
Scientia Iranica E (2017) 24(2), 778{793

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
www.scientiairanica.com

Credibility-based fuzzy mathematical programming for
bi-objective capacitated partial facility interdiction
with forti�cation and demand outsourcing model

A. Azadeha;�, R. Kokabia and D. Hallajb

a. School of Industrial and Systems Engineering, College of Engineering, University of Tehran, Iran.
b. Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

Received 7 February 2015; received in revised form 25 January 2016; accepted 9 April 2016

KEYWORDS
Facility interdiction;
Forti�cation;
Fuzzy mathematical
programming;
Chance constrained
programming;
Multi-Objective
Mixed-Integer Non-
Linear Programming
(MOMINLP);
Genetic algorithm.

Abstract. The concepts of forti�cation and partial interdiction have not been considered
concurrently in previous studies. In this paper, we added the forti�cation and partial
interdiction concepts to interdiction problem for the �rst time; the reason is that in
interdiction situations, defenders decide to protect some important facilities according to
their budgets, and attackers like to destroy most unprotected facilities according to their
resources, and therefore, to cripple the defenders' systems. Moreover, we use the advantages
of credibility-based fuzzy mathematical programming and introduce an integrated model
based on uncertainty contexts. In this bi-objective model, decision-maker gives satisfaction
degrees for constraints, and then we use the interactive possibility model to solve the
bi-objective model with varying con�dence levels. These con�dence levels specify the
knowledge of attacker and defender about themselves. In addition, we propose Genetic
Algorithm (GA) to solve the suggested model. In the experiments, we generate problem
instances and solve them by Multi-Objective Mixed-Integer Non-Linear Programming
(MOMINLP) and the proposed genetic algorithm for various settings.

© 2017 Sharif University of Technology. All rights reserved.

1. Motivation and signi�cance

Many military or service facilities are subject to dis-
ruptions; thus, planning to relieve the impacts of
facility interdictions is very important in the context
of facility location. Today, facility interdiction problem
together with considering the techniques to mitigate
the attacker disruptions are crucial factors in locating
the sensitive facilities. In this paper, we propose the
facility interdiction model with partial interdiction and
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forti�cation of the facilities with outsourcing demands
concurrently, which have not been taken into account
before; it is because the information is secure, and the
attackers and defenders play a game in interdiction
problems. On the one hand, the defenders like to
protect their important facilities; on the other hand,
the attackers like to cripple the defenders' systems
according to their limited attacking budgets instead of
destroying the whole of facilities. Thus, taking these
problems into account, it is very important to consider
the partial interdiction with forti�cation. However,
in the interdiction problem, due to the high level of
security and absence of adequate historical data, most
parameters are uncertain and predicting the correct
value for them is impossible; thus, we have applied
fuzzy mathematical programming approaches in this
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paper, which have not been considered before.

2. Introduction

Many military or service facilities are subject to the
decrease in capacity due to natural disasters or in-
tentional disruptions. In the last few years, topics
of resilience, forti�cation of facilities, and security
have become important in the OR community. In
the context of intentional attacks, recent observations
about world events show that facilities are vulnerable to
terrorist attacks; thus, planning to relieve the impacts
of facility interdictions can be an important issue for
both private companies and public organizations. Sev-
eral models are proposed for this situations [1-3]. By
investigating the past terrorist attacks, we can conclude
that terrorists applied unknown tactics and techniques
to disrupt speci�c targets; thus, determining these
targets is more important for defenders than decoding
attacker's techniques. Usually, attackers wait for tra�c
times, and then attack their targets to optimize their
resources in the best possible way to inict maximum
damage on defenders [4,5].

In modern attacks, the attackers are mostly inter-
ested in causing anarchy rather than in inicting the
serious damage on the defender's system, because the
anarchic system cripples the whole system and causes
bad psychological e�ect on it. On the other hand, the
attackers have a limited budget, and allocation of the
budget to destroy few facilities, not thoroughly yet,
cannot cripple the system. Hence, attackers tend to
disturb many parts of facilities rather than disturb the
entire facilities. Designing critical system components
for defenders is a critical factor as response to such
terrorist acts and trends. The defender can mitigate
the disruption of attacker when the possibility of failure
is calculated in the design phase of the defender system.
Based on this motivation, most models have been de-
veloped to decrease the post-attack e�ects of attacker.
Most studies in this context have proposed rational
attacks through the interdiction models. These models
are constructed from the attackers' prospective to de-
termine the worst attack, and then defender is entered
to decrease the post-attack functionality. These models
usually use the Stackelberg game for developing the
bi-level or tri-level systems. The Stackelberg game
was �rst introduced in [6]. The structure of models
using the Stackelberg game is twofold. First, in the
upward level, the attacker tries to strike maximum
damage to the defender's system, then in the downward
level problem, defender minimizes the post-attack costs
levied on the system [7,8].

In recent research works on the interdiction mod-
els, the concept of protection/forti�cation has been
added to interdiction models and has designed the
resilient systems on behalf of the defender against the

intelligent attacker. In these models, the roles of de-
fender and attacker in Stackelberg game are exchanged.
First, in an upward level, the defender protects some
of the facilities from attacks, and then attacker in the
downward level attacks the system and his objective is
to inict the maximum damage on the defenders sys-
tem. Hence, in forti�cation models, the defender plays
the leadership role and attacker plays a follower role [9].

In the concept of facility interdiction, there are
few research works that have added the partial interdic-
tion to the facility interdiction problems. In this paper,
we have used this concept in our interdiction model. In
partial interdiction, the performance of facilities does
not necessarily end up in the attacker's disruption,
but the capacity is reduced according the intensity of
attacks [10]. Thus, we applied the multi-level attacks,
such that the attacker can choose between them to
disrupt the facilities. Also, we assigned the budget
to attacker, and he must search for the best scenario
to inict the maximum damage on the defender's
system. In the proposed model, we assume that if
the capacity of system is reduced due to the attacks
of the attacker, the unmet demand is outsourced by
the external suppliers.

Most models for interdiction facilities use the bi-
level programming and apply the Stackelberg game
to determine their scenarios for post-attack and pre-
attack decisions. In this models, it is assumed that the
attacker knows the structure of defender's system and
attacks them intelligently. But today, in the real world,
the level of security in defenders and attackers' systems
is high and attackers do not know the critical parts of
defender systems, even if they know what is the critical
parts of defenders system, but they do not know with
what degree these parts are protected by defenders.
Thus, the attacker mostly desires to attack many
of the defender's facilities to reduce their capacities
rather than attack few parts of facilities entirely. It
increases the attacker's reliability for inicting the
maximum damage on defender's system. It seems that
considering this assumption that attacker is intelligent
and applying the bi-level programming, correction is
not guaranteed. We must apply the integrated model
to this situation.

