij
� 1j; j�~rkij

� 0j): (29)

Similarly, the separation measures of ~rkij value from the
smallest TIFNs are given as:

d
�
~rkij ; 

�� =
1
6

(akij+b
k
ij+c

k
ij)+

1
8

(u~rkij
+j�~rkij

�1j)

+
1
4

max(u~rkij
; j�~rkij

� 1j): (30)

The relative closeness coe�cient of TIFN ~rkij is de�ned
as:

hkij =
d
�
~rkij ; �

�
d
�
~rkij ; �

�
+ d

�
~rkij ; +

� : (31)

Hence, according to Eq. (31), normalized decision
matrix, ~Rk = (~rkij)m�n, can be transformed into crisp
relative closeness coe�cient matrix, Hk = (hkij)m�n.

For matrix Hk, the entropy measure of attribute
aj for DM Dk can be de�ned as:

ekj = � 1
ln(m)

mX
i=1

[hkij ln(hkij)] (j = 1; 2; � � � ; n):
(32)

Therefore, entropy weight wj of attribute aj for DM
Dk can be obtained as follows:

wkj = � 1� ekj
nP
j=1

1� ekj
(j = 1; 2; � � � ; n): (33)

From Eq. (33), attribute weight vector wk = (wk1 ; wk2 ;� � � ; wkn)T can be obtained for DM Dk.
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4.3. Determining the weights of DMs
In this section, we will elaborate on determining DM
weights from another point of view. Inspired by the
literatures [29,31], based on the mean, the best decision
should be the average of all individual decisions. The
average decision is de�ned as:

~R� =
�
~r�ij
�
m�n ; (34)

where ~r�ij = 1
p
Pp
k=1 ~rkij (i 2 m; j 2 n). By comparing

the individual decision with the average decision, we
can give the de�nition of similarity of the individual
decision with respect to the average decisions.

De�nition 15. In a given MAGDM with TIFNs, the
similarity of the individual decision given by DM Dk
with respect to the average decision is de�ned as:

Sk =
1
mn

mX
i=1

nX
j=1

�
1� d �~r�ij ; ~rkij�� ; (35)

where d(~r�ij ; ~rkij) is the distance between ~r�ij and ~rkij
de�ned in De�nition 6. Clearly, 0 � Sk � 1.

Generally, a DM's opinion is more important if
his/hers opinion is more similar to group's opinion.
The larger the value of Sk is, the more important
the opinion of DM Dk is. Thus, Sk can measure the
importance of DM Dk. After normalization, weight uk
of DM Dk can be obtained by:

uk =
SkPp
k=1 Sk

(k = 1; 2; � � � ; p): (36)

4.4. The method for MAGDM with TIFNs
Below, we develop a new method for solving the
MAGDM problems with unknown attribute weights
and DM weights under TIF environment, which can
be summarized in detail as follows:

- Step 1. Form a group of DMs D = fD1; D2; � � � ;
Dpg and identify the set of alternatives S = fS1; S2;� � � ; Smg and the set of attributes A = fa1; a2; � � � ;
ang;

- Step 2. DM Dk gives his decision matrix, ~Ak =
(~xkij)m�n;

- Step 3. Normalize TIFN decision matrix, ~Ak =
(~xkij)m�n, into matrix ~Rk = (~rkij)m�n by Eqs. (27)
and (28);

- Step 4. Determine the weight vector of attributes
wk = (wk1 ; wk2 ; � � � ; wkn)T for DM Dk using the
entropy method developed in Section 4.3;

- Step 5. Compute the individual overall attribute
value of alternative Si for DM Dk by Eq. (6) as
follows:

~Eki = TIF-WA
�
~aki1; ~a

k
i2; � � � ; ~akin�

=

  
nX
j=1

wkj a
k
ij ;

nX
j=1

wkj b
k
ij ;

nX
j=1

wkj c
k
ij

!
;

min
1�j�nfu~aijg; max

1�j�nf�~aijg
!
: (37)

