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Abstract. This paper is concerned with analyzing the resonance frequency change of a
quartz resonator under initial thermal and mechanical biases. The change in the resonance
frequency of the resonator subjected to a pair of diametrical forces is called the force-
frequency e�ect and is quanti�ed by force-frequency coe�cient. The experimental data
suggest that this coe�cient may change due to homogenous thermal biases on the quartz
crystal. In this article, we investigate the e�ect of initial homogenous thermal strains on the
force-frequency e�ect. We derive an explicit formula that predicts the resonance frequency
shift of the thickness-shear mode of AT-cut quartz crystals. The mathematical model is
validated on circular AT-cut quartz crystals at 78�C using the experimental results. The
model leads to a better understanding of quartz crystal behavior which increases accuracy
of pressure sensors in applications such as down-hole pressure measurement in the oil and
gas industry.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Quartz crystal has important properties like the exis-
tence of zero temperature cuts, low intrinsic acoustic
loss, and low cost [1]. Many quartz crystal resonators,
as shown in Figure 1(a), operate with thickness-shear
(T-Sh) vibration mode [2,3]. When a quartz res-
onator is subjected to diametrical forces, its resonance
frequency changes. This change in the resonance
frequency is referred to as the force-frequency e�ect [4].
Currently, many sensors work on the principle of force-
frequency e�ect [5-8]. Figure 1(b) shows a quartz
resonator pressure sensor which is used for measuring
down-hole oil pressure through the application of force-
frequency e�ect.

In this type of sensor, the oil pressure acts on the
external surface of the cylindrical body and is transmit-
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ted to the circular quartz resonator, hence changing the
resonance frequency of the resonator. The resonance
frequency shift of the resonator has a linear dependency
on the applied pressure and is measured as the output
of the sensor [7], which enables the sensors to be used
for measuring pressure. The change of temperature
a�ects the frequency shift of the sensor at various
temperatures. Accordingly, understanding the e�ect of
temperature on the force-frequency phenomena is an
important aspect of designing quartz crystal sensors
that can accurately measure the pressure at various
temperatures.

Rajitsky de�ned the force-frequency coe�cient
in 1965 and measured the coe�cient for single ro-
tated quartz crystals [9]. Dauwalter described the
e�ect of temperature change on the force-frequency
coe�cient [10]. He demonstrated that the temper-
ature dependence of the force-frequency coe�cient
depends on the azimuth angle,  , between the X
crystallographic axis and the direction of the applied
force. The theoretical aspect of the problem belongs to
the general theory of incremental elastic deformations
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Figure 1. (a) Thickness-shear deformation in a quartz
crystal resonator. (b) A down-hole sensor working with
quartz crystal resonator.

superposed on initial �nite deformations [11]. The
initial deformation is produced by applying diametric
forces and also depends on the change in temperature of
the medium. To the best of our knowledge, researchers
have considered e�ects of force-frequency and temper-
ature frequency separately. However, thermal bias
a�ects the force-frequency coe�cient that has to be
studied explicitly, and this can merit further research.

The general theory of incremental elastic deforma-
tions superposed on initial �nite deformations, which
can be of both thermal and mechanical types, has
been studied [12-14]. One of the main methods for
analyzing the e�ects of force-frequency and tempera-
ture frequency was proposed by Lee et al. [11]. Lee
developed the basic equations of the theory in the
Lagrangian form to analyze e�ect of the force-frequency
at room temperature. In the nonlinear stress-strain
relations, the Third-Order Elastic coe�cients (TOEs)
were included. In his study, an explicit formula was
obtained for predicting changes in the thickness-shear
frequencies by applying diametric forces. In 1986, in
another work, a three-dimensional equation of motion
for small vibration superposed on �nite homogenous
thermal deformation was derived by Lee and Yong [15]
who considered the material properties of quartz as
being temperature-dependent. By obtaining the rela-
tion of resonance frequency to the initial temperature
of the plate, Lee succeeded in calculating six values
for the e�ective third temperature derivatives of elastic
sti�ness ( ~C).