In this paper, we used bi-objective model to
formulate interdiction problem and integrated concepts
of partial interdiction and forti�cation in capacitated
budget constraints with outsourcing unmet demands.
Also, we used the multi-level attacks in our model. In
the bi-objective model, there are two objectives that
contain the objectives of the defender and attacker.
In the attacker's objective function, the objective is
to maximize the damage inicted on the defender
system. This model assumes that if attacker inicts
maximum damage, then what optimum scenario the
defender will encounter. Thus, the defender's objec-
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tive function is to minimize the �xed charged facility
location and shipment costs with outsourcing costs.
It is obvious that in the interdiction problem, most
parameters, such as demands, costs, and budgets,
are uncertain; predicting correct values for them is
impossible. Uncertainty parameters can signi�cantly
inuence the entire performance of defender reactions
to attacks, hence, neglecting it during the construction
of model imposes high risks on defenders. Then, we
applied the context of uncertainty to the parameters
of our model. This model encompasses the actual
conditions in interdiction models. In the literature of
facility interdiction, there are few works that incor-
porate the issue of uncertainty in their models, and
all of them have applied stochastic programming ap-
proaches. However, the absence of adequate historical
data for interdiction parameters is obvious and makes
the use of this approach unreasonable in the real life
cases. To overcome this inadequacy, we employed
fuzzy mathematical programming approaches in the
facility interdiction model design. Fuzzy mathematical
programming is a good tool to manage the uncertainty
that comes from absence of knowledge in estimating
the actual values of parameters. This paper proposes a
new bi-objective credibility-based fuzzy mathematical
programming model for partial interdiction problem
with forti�cation to deal with epistemic uncertainty in
the model parameters resulting from lack of knowledge.

The rest of this paper is organized as follows. In
the next section, the background of facility interdiction,
forti�cation, partial interdiction, and multi-objective
linear programming approaches is described. In Sec-
tion 3, the proposed model and its assumptions are
described, and then the fuzzy mathematical model for
the stated problem is presented. Interactive solution
methodology for solving our interdiction problem is
also presented in Section 4. In this section, we
apply the TH method and propose genetic algorithm.
Experimental results are given in Section 5. At last,
concluding remarks are presented in Section 6.

3. Literature review

In the literature, �rst, we have reliability models for
facility location in which the disruption is based on
the failure of facilities. For review, see the paper of
Snyder and Daskin (2005) [3]. The main characteristics
of these papers are attacks that have been created by
man or natural calamitous events. In attacks that
have been created by man, someone attacks to inict
maximum damage on system. Interdiction models
are distinct from one to another in the structure of
the objective function values and in the underlying
structure of the system. Many studies in this context
include the interdiction of arcs in network models and
facility interdiction problems. Also, the operational re-

search studies have recently developed the forti�cation
context in the facility interdiction problems. Wollmer
introduced the �rst e�ort to explain the interdiction
of arcs as an optimization model. Coverage-type
service networks from attacker's perspective and r-
facility Interdiction In Median (RIM) was the �rst
study published by church et al. (2004) [11]. RIM
included the maximization of the demand-weighted
total distance by attacking r facilities, and the cus-
tomers of the interdicted facilities have to be assigned
to unscathed facilities. In the rest of this section, we
discuss the research works done in the scope of network
interdiction, forti�cation, and partial interdiction.

3.1. Interdiction and facility forti�cation
models

The meaning of interdiction pertains to a destructive
attack, where an attacker targets some facilities to
weaken their performance; similarly, McMasters and
Mustin (1970) assumed that the objective function
of interdiction model is minimization of network ow
capacity when the minimum capacity on arc is positive,
and the cost of interdiction is a linear function of arc
capacity reduction [12]. In most articles, interdiction
models are formulated as mini-max or maxi-min bi-
level programs. According to the study of Church and
Spacarra (2007), the capacity decline due to partial
interdiction is related to the severity level of the
attack [13], as similarly studied by Wood (1993) [14].
Partial interdiction on arcs and interdiction budget
to maximize the shortest path between supply and
demand spots were considered by Fulkerson and Hard-
ing (1977) [15]. In the study of Smith et al. (2007),
partial interdiction was the reduction of the interdicted
arcs' ow capacity [1]. Aksen et al. (2012) integrated
the partial interdiction idea into a facility interdiction
model as a leader-follower game; the attacker had
limited budget to cause interdiction, and the follower
(defender) had to satisfy all customers' demand after
attacking [4]. We can put the concept of interdic-
tion against the concept of protection (forti�cation).
Church and Scaparra (2007) extended r-interdiction
median problem (RIM) by adding forti�cation to it
(RIMF). This model identi�ed q facilities to impede an
attack in a network of p existing facilities. Maximizing
the total demand satisfaction cost was the objective of
attacker; it should be noted that attacker knew which
facilities were protected [13]. They also developed a
bi-level programming formulation of the RIMF. The
model of Scaparra and Church (2008) is a multi-level
problem with one leader and one follower, where the
follower is the attacker; so, his or her strategy is based
on the defender's decision [15]. Up to this point, the
authors assumed that facilities are uncapacitated, but
in study of Scaparra and Church (2010), they proposed
RIMF with capacitated facilities, where upon inter-
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diction, facilities' capacity was reduced [16]. Losada
et al. (2010) proposed a stochastic approach. In this
study, the facility was not destroyed within an attack
certainly, and the probability of destruction of a facility
depended on the resources' level allocated by the at-
tacker [17]. Aksen et al. (2010) added budget constraint
of facility protection and also the capacity expansion
cost due to the reallocation of customers (looking for
the interdiction of the attacker) to the RIMF. Then,
they used implicit enumeration algorithm applied to
a binary tree to solve it [18]. Their model was
mentioned as BCRIMF-CE. Aksen and Aras (2012)
combined BCRIMF-CE model with a �xed charge facil-
ity location problem, where defender determines which
facilities to protect. In the objective function of the de-
fender, they added the cost of forti�cation. Stackelberg
game between defender (leader) and attacker (follower)
was their solution strategy. The defender's problem
was solved regardless of protection decisions at �rst,
then facilities to be protected by defender and those to
be interdicted by attacker were determined based on
an implicit enumeration algorithm [9].