- Step 6. Calculate the weight vector of DMs u =
fu1; u2; � � � ; upgT using Eqs. (34)-(36);

- Step 7. Utilize the TIF-WA operator:

~Ei = TIF-WA
�

~E1
i ; ~E2

i ; � � � ; ~Epi
�

=
pX
k=1

uk ~Eki ; (38)

to aggregate all ~Eki (k = 1; 2; � � � ; p) into a collective
value for alternative Si;

- Step 8. Calculate mean-index, M( ~Ei), and stan-
dard deviation index, D( ~Ei), of each overall at-
tribute value, ~Ei, for alternative Si by Eqs. (16)
and (25);

- Step 9. Choose DM's preference information,
�, and compute ranking index, R�( ~Ei), of each
alternative by using Eq. (26);

- Step 10. Rank the alternatives according to ranking
indices, R�( ~Ei), and select the best one.

5. A trustworthy service selection example
and comparative analyses

5.1. Trustworthy service selection example
Trustworthy service selection recommends the most
trustworthy service suppliers based on the objective
trust indictors. Online supplier selection is a common
problem for many customers. When buying a desired
item from an online supplier, it is an important pre-
condition to assess the trustworthiness of the supplier.
Trust has been identi�ed as a fundamental factor
in human relationships enabling cooperation to take
place. Trust is an e�cient mechanism to foster the co-
operation between suppliers and customers, especially
for online service selection based on electronic market,
and to avoid potential transaction risks. The proposed
method in this paper provides an e�ective framework
for dealing with the selection of one supplier from a list
of interested providers. In the following, a trustworthy
supplier selection example will illustrate application of
the proposed method.

A consumer desires to select a trustworthy seller
to buy clothes. After preliminary screening, three
candidate sellers, Handuyishe (S1), Niman (S2), and
Liebo (S3), which are Taobao's clothing brand, remain
for further evaluation. Based on the detailed seller
ratings, the decision-making committee assesses the
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Table 1. The TIFN decision matrix given by D1.

a1 a2 a3 a4 a5

S1 ((3.1,4.2,9.2);0.6,0.1) ((3.3,5.1,7.0);0.5,0.4) ((5.2,7.3,8.4);0.5,0.2) ((6.1,8.0,9.1);0.7,0.3) ((4.6,5.4,6.3);0.5,0.3)

S2 ((4.2,5.2,10);0.5,0.2) ((5.3, 6.1,7.3);0.4.0.2) ((4.3,5.3,6.2);0.5,0.1) ((6.0,7.2,8.1);0.6,0.2) ((3.1,4.5,10);0.6,0.3)

S3 ((2.3,4.1,5.3);0.5,0.3) ((6.1,8.2,10);0.7,0.1) ((4.1,6.2,8.3);0.5,0.1) ((4.2,6.5,10);0.5,0.5) ((4.4,5.1,6.2);0.6,0.2)

Table 2. The TIFN decision matrix given by D2.

a1 a2 a3 a4 a5

S1 ((5.0,6.0,10);0.3,0.1) ((4.0,5.5,7.2);0.6,0.4) ((6.5,7.1,8.0);0.5,0.2) ((4.5,7.3,8.2);0.7,0.3) ((4.0,5.7,6.8);0.4,0.2)

S2 ((3.4,4.5,7.8);0.5,0.2) ((4.5, 5.6,6.7);0.5.0.3) ((3.4,4.5,10);0.3,0.1) ((4.6,5.7,7.8);0.4,0.4) ((5.3,6.4,10);0.7,0.1)

S3 ((4.2,5.4,7.5);0.5,0.2) ((5.6,6.8,10);0.7,0.1) ((4.4,5.6,6.8);0.6,0.2) ((5.4,6.6,10);0.4,0.3) ((3.4,6.5,8.6);0.5,0.3)

Table 3. The TIFN decision matrix given by D3.