In this paper, we focus on the e�ect of initial
homogenous thermal strains on the force-frequency co-
e�cient of quartz disks. We extracted two-dimensional
equations for high-frequency vibrations of crystal plates
under initial mechanical stresses and homogenous ther-
mal strains by Mindlin procedure. These equations
were applied for thickness-shear vibrations of rotated
Y-Cut quartz crystals. We derived an analytical
equation for calculating the change of fundamental
thickness-shear frequencies in terms of initial thermal

and mechanical strains and the second and third order
elastic constants for rotated Y-Cut quartz crystals.
We checked the developed equations with published
experimental results on circular AT-cut quartz crystals.

The contributions of this paper can be outlined
as follows:

� Two-dimensional equation of motion and traction
boundary condition for crystal plates with arbi-
trary crystallographic symmetry, which are under
mechanical and homogenous thermal biases, are
developed. Also, the nth-order components of the
second Piola-Kirchho� stress tensor are obtained;

� The ensuing equations are employed to derive a
formula for calculating the resonance frequency shift
of rotated Y-Cut quartz crystals subjected to initial
mechanical and homogenous thermal biasing �elds;

� The force-frequency coe�cients of a circular AT-Cut
quartz crystal at temperature 78�C are calculated,
and some suggestions are made for better design of
AT-Cut resonators and sensors.

2. Three-dimensional motion equations

As mentioned in the introduction, the analysis of the
e�ect of the force-frequency on piezoelectric resonators
belongs to the general theory of incremental elastic
deformations superimposed on initial �nite deforma-
tions. The basic equations of this theory are developed
in the Lagrangian form. In nonlinear stress-strain
relations, TOEs are included. The material constants
in the governing equations are temperature-dependent.
Moreover, homogenous thermal and mechanical strains
must be taken into account. By employing power series
expansions of displacements and body forces in varia-
tional principle, two dimensional motion equations for
the quartz resonator are derived.

Upon the Lagrangian description, the crystal is
considered to be in three states, which are natural,
initial, and �nal states. At the natural state, the
crystal has a constant uniform temperature, T0, and
experiences no displacement, strain, or stress. At the
initial state, the body is subjected to thermal and
mechanical deformations due to temperature change
and the application of diametric forces. At the �nal
state, the body is subjected to a small-amplitude
vibration in addition to the thermal and mechanical
deformations being imposed on the initial state.

Figure 2 shows position vectors xi, yi, and zi of
material points at the natural, initial, and �nal states,
respectively.

In Eq. (1), the capital letters denote the initial
state, the barred capital letters represent the �nal state,
and the lowercase letters are used for the incremental
quantity with more details in [11]. The incremental
quantities can be obtained by subtracting the initial
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Figure 2. Position vectors for material points at the
natural, initial, and �nal states.

state from the �nal state [16,17]. The �nal, initial, and
incremental strains are given by the gradient equations:

�Eij =
1
2
� �Ui;j + �Uj;i + �Uk;i �Uk;j

�
;

Eij =
1
2

(Ui;j + Uj;i + Uk;iUk;j) ;

�ij =
1
2

(ui;j + uj;i + Uk;iuk;j + uk;iUk;j) ; (1)

where ();i = @()=@xi. Also, �Ui;j , Ui;j , and ui;j are
displacement gradients of the �nal, initial states, and
incremental deformations, respectively. The kinetic
and strain energy densities at the �nal state can be
expressed as:

K =
1
2
� _�U i _�U i;

V =
1
2
C�ijkl �Eij �Ekl+

1
6
C�ijklmn �Eij �Ekl �Emn���ij �Eij : (2)

In the above equations, ��ij is the stress coe�cient
of temperature [18]; C�ijkl as well as C�ijklmn are the
second- and third-order elastic coe�cients of quartz
at temperature �. Applying the variational principle
to the kinetic and strain energy densities, the three-
dimensional equation of motion and also the boundary
condition for the �nal state can be obtained as [11,18]:Z t1

t0
dt
Z
v

�
( �Tji + �Tjk �Ui;k);j + � �Bi � � ��U i

�
� �Uidv

+
Z t1

t0
dt
Z
A

�
�Qi � nj( �Tji + �Tjk

�Ui;k)
�
� �UidA = 0; (3)

where �, �Eij , �Tji, �Ui, �Bi, �Qi, v, A, and nj are

material density, the components of strain, the sec-
ond Piola-Kirchho� stress tensor, mechanical displace-
ment, body force, surface traction, volume, surface
area, and unit outward normal vector, respectively
[11]. Due to very weak piezoelectricity of quartz,
the coupling of mechanical �eld with electric �eld is
neglected [11,15].