3.2. Fuzzy multi-objective mixed integer linear
programming

In this work, we used the MOMILP method to solve
our bi-objective model. In the literature of MOMILP

models, Zimmermann (1978) proposed the �rst ap-
proach, called Max-Min, to solve the Multi-Objective
Linear Programming (MOLP) models [19]. But, in
this approach, the solution obtained by the Max-Min
operator is probably not e�cient, because this method
selects a solution whose minimum degree of objectives'
satisfaction is greater than other solutions and does not
consider the importance of each objective function. Lie
and Hwang (1993) proposed a complementary Max-
Min approach to emend de�ciency of Zimmermann's
method. This method is called LH method [20]. This
method is balanced with Max-Min and importance of
each objective function. Next, Selim and Ozkarahan
(2007) added a modi�ed version of Werner's model
to the LH method [21]. They used a compensation
factor in their method and improved LH method. Li
et al. (2006) represented a two-stage fuzzy approach
for solving the MOLP models. In their method, in
the �rst stage, the minimum degree of objectives is
obtained with the Zimmermann's method. Then, in the
second stage, the e�cient solution with the maximum
weighted satisfaction is selected [22]. Afterwards,
Torabi and Hassini (2008) developed a single-stage
method and improved a past method, called TH.
The TH method is the combination of LH and MW
methods [6].

In Table 1, features and strangeness of our pro-

Table 1. Features of the proposed model versus the other methods in facility interdiction location problems.

Papers vs.
features

Interdiction Forti�cation Partial
interdiction

Integrated
multi-

objective
model

Uncertain
parameters

Credibility-
based
fuzzy

programming

Budget
planning

and
capacitated

nodes

Demand
outsourcing

The proposed
model

X X X X X X X X
Wood (1993) X X X
Church et al.
(2004)

X
Church and
Scaparra
(2007)

X X

Smith et al.
(2007)

X X
Scaparra and
Church (2008)

X X
Scaparra and
Church (2010)

X X X
Losada et al.
(2010)

X X X
Aksen et al.
(2010)

X X
Aksen and
Aras (2012)

X X X
Aksen et al.
(2012)

X X X X
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posed model versus other methods are represented.

4. The integrated credibility-based partial
facility interdiction with forti�cation

The proposed interdiction model assigns facilities to
candidate places and protects some of these facilities
from attacks to minimize the defender's costs according
to maximum damage of attacker. As mentioned before,
we used the multi-objective function in our model,
because we want to pursue the best strategy against
the worst attacks of attackers. We used two objective
functions. The defender's objective function that
minimizes the �xed charge location cost, protection
cost of facilities, and cost of assignment customers
to the facilities; cost of outsourcing demands after
attack is the �rst objective function. It has been
assumed that the defender must satisfy the demands
before and after the attack, and when he fails to
do so, the customer demands are outsourced. The
second objective function is that of the attacker. The
attacker attempts to strike the maximum damage at
the system. Attacker's objective function consists of
maximizing the costs of customer's assignments to the
facilities and the percentage of damage incurred on
the defender's system. The objective functions of the
defender and attacker are in conict, and we cannot
add them together. Then, we used the bi-objective
optimization model. In this interdiction model, the
defender determines what candidate' places construct
the facility and which of them should be protected
from attack. Moreover, according to the intention of
attacker (maximizing the damages), this model assigns
the demands to each facility before and after the
attack.

4.1. Assumptions of the proposed model
We proposed Mixed Integer Programming (MIP)
model for interdiction problem and transformed it to
the Mixed Integer Linear Programming (MILP) model
by linearization of its nonlinear statements. In this
model, there are candidate places in which facilities can
be constructed in this place, and there are customers
with speci�c demands that must be satis�ed before
and after the attack. We considered the restriction
of budget for attacker's attacks and for the defender
in constructing facilities and protecting them. For
the simplicity, the model assumed that each customer
demands must be satis�ed with one facility. In the
other words, each customer must be allocated to one fa-
cility, or the whole of his demands must be outsourced.
The model used the concept of partial interdiction,
and attacker can attack the entire facility or inict
fractional damage on it. Also, the defender can protect
the facilities before the attack. The model considered
that attacker knows what facilities are protected, so

he does not attack the protected facilities. When one
facility is attacked, its capacity is reduced; if it cannot
satisfy the customer demands assigned to the facility
before the attack, then they will be assigned to other
available facilities or outsourced unmet demands of
customers entirely, according to its capacity customer
demands. If the facility is not attacked, its customers
are maintained after the attack. It has been assumed
that before the attack, the defender must construct
su�cient facilities to satisfy all customer demands,
and it is not permitted to outsource some of their
demands.

4.2. The mathematical model
The following properties are used in this model, which
we propose for the integrated partial facility interdic-
tion with forti�cation:
Index sets:
I Set of customer nodes, I=f1; 2; � � � ; ng
J Set of candidate facility sites,

J = f1; 2; � � � ;mg
Parameters:
fj Fixed cost of constructing facility at

site j
bj The required budget for attacking the

whole of candidate site j
cj Protection cost of facility at site j
dei Demand of customer at node i
oci Cost of outsourcing the demand of

customer i per unit
qj The capacity of candidate site j

according to its features
dij Cost of allocating customer i to site j

per unit
k Available budget for defender
r The budget of attacker for striking the

system
mb Policy of defender in considering a

minimum budget for protecting the
facilities

Decision variables:

Xj =

(
1 if a facility is located at site j
0 otherwise

Yj =

(
1 if the facilty at site j is protected
0 otherwise

Uij =

8><>:1 if before attack customer I is
allocated to site j

0 otherwise
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Vij =

8><>:1 if after attack customer I is allocated
to facility at site j

0 otherwise

Sj =

8><>:1 if facility at site j is attacked by the
attacker

0 otherwise

sj= The fraction of attack inicted on the
facility at site j

Wi =

8><>:1 if the demands of customer at node i
are outsourced after the attack

0 otherwise

The mathematical model of our bi-objective partial
interdiction facility location problem with forti�cation
is presented as follows:

minZdef =

24X
j2J

fjXj +
X
j2J

cjYj

35
+

24X
i2I

X
j2J

deidijUij

35+

"X
i2I

deiociWi

#
;
(1)

maxZatt =

24X
i2I

X
j2J

dijdei(1� Uij)Vij
35

+

24X
j2J

sjfj

35 : (2)

Subject to:X
j2J

Uij = 1; i 2 I; (3)

X
i2I

Uij � nXj ; j 2 J; (4)

Yj � Xj ; j 2 J; (5)X
j2J

(fjXj + cjYj) � k; (6)

X
i2I

deiUij � qj ; j 2 J; (7)