a1 a2 a3 a4 a5

S1 ((5.3,6.4,7.9);0.4,0.2) ((4.3,5.5,6.7);0.6,0.2) ((3.5,6.7,7.8);0.3,0.4) ((2.6,5.8,6.9);0.5,0.1) ((4.4,5.0,6.0);0.3,0.3)

S2 ((3.4,5.0,10);0.4,0.3) ((4.5,6. 6,7.0);0.5.0.1) ((2.4,5.0,6.6);0.4,0.4) ((3.6,5.7,8.0);0.6,0.3) ((4.3,7.4,10);0.3,0.4)

S3 ((5.2,6.4,8.5);0.7,0.1) ((3.6,5.8,10);0.6,0.4) ((5.4,6.0,10);0.4,0.3) ((2.4,8.6,10);0.6,0.3) ((4.4,5.0,7.6);0.5,0.1)

Table 4. The TIFN decision matrix given by D4.

a1 a2 a3 a4 a5

S1 ((5.3,6.4,7.9);0.4,0.4) ((3.7,5.2,7.1);0.5,0.2) ((2.5,4.7,6.6);0.3,0.4) ((3.8,4.8,7.9);0.7,0.3) ((4.9,5.8,6.3);0.3,0.4)

S2 ((5.4,8.5,10);0.4,0.2) ((6.4, 7.6,8.8);0.4.0.4) ((5.4,6.5,10);0.6,0.4) ((3.4,5.7,7.9);0.7,0.3) ((5.3,6.7,10);0.5,0.4)

S3 ((2.7,4.8,5.9);0.6,0.2) ((6.3,8.0,10);0.6,0.2) ((3.4,4.6,6.8);0.7,0.2) ((5.4,7.6,10);0.4,0.3) ((3.1,6.4,7.7);0.5,0.1)

four candidate sellers according to �ve trust factors:
product quality (a1), service attitude (a2), technology
security (a3), website design embodies appearance and
ease use (a4), and shipping speed (a5). Four DMs adopt
the ten-mark system to evaluate the three candidate
sellers based on �ve attributes. Using statistical meth-
ods, the ratings of the candidate sellers with respect to
the attributes can be represented as TIFNs, shown in
Tables 1-4.

- Step 1 and Step 2. Four DMs evaluate the candi-
date sellers with TIFNs, and the decision matrixes
~Ak = (~xkij)m�n (k = 1; 2; � � � ; p) of DMs are listed in
Tables 1-4;

- Step 3. By Using Eqs. (27) and (28), normalized
TIFN decision matrixes, ~Rk = (~rkij)m�n (k =
1; 2; � � � ; p), of DMs are obtained and listed in
Tables 5-8;

- Step 4. Determine the largest TIFNs and the
smallest TIFNs in decision matrix ~Rk as follows:

+ =< (1; 1; 1); 1; 0 >; � =< (0; 0; 0); 0; 1 > :

By using Eqs. (29)-(31), relative closeness coe�cient
matrixes, Hk = (hkij)m�n, of DMs are given as in
Table 9. Employed Eqs. (32) and (33), the attribute

weight vectors for each DMs can be calculated as
follows:

w1 = (0:2324; 0:5330; 0:0476; 0:1354; 0:1516)T ;

w2 = (0:0254; 0:3971; 0:0712; 0:1783; 0:3280)T ;

w3 = (0:3011; 0:0276; 0:3603; 0:0851; 0:2258)T ;

w4 = (0:1413; 0:1649; 0:4866; 0:0042; 0:2031)T :

- Step 5. According to Eq. (37), we can utilize
the TIF-WA operator to derive the attribute values
(~aki1; ~aki2; � � � ; ~akin) into overall attribute value ~Eki ,
listed in Table 10;

- Step 6. Using Eq. (34), the average of all individual
decisions is obtained and listed in Table 11. Then,
the weight vector of DMs can be calculated using
Eqs. (35) and (36) as:

u = f0:2447; 0:2492; 0:2523; 0:2538gT :
- Step 7. According to Eq. (38), we can utilize

the TIF-WA operator to aggregate all ~Eki (k =
1; 2; � � � ; p) of each DM into collective value ~Ei for
each alternative as follows:

~E1 = ((0:396; 0:570; 0:735); 0:3; 0:4);
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Table 5. The normalized TIFN decision matrix given by D1.

a1 a2 a3 a4 a5

S1
((0.31,0.42,0.92);

0.6,0.1)
((0.33,0.51,0.7);

0.5,0.4)
((0.52,0.73,0.84);

0.5,0.2)
((0.61,0.8,0.91);

0.7,0.3)
((0.46,0.54,0.63);

0.5,0.3)

S2
((0.42,0.52,1);

0.5,0.2)
((0.53, 0.61,0.73);

0.4.0.2)
((0.43,0.53,0.62);

0.5,0.1)
((0.6,0.72,0.81);

0.6,0.2)
((0.31,0.45,1);

0.6,0.3)

S3
((0.23,0.41,0.53);

0.5,0.)
((0.61,0.82,1);

0.7,0.1)
((0.41,0.62,0.83);

0.5,0.1)
((0.42,0.65,1);

0.5,0.5)
((0.44,0.51,0.62);

0.6,0.2)

Table 6. The normalized TIFN decision matrix given by D2.

a1 a2 a3 a4 a5

S1
((0.5,0.6,1);

0.3,0.1)
((0.4,0.55,0.72);

0.6,0.4)
((0.65,0.71,0.8);

0.5,0.2)
((0.45,0.73,0.82);

0.7,0.3)
((0.4,0.57,0.68);

0.4,0.2)

S2
((0.34,0.45,0.78);

0.5,0.2)
((0.45,0.56,0.67);

0.5.0.3)
((0.34,0.45,1);

0.3,0.1)
((0.46,0.57,0.78);

0.4,0.4)
((0.53,0.64,1);

0.7,0.1)

S3
((0.42,0.54,0.75);

0.5,0.2)
((0.56,0.68,1);

0.7,0.1)
((0.44,0.56,0.68);

0.6,0.2)
((0.54,0.66,1);

0.4,0.3)
((0.34,0.65,0.86);

0.5,0.3)

Table 7. The normalized TIFN decision matrix given by D3.

a1 a2 a3 a4 a5

S1
((0.53,0.64,0.79);

0.4,0.2)
((0.43,0.55,0.67);

0.6,0.2)
((0.35,0.67,0.78);

0.3,0.4)
((0.26,0.58,0.69);

0.5,0.1)
((0.44,0.5,0.6);

0.3,0.3)

S2
((0.34, 0.5,1);

0.4,0.3)
((0.45,0.66,0.7);

0.5.0.1)
((0.24,0.5,0.66);

0.4,0.4)
((0.36, 0.57, 0.8);

0.6,0.3)
((0.43,0.74,1);

0.3,0.4)

S3
((0.52,0.64,0.85);

0.7,0)
((0.36, 0.58,1);

0.6,0.4)
((0.54,0.6,1);

0.4,0.3)
((0.24, 0.86,1);

0.6,0.3)
((0.44,0.5,0.76);

0.5,0.1)

Table 8. The normalized TIFN decision matrix given by D4.

a1 a2 a3 a4 a5

S1
((0.53,0.64,0.79);

0.4,0.4)
((0.37,0.52,0.71);

0.5,0.2)
((0.25,0.47,0.66);

0.3,0.4)
((0.38,0.48,0.79);

0.7,0.3)
((0.49,0.58,0.63);

0.3,0.4)

S2
((0.54, 0.85,1);

0.4,0.2)
((0.64, 0.76,0.88);

0.4.0.4)
((0.54,0.65,1);

0.6,0.4)
((0.34,0.57,0.79);

0.7,0.3)
((0.53,0.67,1);

0.5,0.4)

S3
((0.27,0.48,0.59);

0.6,0.2)
((0.63, 0.8,1);

0.6,0.2)
((0.34,0.46,0.68);

0.7,0.2)
((0.54,0.76,1);

0.4,0.3)
((0.31,0.64,0.77);

0.5,0.1)

Table 9. The relative closeness coe�cient matrices of four DMs.