X
j2J

Vij � 1; i 2 I; (8)

X
i2I

Uij � nXj ; j 2 J; (9)

Uij(1� Sj) � Vij ; i 2 I; j 2 J; (10)

X
j2J

bjsj � r; (11)

Sj � Xj � Yj ; j 2 J; (12)X
i2I

deiVij � (1� sj)qj ; j 2 J; (13)

Sj � sj � 0; j 2 J; (14)

Sj � sj � (1� "); j 2 J; (15)

Wi = 1�X
j2J

Vij ; i 2 I; (16)

X
j2J

cjYj � mb; (17)

0 � sj � 1; j 2 J; (18)

Wi; Vij ; Sj ; Uij ; Xj ; Yj 2f0; 1g; i 2 I; j 2 J: (19)

Our proposed model has (2mn+4m+n) variables
and (mn+ 8m+ 3n+ 2) constraints. In the model, Ex-
pression (1) represents the defender objective function.
Its �rst component is related to �xed cost of opening
facilities and protecting them. The second component
is the cost of satisfying the customer demands by
facilities before attack. The third component of the
defender objective function is the cost of outsourcing
the customer demands, and this objective function tries
to minimize this cost. The attacker's objective function
is shown in Expression (2). The �rst component of
this function is the cost of reassigning the customers
to the facilities after the attack. Part (1 � Uij)Vij
ensures that if customer i is allocated to facility j before
attack, then the cost of allocating it to facility j is not
computed in this component, because the attacker's
objective function is interested in maximizing the post-
attack costs.

The second part of attacker's objective function
is related to the damages incurred by defender. Con-
straints (3) represent that each customer must be
allocated to one facility before attack. Expressions (4)
represent that one facility can accept more than one
customer, and facility must exist, then we can assign
customers to it. Constraints (5) describe that the
opened facilities can be protected. Constraint (6) is
the budget constraint for defender in order to construct
and protect the facilities. In Constraints (7), we
have mentioned that customers can be assigned to the
facilities before attack until their capacity is su�cient.
Constraints (8) represent that the customer must be
assigned to one facility after the attack, or its demands
can be outsourced. Expressions (9) represent that more
than one customer can be allocated to speci�c facility
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after the attack. Constraints (10) show that if customer
i is allocated to facility j and attacker does not attack
this facility, then customer i must be allocated to this
facility after the attack.

Expression (11) is related to the budget of at-
tacker in order to attack the system, and the attacker
can damage the whole facility or fraction of it. Con-
straints (12) represent that the attacker knows about
protected facilities and does not attack the protected
facilities. Constraints (13) consider the reduced budget
of facilities after attack and assign the customers to
them according to their capacity. Constraints (14) and
(15) describe the relation between Sj and sj . These
constraints explain that if Sj = 0, then sj = 0;
if Sj = 1, then 0 < sj � 1. " is a positive
small number. Constraints (16) specify the customers'
nodes in which their demands are outsourced after the
attack. In Constraint (17), the policy of defender in
considering the minimum budget for protecting the
facilities is modeled. The lower and upper bounds of
variables s are described in Constraints (18). Finally,
binary constraints in decision variables are described in
Constraints (19).

4.3. The proposed credibility-based fuzzy
chance constrained model

All the above-mentioned model's parameters are as-
sumed to be deterministic. But, in most real-life
situations as mentioned in Section 1, the parameters of
interdiction design model are trained by uncertainty.
To tackle this issue, we add the contexts of fuzzy
programming to interdiction model for the �rst time,
and a new hybrid credibility-based chance-constrained
programming approach is proposed in this research.
The credibility-based chanced-constrained approach is
an e�cient method that relies on high mathematical
fuzzy concepts and can support di�erent kinds of fuzzy
numbers, such as triangular and trapezoidal forms
of fuzzy numbers [23,24]. This method enables the
decision-maker to satisfy some chance constraints at
some given con�dence levels. In this method, the
decision-maker sets possibility distributions for the
parameters of model, and the important feature of
this method is that credibility measure is a self-dual
measure. This means that if the credibility measure
takes value 1, then the decision-maker believes that
fuzzy event will surely happen; if it takes value 0, then
the fuzzy event surely will not happen. But, if the
possibility value takes value 1, then maybe it fails to
happen; if this value takes 0, then it is possible that
fuzzy event will happen. According to these features,
Liu and Liu (2002) proved Expressions (20) and (21).
Let ~v be a fuzzy variable with membership function
�(x) and r be a real number. The credibility measure
is de�ned as follows [25]:

Cr f~v � rg =
1
2

(Pos f~v � rg+ Nec f~v � rg) ; (20)

Cr f~v � rg =
1
2

�
sup
x�r�(x) + 1� sup

x>r�(x)
�
: (21)

According to Liu and Liu (2002), the expected value
of ~v can be determined as follows based on credibility
measures:

E [~v] =
1Z

0

Cr f~v � rg dr �
0Z

�1
Cr f~v � rg dr: (22)

We assume in this research that ~v is a trapezoidal
fuzzy number de�ned by four constant points as ~v =
(v(1); v(2); v(3); v(4)). According to Expressions (23)
and (24), the corresponding credibility measures and
expected value of ~v are computed as follows:

Cr f~v � rg =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

0 r 2 ��1; v(1)
�

r�v(1)

2(v(2)�v(1)) r 2 �v(1); v(2)
�

1
2 r 2 �v(2); v(3)

�
r�2v(3)+v(4)

2(v(4)�v(3)) r 2 �v(3); v(4)
�

1 r 2 �v(4);1�
(23)

Cr f~v � rg =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

1 r 2 ��1; v(1)
�

2v(2)�v(1)�r
2(v(2)�v(1)) r 2 �v(1); v(2)

�
1
2 r 2 �v(2); v(3)

�
v(4)�r

2(v(4)�v(3)) r 2 �v(3); v(4)
�

0 r 2 �v(4);1�
(24)

E [~v] =
v(1) + v(2) + v(3) + v(4)

4
: (25)

Zhu and Zhang (2009) proved that if ~v is trape-
zoidal fuzzy number and � > 0:5, then Expressions
(26) and (27) are obtained [25]:

Cr f~v�rg��, r�(2� 2�)v(3)+(2�� 1)v(4); (26)

Cr f~v�rg��, r�(2�� 1)v(1)+(2� 2�)v(2): (27)

To tackle uncertainty in the proposed interdiction
model, all the parameters are presumed to be inde-
pendent trapezoidal fuzzy numbers. To convert chance
constraints to equivalent crisp constraints, we can
directly apply Expressions (26) and (27).
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There are three types of credibility-based fuzzy
mathematical programming approaches: the chance-
constrained programming [26], the expected value [25],
and the dependent chance-constrained program-
ming [23]. The expected value is the easiest one.
The advantage of this method is that it does not in-
crease the computational complexity of original model;
however, it has no control on the con�dence level
of chance constraints' satisfactions. The chance-
constrained programming copes with the de�ciency of
the expected value approach, but adding a constraint
to each objective function causes an increase in the
computational complexity of original model, and also
such an approach needs more information on the
ideal solutions. The dependent-chance programming
model is analogous to chance-constrained program-
ming, but it attaches more importance to con�dence
levels [24].

In this research, to design credibility-based fuzzy
programming for interdiction problem, we have incor-
porated the expected value and the chance-constrained
approach. For modeling the objective function, the
expected value is used, and the chance-constrained
programming approach is used to convert chance con-
straints with vague parameters into crisp equivalent
constraints. In this hybrid approach, the number
of constraints does not increase and there is no
need for more information about objective functions.
Moreover, this approach bene�ts from privileges of
chance-constrained approach. According to the above-
mentioned descriptions and by considering the trape-
zoidal independent possibility distributions of uncer-
tain parameters of model, the proposed credibility-
based fuzzy mathematical programming for interdic-
tion problem can be formulated as follows. In this
model, the fuzziness of parameters is represented with
\�" above their names.

minE[Zdef] =

24X
j2J

E
h

~fj
i
Xj +

X
j2J

E [~cj ]Yj

35
+

24X
i2I

X
j2J

E
h edeiiE[ ~dij ]Uij

35
+

"X
i2I

E
h edeiiE [ eoci]Wi

#
;

maxE [Zatt]=

24X
i2I

X
j2J

E
h edeiiEh ~dij

i
(1�Uij)Vij

35
+

24X
j2J

E
h

~fj
i
sj

35 :

Subject to:X
j2J

Uij = 1; i 2 I;

X
i2I

Uij � nXj ; j 2 J;

Yj � Xj ; j 2 J;

Cr

8<:X
j2J

�
~fjXj + ~cjYj

� � ~k

9=; � �1;

Cr

(X
i2I

edeiUij � ~qj

)
� �j ; j 2 J;

X
j2J

Vij � 1; i 2 I;

X
i2I

Vij � nXj ; j 2 J;

Uij(1� Sj) � Vij ; i 2 I; j 2 J;

Cr

8<:X
j2J

~bjsj � ~r

9=; � �2;

Sj � Xj � Yj ; j 2 J;

Cr

(X
i2I

edeiVij � (1� sj)~qj

)
� �j ; j 2 J;

Sj � sj � 0; j 2 J;
Sj � sj � (1� "); j 2 J;
Wi = 1�X

j2J
Vij ; i 2 I;

Cr

8<:X
j2J

~cjYj � fmb9=; � �3;

0 � sj � 1; j 2 J;
Wi; Vij ; Sj ; Uij ; Xj ; Yj 2 f0; 1g; i 2 I; j 2 J:

According to Eqs. (26) and (27) and by consider-
ing the expected value of trapezoidal fuzzy numbers,
the credibility-based chance-constrained programming
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model mentioned above can be converted into the
following crisp equivalent MINLP model:

minE[Zdef] =

"X
j2J

fj(1) + fj(2) + fj(3) + fj(4)

4
Xj

+
X
j2J

cj(1) + cj(2) + cj(3) + cj(4)

4
Yj

#

+

"X
i2I

X
j2J

dei(1) + dei(2) + dei(3) + dei(4)

4

� dij(1) + dij(2) + dij(3) + dij(4)

4
Uij

#
+

"X
i2I

dei(1) + dei(2) + dei(3) + dei(4)

4

� oci(1) + oci(2) + oci(3) + oci(4)

4
Wi

#
;

maxE[Zatt] =

"X
i2I

X
j2J

dei(1)+dei(2)+dei(3)+dei(4)

4

� dij(1)+dij(2)+dij(3)+dij(4)

4
(1�Uij)Vij

#

+

24X
j2J

fj(1) + fj(2) + fj(3) + fj(4)

4
sj

35 ;
subject to:

X
j2J

Uij = 1; i 2 I;

X
i2I

Uij � nXj ; j 2 J;

Yj � Xj ; j 2 J;

(2�1 � 1)k(1) + (2� 2�1)k(2)

�X
j2J

[Xj [(2�1 � 1)fj(1) + (2� 2�1)fj(2)]

+ Yj [(2�1 � 1)cj(1) + (2� 2�1)cj(2)]] � 0;

(2�j � 1)qj(1) + (2� 2�j)qj(2)

�X
i2I

Uij [(2�j�1)dei(1)+(2�2�j)dei(2)]�0;

j 2 J;
X
j2J

Vij � 1; i 2 I;
X
i2I

Vij � nXj ; j 2 J;

Uij(1� Sj) � Vij ; i 2 I; j 2 J;
(2�2 � 1)r(1) + (2� 2�2)r(2)

�X
j2J

sj [(2�2 � 1)bj(1) + (2� 2�2)bj(2)] � 0;

Sj � Xj � Yj ; j 2 J;
(1� sj)[(2�j � 1)qj(1) + (2� 2�j)qj(2)]

�X
i2I

Vij [(2�j � 1)dei(1) + (2� 2�j)dei(2)] � 0;

j 2 J;
Sj � sj � 0; j 2 J;
Sj � sj � (1� "); j 2 J;
Wi = 1�X

j2J
Vij ; i 2 I;

X
j2J

Yj [(2�3 � 1)cj(1) + (2� 2�3)cj(2)]

� [(2�3 � 1)mb(1) + (2� 2�3)mb(2)] � 0;

0 � sj � 1; j 2 J;
Wi; Vij ; Sj ; Uij ; Xj ; Yj 2 f0; 1g; i 2 I; j 2 J:

We have assumed in this model that con�dence levels
must be greater than 0.5 (i.e., �1; �2; �3; �j ; �j >
0:50).

5. The solution methodology

Our proposed model for the interdiction problem is the
Multi-Objective Mixed-Integer Non-Linear Program-
ming (MOMINLP). MOMINLP is very useful for many
areas of application as any model that incorporates
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the discrete phenomena requires the consideration of
integer variables for issues, such as modeling the �xed
charges, production levels, disjunctive constraints,
etc. [27]. The utilization of integer variables into multi-
objective modeling problems makes these problems too
di�cult to solve. There have been many developments
in solving these models. Some researchers have con-
centrated on the use of metaheuristics to solve multi-
objective problems. Some papers have concentrated on
the interactive methods for the general type of MOIP
problems due to their capabilities to solve the integer
variables.