D1 D2

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

S1 0.64 0.53 0.69 0.74 0.54 0.63 0.58 0.67 0.68 0.57

S2 0.64 0.58 0.60 0.70 0.62 0.58 0.58 0.59 0.55 0.75

S3 0.49 0.79 0.65 0.60 0.61 0.60 0.76 0.62 0.63 0.60

D3 D4

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

S1 0.62 0.62 0.52 0.60 0.51 0.57 0.58 0.46 0.63 0.51

S2 0.58 0.64 0.48 0.61 0.58 0.68 0.60 0.67 0.63 0.64

S3 0.72 0.67 0.62 0.67 0.62 0.57 0.72 0.62 0.65 0.62
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Table 10. Overall attribute value ~Eki .

DM1 DM2 DM3 DM4

S1 ((0.38,0.54,0.79);0.4,0.4) ((0.43,0.60,0.74);0.3,0.4) ((0.41,0.62,0.74);0.3,0.4) ((0.36,0.52,0.68);0.3,0.4)
S2 ((0.50, 0.59,0.81);0.3,0.3) ((0.47,0.58,0.82);0.3.0.4) ((0.32,0.56,0.83);0.3,0.4) ((0.55,0.70,0.98);0.4,0.4)
S3 ((0.48,0.68,0.86);0.5,0.5) ((0.47,0.65,0.92);0.4,0.3) ((0.49,0.61,0.91);0.4,0.3) ((0.37,0.56,0.74);0.4,0.3)

Table 11. The average of all individual decisions.

a1 a2 a3 a4 a5

S1
((0.47,0.57,0.87);

0.3,0.4)
((0.38,0.53,0.70);

0.5,0.4)
((0.44,0.65,0.81);

0.3,0.4)
((0.42,0.65,0.80);

0.5,0.3)
((0.45,0.55,0.64);

0.3,0.4)

S2
((0.41, 0.58,0.95);

0.4,0.3)
((0.52,0.65,0.83);

0.3.0.4)
((0.39,0.53,0.71);

0.3,0.4)
((0.44, 0.61, 0.8);

0.4,0.4)
((0.45, 0.63,1);

0.3,0.4)

S3
((0.36,0.52,0.68);

0.5,0.3)
((0.54,0.72,1);

0.6,0.3)
((0.43,0.56,0.80);

0.4,0.3)
((0.44, 0.73,1);

0.4,0.5)
((0.38,0.58,0.75);

0.5,0.3)

Table 12. The ranking order with di�erent DM's risk preference.

� R�(S1) R�(S2) R�(S3) Ranking
orders

Best
candidates

0.0 0.2557 0.2823 0.2852 S3 � S2 � S1 S3

0.1 0.2359 0.2605 0.2620 S3 � S2 � S1 S3

0.2 0.2161 0.2386 0.2387 S3 � S2 � S1 S3

0.3 0.1963 0.2167 0.2155 S2 � S3 � S1 S2

0.4 0.1765 0.1948 0.1922 S2 � S3 � S1 S2

0.5 0.1567 0.1729 0.1690 S2 � S3 � S1 S2

0.6 0.1368 0.1510 0.1457 S2 � S3 � S1 S2

0.7 0.1171 0.1291 0.1225 S2 � S3 � S1 S2

0.8 0.0972 0.1072 0.0992 S2 � S1 � S3 S2

0.9 0.0774 0.0854 0.0760 S2 � S1 � S3 S2

1.0 0.0576 0.0634 0.0527 S2 � S1 � S3 S2

~E2 = ((0:462; 0:609; 0:868); 0:3; 0:4);

~E3 = ((0:451; 0:624; 0:857); 0:4; 0:5):

- Step 8. In terms of Eqs. (16) and (25), the mean-
index and standard deviation index of ~Ei can be
computed as follows:

M( ~E1) = 0:256; D( ~E1) = 0:198;

M( ~E2) = 0:282; D( ~E2) = 0:219;

M( ~E3) = 0:285; V ( ~E3) = 0:233:

- Step 9. Using Eq. (26), the ranking indices for the
TIFNs ~Ei (i = 1; 2; 3) are obtained as follows:

R�( ~E1) = 0:256� 0:198�;

R�( ~E2) = 0:282� 0:219�;

R�( ~E3) = 0:285� 0:233�:

- Step 10. The ranking indexes of each seller and

the ranking order with di�erent DM's preference
information � are listed in Table 12.

From Table 12, if the DMs are optimistic (i.e.,
0:5 < � � 1), it can be seen that the best candidate
is S2. If the DMs are neutral (i.e., � = 0:5), the
best candidate is still S2. However, if the DMs are
pessimistic (i.e., 0 � � < 0:5), the best candidate
changes from S2 to S3. Obviously, when the DM's
risk preference value is di�erent, the corresponding
ranking order of alternatives is also not completely
the same. Thus, the proposed method is rationality
and exibility.

5.2. Comparison analysis with the existing
methods

To further illustrate the superiority of the method
proposed in this paper, we adopt the method proposed
by Wan et al. [27] to solve the above trustworthy service
selection problem. The steps are given as follows:

- Step 1. Utilize Steps 1 and 2, which are described by
Wan et al. [27], to derive the individual weight vectors
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of attributes wk = (wk1 ; wk2 ; � � � ; wkn)T (k = 1; 2; 3; 4)
given by four DMs. The results are as follows:

w1 = (0:1605; 0:5891; 0:0482; 0:1757; 0:0265)T ;

w2 = (0:0387; 0:3680; 0:1728; 0:2248; 0:2356)T ;

w3 = (0:3883; 0:0277; 0:2200; 0:1657; 0:1982)T ;

w4 = (0:2167; 0:1738; 0:3768; 0:0198; 0:2128)T :

- Step 2. Determine the weight vector of DMs v
= f�1; �2; � � � ; �pgT combining the evidence theory
with Bayes approximation, which is proposed by
Wan et al. [27]. Accordingly, we can have v =
f0:2449; 0:2490; 0:2524; 0:2537gT . Thus, the collec-
tive attribute weight vector is obtained by Eq. (38)
as follows:

w = (0:2012; 0:2897; 0:1941; 0:1468; 0:1682)T :

- Step 3. According to Steps 5-8, which are described
by Wan et al. [27], the group utility values and
individual regret values of each alternative can be
calculated as follows:

S(S1) = 0:5917; S(S2) = 0:6508;

S(S3) = 0:4972; R(S1) = 0:1753;

R(S2) = 0:1994; S(S3) = 0:1221:

Thus, S+ = 0:4972, S� = 0:6508, R+ = 0:1221, and
R� = 0:1994;

- Step 4. By Steps 9 and 10, which are de�ned in
method [27], the closeness of each alternative to the
ideal solution can be calculated as in Table 13;

- Step 5. Rank the alternatives in accordance with
di�erent coe�cients of decision mechanism. The
ranking order is summarized in Table 13.

From Table 13, we can obtain the same ranking
order S2 � S1 � S3 for three alternatives regardless
of the parameter value of risk preference. The ranking
order obtained by the extended VIKOR [27], S2 �
S1 � S3, is just a special case of that obtained by
the method proposed in this paper (i.e., the case of
0:8 � � � 1 as summarized in Table 13). Therefore,
the result obtained by the proposed method in this
paper meets the actual circs better.