As mentioned earlier, there are several methods
for solving the Multi-Objective Non-Linear Program-
ming (MONLP) models. Among these, the fuzzy multi-
objective programming approaches are more interest-
ing, because the bene�t of these methods is that they
are capable of measuring the satisfaction degree of each
objective function clearly. This issue can help decision-
makers to choose their preferred solution according
to the satisfaction degree and relative importance of
each objective function. Hence, in this work, we use
the TH method that is one of the best approaches
in the fuzzy multi-objective programming context to
convert our bi-objective model to the equivalent crisp
single-objective model. This method was introduced
by Torabi and Hassini (2008) [6] to solve the orig-
inal MOMILP model. The steps of this method
for solving the proposed model are represented as
follows:

- Step 1: Determine the Positive Ideal Solution
(PIS) and Negative Ideal Solution (NIS) for each
objective function by solving the single objective
model with the whole of the constraints. To
obtain these solutions to two objectives of our
model, we construct the trade-o� table represented
in Table 2, in which fdef denotes the defender
objective function, and fatt denotes the attacker
objective function. x�def is the optimum solution
vector obtained by solving single-objective of de-
fender model, and x�att is the optimum solution vec-
tor obtained by solving single objective of attacker
prospective;

- Step 2: After determining PIS and NIS, we specify
a linear membership function for each membership
function as follows (according to Figures 1 and
2):

Table 2. Trade-o� table for constructing ideal solutions.

Objective function zPIS zNIS

Defender fdef(x�def) fdef(x�att)

Attacker fatt(x�att) fatt(x�def)

Figure 1. Linear membership function for Zdef.

Figure 2. Linear membership function for Zatt.

�def(x) =

8>>>>>><>>>>>>:
1 if Zdef < ZPIS

def

ZNIS
def �Zdef

ZNIS
def �ZPIS

def
if ZPIS

def � Zdef � ZNIS
def

0 if Zdef > ZNIS
def

(28)

�att(x) =

8>>>>>><>>>>>>:
1 if Zatt > ZPIS

att

ZNIS
att �Zatt

ZNIS
att �ZPIS

att
if ZNIS

def � Zatt � ZPIS
att

0 if Zatt < ZNIS
def

(29)

�h(X) denotes the satisfaction degree of hth
objective function for solution vector X;

- Step 3: Convert the MOMINLP model into the
crisp equivalent single-objective model using the
following formulation:

max �0 + (1� )
2X

h=1

wh�h(X);

s.t.

�0 � �h(X) h = 1; 2;

X 2 F (X); �0;  2 [0; 1]; (30)

where �0 denotes the minimum satisfaction degree
of objectives. F (X) is the set of model constraints,
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described in Section 3. This method is the combina-
tion of satisfaction degree of objectives and weighted
sum of these degrees to yield a balanced compro-
mise solution. wh indicates relative signi�cance of
hth objective function, and  is the coe�cient of
compensation.  controls the minimum degree of
objectives' satisfaction along with the compromise
degree among the objectives tacitly. Hence, the
TH method can yield both unbalanced and balanced
compromised solutions to a model based on decision-
makers' preferences through adjusting the value of ;

- Step 4: Given the parameters of  and the coe�-
cient vector of fuzzy goals (w), we solve the crisp
single-objective model by the MINLP solver and
obtain the optimum solution vector satisfying the
decision-makers' preferences.

5.1. Genetic algorithm
As mentioned previously, our proposed model is a
mixed integer non-linear programming. These charac-
teristics cause the model to be hardly solved by exact
methods [28]. Genetic algorithms are one of the best
ways to solve a problem of which little is known. They
are very general algorithms, and therefore, they will
work well in any search space. All one needs to know
is how capable the solution is in coping with di�erent
things, and how well a genetic algorithm will be able
to create a high-quality solution. Genetic algorithms
use the principles of selection and evolution to pro-
duce several solutions to a given problem. Genetic
algorithms tend to thrive in an environment in which
there is a very large set of candidate solutions and the
search space is uneven and has many hills and valleys.
The normal form of GA was presented by Goldberg
(1988) [29].

GA is a general method that can be applied to any
problem if the feasible solution to the problem can be
showed as string that corresponds to genetic encoding
of the solution (chromosome). Each chromosome has
a �tness value that corresponds to the objective value
of the associated solution. Initially, there is a legal
population chromosome constructed at random. Next,
a number of chromosomes are selected to produce a
new chromosome (solution) that named o�spring to the
next generation. The mating of parents is done in a GA
by applying the GA operator, such as crossover and
mutation. The selection of parents and production of
o�spring are repeated until stopping rule is satis�ed.

5.1.1. Representation
Determining facility location and the facility that must
be protected or attacked is the most important issue. If
these are determined, the remaining important decision
is the issue of assignment of customer to facility
before and after attack and fraction of attacks. For

Figure 3. Representation of a chromosome.

example, representation of a chromosome in this paper
is illustrated in Figure 3.

The solution (chromosome) has 2 customers and
3 facilities; thus, each chromosome is represented by
a (2i + 4)j array (i customer and j facility), where
the �rst row represents the facility that is open (=1)
or closed (=0). The next ith row represents the
customer's assignment to the facility before attack.
Next row represents the protected facility. Next row
represents the facility attacked by attackers. Next ith
row represents the assignment of customer to facility
after attack. Finally, the last row represents the
fraction of attack occurring in an open facility.

5.1.2. Fitness evaluation
The �tness value of each chromosome reects how good
it is based upon its achievement of objective. For
each chromosome, the solution to the corresponding
interdiction problem speci�es the cost of opening fa-
cility and protecting them and satisfying the customer
demand before and after attack and damage incurred
by defender. To specify the �tness for chromosome, we
calculate Eq. (30).

5.1.3. Crossover and mutation
The crossover operator generates a new o�spring by
incorporating the information comprised in the chro-
mosomes of the parents so that new o�spring will
have the good parts of the parent's chromosomes. We
applied two-point crossover. In this method, we select
two random integers, i.e. m and n, between 1 and
number of candidate facility site (j). The function
selects vectors entries, and includes the integer number
less than or equal to m from the �rst parent, and the
integer number from m+1 to n from the second parent.
The algorithm then concatenates these genes to form a
single gene.

The produced child may be infeasible, so some-
times we need to repair Uij (column 2: i + 1) and Vij
(column i+ 3: 2i+ 3) of produced child.

Mutation option determines how the genetic algo-
rithm makes small random changes in the individuals
in the population to create mutation children. Genetic
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diversity is provided by mutation operator, and muta-
tion empowers the GA to search a wider space. We
used inversion mutation method.

5.1.4. Selection process
A tournament selection process is used for the proposed
GA, in which the two selected chromosomes from the
population are evaluated based on their �tness value
and the one with the best �tness chromosome is copied
into mating pool.

5.1.5. Termination
Unfortunately, in all optimization methods, proving
the convergence of the optimal solution is di�cult;
therefore, when the �xed number of generation is
obtained, the process will be stopped.

6. Experiments

The experimental results are shown in this section, and
capability of model is checked with the examples. The
examples are generated with the random distributions.
Our model is constructed in Gams 23.5 software and
all of the examples are solved by the MINLP solver of
this software. This software is installed through the
Core i5 system with the 2.40 GHz CPU and 8 GB of
RAM. In the �rst stage of this section, we describe the
procedure of constructing examples.

6.1. Random generation of test problems
The procedure of constructing parameters of examples
is described as follows. The number of candidate
facility sites generated from random distribution and
number of customers is supposed to be 2m (m is equal
to the number of candidate facilities). We supposed
that �xed costs of opening facilities are highly related
to the other costs. Also, we determined the protection
costs so smaller than the �xed costs. We assumed
that the costs of outsourcing the customers are lower
than costs of assigning the customers to the candidate
places. In Table 3, the template employed for the
random distribution generation is represented. In this
table, U [lb; ub] symbolizes the random integer number
between the lower bound lb and the upper bound ub,
and [U;B] shows the random number between U and B.

Table 3. Random problem generation template.

Parameters Values

m 3-10
n 2 m
bj U [100000; 150000]
fj U [100� 106; 500� 106]
cj U [15� 104; 20� 104]
dei U [10000; 100000]
oci U [4000; 6000]
qj n

2 � [10000; 30000]
dij U [500; 5000]
k �f � [0:6m;m]
r m� [40� 104; 130� 104]
mb 175000�m� [0:2; 0:5]

6.2. Solution of credibility-based interactive
possibilistic model

Now, we generate various samples with di�erent sizes
according to the template represented in Table 3,
which includes various classes of chance constraints
and objectives' satisfaction degrees. Then, with the
TH method and the various values of decision-makers'
preferences, we solve the credibility-based interactive
possibilistic method according to Section 4. The
number of candidate facilities, customer nodes, and
satisfaction degrees' classes in the generated problem
instances is shown in Table 4.

According to Table 3, we construct 70 instances
with di�erent satisfaction degrees of decision-makers
and solve these instances and obtain the optimum so-
lutions through GAMS 23.5 software and the proposed
GA each instance. The GA parameters are set as
follows: crossover probability 0.8, mutation probability
0.3, maximum number of iteration 100, and number of
population 100. To con�rm the e�ectiveness of this
algorithm, we run our proposed algorithm 10 times for
each test problem, and then mean of �tness function
is reported. The problem instances with analysis of
various con�dence levels are represented in Tables 5-8.

The above tables show that in di�erent situations,
the mutual knowledge the defenders and attackers have
on each other can actually aid the decision-maker in

Table 4. The various classes for parameters of problem instances.

Instance
type

Number of
candidate
facilities

Number of
customer

nodes

Classes of
chance

constraints

Classes
of 

Classes
of wh

No. 1 3 6 Low-high Low-medium-high Low-medium-high
No. 2 4 8 Low-high Low-medium-high Low-medium-high
No. 3 8 16 Low-high Low-medium-high Low-medium-high
No. 4 10 20 Low-high Low-medium-high Low-medium-high
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Table 5. Problem instance with 3 candidate facilities and 6 customer nodes.

Con�dence
levels

Importance
of the �rst
objective

Coe�cient of
compensation



Objective function
values (�108)

CPU time
(sec)

Minimum
satisfaction
degree (�)

function Gams GA Gams GA Gams GA
(w1 =1�w2) Zatt Zde� Zatt Zde�

In
st

an
ce

ty
p

e
n
o.

1

Low 0.8 0 9.26 4.53 9.39 4.40 19 25 0 0
Low 0.5 0 9.26 5.62 9.37 5.51 21 25 0 0
Low 0.3 0 9.26 5.62 9.38 5.49 20 28 0 0
High 0.8 0 7.90 3.73 7.98 3.7 20 28 0 0
High 0.5 0 7.90 3.73 7.97 3.71 19 29 0 0
High 0.3 0 9.30 11.8 9.42 11.4 20 28 0 0
Low | 1 9.26 4.78 9.30 4.72 22 30 0.46 0.44
High | 1 9.16 10.1 9.23 9.97 23 30 0.97 0.90
Low 0.8 0.5 9.26 4.78 9.33 4.69 21 30 0.46 0.41
Low 0.5 0.5 9.26 4.78 9.32 4.66 23 29 0.46 0.42
Low 0.3 0.5 9.26 4.78 9.30 4.67 25 28 0.46 0.42
High 0.8 0.5 9.16 11.0 9.17 9.05 21 31 1 0.95
High 0.5 0.5 9.16 11.0 9.19 9.11 23 30 1 0.96
High 0.3 0.5 9.30 11.0 9.19 9.10 22 31 0.96 0.92

Table 6. Problem instance with 4 candidate facilities and 8 customer nodes.

Con�dence
levels

Importance
of the �rst
objective

Coe�cient of
compensation



Objective function
values (�109)

CPU time
(sec)

Minimum
satisfaction
degree (�)

function Gams GA Gams GA Gams GA
(w1 =1�w2) Zatt Zde� Zatt Zde�

In
st

an
ce

ty
p

e
n
o.