We compare the proposed method with the
method called \VIKOR method", introduced by Wan
et al. [27]. There are some similarities and di�erences
between the proposed method and VIKOR method.
Their weights of attributes and DMs are completely
unknown, and their idea of determining the weights of
attributes and DMs is the same. However, the proposed
method has some advantages:

(i) In determination of attribute weights stage, they
both use entropy measure to determine the
weights of attributes. The weight vector is
based on the crisp relative closeness coe�cient
matrix directly derived from TIFNs matrix in
this paper, whereas the weight vector of Wan et
al. [27] is based on the crisp weighted possibility
mean matrix defuzzi�ed from the fuzzy decision
matrix, in which the elements are the weighted
possibility mean interval of the TIFNs. That
is to say, the VIKOR method gets the crisp
weighted possibility mean matrix through two
transformations, whereas the proposed method
gets the crisp relative closeness coe�cient matrix
through one transformation. As we all know, any
transformation process may easily result in losses
and distortions of information [32]. Thus, the
decision information of the VIKOR method may
be lost more than that of the proposed method in
determining attribute weights;

(ii) In determination of DM weights stage, from

Table 13. The ranking order with di�erent DM's preference information by using the extended VIKOR [27].

� Q(S1) Q(S2) Q(S3) Ranking
orders

Best
candidates

0.0 0.6885 1 0 S2 � S1 � S3 S2

0.1 0.6812 1 0 S2 � S1 � S3 S2

0.2 0.6739 1 0 S2 � S1 � S3 S2

0.3 0.6666 1 0 S2 � S1 � S3 S2

0.4 0.6593 1 0 S2 � S1 � S3 S2

0.5 0.6520 1 0 S2 � S1 � S3 S2

0.6 0.6447 1 0 S2 � S1 � S3 S2

0.7 0.6374 1 0 S2 � S1 � S3 S2

0.8 0.6301 1 0 S2 � S1 � S3 S2

0.9 0.6228 1 0 S2 � S1 � S3 S2

1.0 0.6155 1 0 S2 � S1 � S3 S2
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point of view of the consistency importance, their
ideas are the same. Wan et al. [27] combines
the evidence theory with Bayes approximation
to give DM weights, but his calculation is com-
plicated. Moreover, the evidence body of the
VIKOR method is obtained also based on the
possibility mean of TIFN, while this paper just
needs to calculate the similarity of the individual
decisions with respect to the average decisions. As
compared with the VIKOR method, this method
has relatively high accuracy with minor computing
complexity.

Moreover, the proposed method can be extended to
solve the MAGDM problems with other fuzzy numbers,
such as trapezoidal intuitionistic fuzzy numbers, trian-
gular fuzzy numbers, interval numbers, etc. Our future
work is to apply the proposed method to di�erent
MAGDM problems, such as cloud service selection,
credit risk analysis, etc.

6. Conclusion

With the rapid development of modern economy and
the increasingly updated technology of internet, the
real-world trustworthy service evaluation has become
very complex. This paper �rstly formulates the trust-
worthy service selection problem as a type of MAGDM
with TIFNs. Thereby, a new method for MAGDM with
TIFN and the completely unknown weights of DMs and
attributes are proposed. The proposed method has
some merits. First, we de�ne mean-index, variance-
index, and standard deviation of TIFN, and we propose
a new ranking method of TIFNs by taking into account
the DMs' risk preference. Second, a new distance
measure of TIFNs is de�ned and the corresponding
proofs are given. Third, since the weights of attributes
and DMs are directly derived from decision matrix
with TIFNs, the information loss is minor in this
MAGDM process. Then, this paper has less computing
complexity. Finally, a comparison analysis is provided
to illustrate the validity and reasonableness of the
method proposed in this paper.

How to elicit the evaluation information of TIFNs
is a critical issue before applying the proposed method.
In near future, we will employ the expert system,
evidence reasoning, fuzzy logic, behavior statistics, and
data discovery as well as knowledge engineering to
study this issue.
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