2

Low 0.8 0 2.08 1.33 2.14 1.30 90 45 0 0
Low 0.5 0 2.08 1.33 2.14 1.28 92 44 0 0
Low 0.3 0 2.18 1.38 2.23 1.31 98 49 0 0
High 0.8 0 1.80 0.73 1.86 0.65 95 46 0 0
High 0.5 0 1.80 0.73 1.89 0.69 96 48 0 0
High 0.3 0 1.80 0.73 1.86 0.66 97 48 0 0
Low | 1 9.26 0.47 9.35 0.40 100 48 0.46 0.43
High | 1 9.16 1.01 9.25 0.95 97 47 0.97 0.92
Low 0.8 0.5 9.26 0.47 9.36 0.40 91 49 0.46 0.41
Low 0.5 0.5 9.26 0.47 9.32 0.42 102 48 0.46 0.42
Low 0.3 0.5 9.26 0.47 9.36 0.42 101 48 0.46 0.40
High 0.8 0.5 9.16 1.10 9.20 1.02 99 47 1 0.96
High 0.5 0.5 9.16 1.10 9.20 1.04 97 50 1 0.95
High 0.3 0.5 9.16 1.10 9.25 1.06 102 51 0.96 0.92

determining the desirable degrees of satisfaction. Not
surprisingly, the model will be solved through this
situation; the optimum obtained solution determines
the defender policy in constructing and protecting the
facilities from attacks. For example, if the knowledge
of defender and attacker in their structures is equal,

then parameter  chooses the values of 0.5 to 1. If
defender intends to specify the best policy just accord-
ing to the importance of his organization conditions
and attacker's attacking of the facilities in a �xed
manner, then parameter  chooses the values of 1, etc.
Moreover, in these instances, the di�erent classes of
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Table 7. Problem instance with 8 candidate facilities and 16 customer nodes.

Con�dence
levels

Importance
of the �rst
objective

Coe�cient of
compensation



Objective function
values (�109)

CPU time
(sec)

Minimum
satisfaction
degree (�)

function Gams GA Gams GA Gams GA
(w1 =1�w2) Zatt Zde� Zatt Zde�

In
st

an
ce

ty
p

e
n
o.

3

Low 0.8 0 2.88 1.59 2.92 1.54 491 66 0 0
Low 0.5 0 3.54 3.40 3.57 3.28 510 59 0 0
Low 0.3 0 3.82 4.12 3.83 4.06 478 68 0 0
High 0.8 0 2.79 1.13 2.85 1.09 482 66 0 0
High 0.5 0 3.49 4.03 3.52 4.01 512 70 0 0
High 0.3 0 3.70 4.39 3.71 4.35 507 69 0 0
Low | 1 3.37 2.90 3.41 2.82 524 72 0.73 0.68
High | 1 3.19 3.41 3.24 3.19 514 70 0.84 0.80
Low 0.8 0.5 3.35 2.92 3.41 2.89 498 65 0.74 0.72
Low 0.5 0.5 3.37 3.20 3.40 3.16 513 67 0.73 0.71
Low 0.3 0.5 3.37 3.11 3.44 3.08 502 65 0.73 0.69
High 0.8 0.5 3.09 3.34 3.12 3.25 496 65 0.85 0.83
High 0.5 0.5 3.12 3.39 3.15 3.36 514 68 0.87 0.84
High 0.3 0.5 3.21 3.36 3.22 3.32 504 64 0.83 0.80

Table 8. Problem instance with 10 candidate facilities and 20 customer nodes.

Con�dence
levels

Importance
of the �rst
objective

Coe�cient of
compensation



Objective function
values (�109)

CPU time
(sec)

Minimum
satisfaction
degree (�)

function Gams GA Gams GA Gams GA
(w1 =1�w2) Zatt Zde� Zatt Zde�

In
st

an
ce

ty
p

e
n
o.

4

Low 0.8 0 3.04 1.92 3.10 1.84 1503 82 0 0
Low 0.5 0 3.15 4.40 3.15 4.36 1483 89 0 0
Low 0.3 0 3.68 4.97 3.73 3.68 1650 85 0 0
High 0.8 0 2.84 1.62 2.87 2.83 1800 90 0 0
High 0.5 0 3.50 4.57 3.59 3.55 1800 92 0 0
High 0.3 0 3.78 5.19 3.82 3.79 1800 87 0 0
Low | 1 3.78 4.12 3.29 4.66 1800 93 0.81 0.90
High | 1 3.90 4.19 3.36 4.44 1800 86 0.76 0.87
Low 0.8 0.5 3.78 4.29 3.42 4.54 1800 89 0.72 0.83
Low 0.5 0.5 3.82 4.32 3.42 4.54 1800 96 0.74 0.83
Low 0.3 0.5 3.90 4.35 3.44 4.81 1800 91 0.73 0.82
High 0.8 0.5 3.72 4.25 3.33 4.63 1800 93 0.75 0.88
High 0.5 0.5 3.68 4.28 3.33 4.63 1800 89 0.76 0.88
High 0.3 0.5 4.01 4.40 3.50 4.74 1800 96 0.68 0.79

constraints' con�dence levels show that the decision-
makers could determine the importance of imprecise
constraints and try to satisfy them according to their
importance. On the other hand, according to Tables 5
and 6, it is clear that our proposed GA provides high-
quality solution to small problems in a short time.

As we know, in exact algorithms with an increase
in the dimension of problem, solving time increases
exponentially, and we can see the time increase in
solving time in Tables 5-7 using Gams Solver. In
addition, we can see that solving time in GA linearly
increases as shown in Figures 4 and 5. In Table 8 and
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Figure 4. A comparison between instances shown in
Table 8, considering the Zatt.

Figure 5. A comparison between instances shown in
Table 8, considering the Zde�.

Figure 6. A comparison between instances shown in
Table 8, considering CPT time.

Figure 6, in 1800 sec, the Genetic Algorithm gets a
better solution than Gams solver in lesser time.

7. Conclusions

In this paper, we tackled credibility-based bi-objective
�xed charge location problem with the contexts of
forti�cation, partial attacks, budget constraints, ca-
pacity reductions, and outsourcing unmet demands.
Then, we constructed the model with these conditions.
This model is very applicable in real conditions, be-
cause we have added the contexts of fuzziness and
uncertainty to the model for the �rst time. Also,
we used the hybrid credibility-based chance constraint
programming that overcomes the de�ciency of other
chance-constrained methods. We solved this model by
interactive possibility TH method. This method helps
us specify the decision-makers' satisfaction degrees.
Also, this method tackles di�erent levels of knowledge

that attackers and defenders know about each other. In
the following, we proposed Genetic algorithm to solve
the proposed algorithm. In the experimental results
section, we gave a template for constructing various
instances. At last, we made di�erent instances in
sizes and parameters and analyzed these instances with
di�erent con�dence levels and solved them by MINLP
solver and Genetic algorithm to show the capability of
the proposed model.

For future studies, this work has the potential to
be extended to a great degree. For instance, consid-
ering the network of candidate facilities and existence
roads in the model can be one of the available directions
to follow in the related �eld. Most of attackers
are interested in attacking the communication roads
instead of facilities, because if one road is disconnected,
then two candidate sites are damaged. Also, the cost
of attacking the roads is lower than that of attacking
the facility. Nevertheless, protecting the roads from
attacks is so hard as well.
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