3. Two-dimensional motion equations

In this section, the two-dimensional equations for the
plate are obtained by using power-series expansions of
the displacements and body forces in the variational
principle. Schematic view of an elastic plate of thick-
ness, 2b, at its natural state, that is xi coordinates,
can be seen in Figure 3. The body has the volume of �
and the middle plane area of A. The letter C refers to
the intersection of the cylindrical boundary of the plate
with A in the natural con�guration. Accordingly, we
have [19]:

( �Ui; Ui; ui) =
X
n

xn2
�

�U (n)
i ; U (n)

i ; u(n)
i

�
;

( �Bi; Bi; bi) =
X
n

xn2
�

�B(n)
i ; B(n)

i ; b(n)
i

�
: (4)

In these equations, �U (n)
i , �B(n)

i and n = 0; 1; 2; :::
are the nth-order components of displacements and
body forces and are functions of x1, x3, and t. By
substitution of the �rst relation of Eq. (4) into Eq. (1),
we obtain:

( �Eij ; Eij ; �ij) =
X
n

xn2
�

�E(n)
ij ; E

(n)
ij ; �

(n)
ij

�
; (5)

where �E(n)
ij ; E

(n)
ij , and �(n)

ij are the Nth-order com-
ponents of the �nal, initial, and incremental strains,
respectively. For the strain components in Eq. (5), we
have [11,19,20]:

Figure 3. Two-dimensional quartz plate geometry.
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2E(n)
ij =U (n)

j;i + U (n)
i;j + (n+ 1)

�
�2iU

(n+1)
j

+ �2jU
(n+1)
i

�
+
X
m

�
U (m)
k;i U

(n�m)
k;j

+m�2iU
(m)
k U (n�m+1)

k;j + (n�m+ 1)

� �2jU (n�m+1)
k U (m)

k;i �m(n�m+ 2)

�2i�2jU
(m)
k U (n�m+2)

k

�
;

2�(n)
ij =u(n)

j;i + u(n)
i;j + (n+ 1)

�
�2iu

(n+1)
j

+ �2ju
(n+1)
i

�
+
X
m

�
U (m)
k;i u

(n�m)
k;j

+ U (m)
k;j u

(n�m)
k;i +m�2i

�
U (m)
k u(n�m+1)

k;j

+ u(m)
k U (n�m+1)

k;j

�
+ (n�m+ 1)

�2j
�
U (n�m+1)
k u(m)

k;i + u(n�m+1)
k U (m)

k;i

�
�m(n�m+ 2)�2i�2j

�
U (m)
k u(n�m+2)

k

+ u(m)
k U (n�m+2)

k

��
; (6)

where �ij is the Kronecker delta and m = 1; 2; 3; :::.
The equation for �E(n)

ij is obtained by replacing the
unbarred quantities of the �rst relation of Eq. (6) with
barred quantities.

Two-dimensional kinetic and potential energy
densities are de�ned as:

~K =
Z b

�b
Kdx2;

~V =
Z b

�b
V dx2: (7)

By substituting Eq. (4) into the �rst relation of Eq. (2)
and the resultant equation into the �rst relation of
Eq. (7), we obtain:

~K =
1
2
�
X
m;n

a(mn)
_�U

(m)
i _�U (n)

i ; (8)

where:

a(mn) =

8<:2bm+n+1=(m+ n+ 1); m+ n = even

0; m+ n = odd
(9)

To obtain the strain energy density, the term for the
stress coe�cient of temperature in the second relation
of Eq. (2) should be involved. An approximate rela-
tionship exists for the stress coe�cient of temperature,
which is [15,21]:

��ij = C�ijkl�
�
kl�T +

1
2
C�ijklmn�

�
kl�

�
mn(�T )2; (10)

where �T is the temperature change from the natural
to the �nal states, and � is the temperature at the �nal
state, which is equal to the temperature at the initial
state. The parameter ��kl is the thermal expansion
coe�cient at temperature �. By substituting Eq. (10)
into the second relation of Eq. (2), we have:

V =
1
2
C�ijkl �Eij

� �Ekl � 2 �E0kl
�

+
1
6
C�ijklmn �Eij

� �Ekl �Emn � 3 �E0kl �E0mn
�
; (11)

where:

�E0kl = ��kl�T;

�E0mn = ��mn�T: (12)

By substituting Eq. (11) into the second relation of
Eq. (7), we obtain:

~V =
1
2

X
p;q

apqC�ijkl �E(p)
ij

�E(q)
kl

+
1
6

X
p;q;r

apqrC�ijklmn �E(p)
ij

�E(q)
kl

�E(r)
mn

�X
p;q

apqC�ijkl �E(p)
ij

�E0(q)kl

� 1
2

X
p;q;r

apqrC�ijklmn �E(p)
ij

�E0(q)kl �E0(r)mn; (13)

where apq is the same that as in Eq. (9), and apqr is
obtained by:

a(pqr) =8<:2bp+q+r+1=(p+ q + r + 1); p+ q + r = even

0; p+ q + r = odd
(14)

The variational principle can be written in a form
that is suitable for converting the three-dimensional
equations to two-dimensional ones [11,22]:
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�
Z t1

t0
dt
Z
A

( ~K � ~V )dA =
Z t1

t0
dt
�Z

A

�
[ �Qi� �Ui]X2=b

+ [ �Qi� �Ui]X2=�b
�
dA+

Z
C

Z b

�b
�Qi� �Uidx2dC

+
Z
A
� �Bi� �Uidx2dA

�
: (15)

By applying Eq. (8), the variation of two-dimensional
kinetic energy is obtained by:Z t1

t0
� ~Kdt = ��

Z t1

t0

X
m;n

a(mn)
��U

(m)
j � �U (n)

j dt: (16)

By virtue of Eq. (13), the variation of potential energy
can be written as [23]:

� ~V =
X
n

@ ~V
@ �E(n)

ij

� �E(n)
ij : (17)

We de�ne the nth-order components of the stresses
as [11,19,23]:

( �Tij ; Tij ; tij) =
Z b

�b
xn2
�

�T (n)
ij ; T (n)

ij ; t(n)
ij

�
dx2; (18)

which results in:

�T (p)
ij =

@ ~V
@ �E(p)

ij

=
X
q

apqC�ijkl
�

�E(q)
kl � �E0(q)kl

�
+

1
2

X
p;q;r

apqrC�ijklmn

�
�E(q)
kl

�E(r)
mn� �E0(q)kl �E0(r)mn

�
:
(19)

By substituting the �rst relation of Eq. (6) and Eq. (19)
into Eq. (17), we obtain [11]:

� ~V =
X
n

�T (n)
ij � �U (n)

i;j + n �T (n�1)
ij � �U (n)

i;j

+
X
m;n

��
�T (m+n)
kj

�U (m)
i;k +m �T (m+n�1)

2j
�U (m)
i

�
� �U (n)

i;j

+
�
n �T (m+n�1)

2j
�U (m)
i;j

+mn �T (m+n�2)
22

�U (m)
i

�
� �U (n)

i

�
: (20)

By substituting Eqs. (4), (5), (8), and (20) into
Eq. (15), using the chain rule of di�erentiation and
the two-dimensional divergence theorem and noting
the arbitrariness of the variation in the variational
principle, we obtain the nth-order equations of motion:

�
�T (n)
ij +

X
m

�
�T (m+n)
kj

�U (m)
i;k +m �T (m+n�1)

2j
�U (m)
i

�
;j

+ n
�

�T (n�1)
2i +

X
m

�
�T (m+n�1)
2j

�U (m)
i;j

+m �T (m+n�1)
22

�U (m)
i

��
+ �Q(n)

i

+ �
X
m

a(mn) �B(m)
i = �

X
m

a(mn)�u(m)
i

�
; in A

(21)

with the traction boundary condition of:

nj
�

�T (n)
ij +

X
m

�
�T (m+n)
kj

�U (m)
i;k +m �T (m+n�1)

2j
�U (m)
i

��
= �P (n)

i ; on C (22)

where nth-order components of face traction and edge
traction respectively can be de�ned by [11,19]:�

�Q(n)
i ; Q(n)

i ; q(n)
i

�
=
�h
x(n)

2 ( �Qi; Qi; qi)
i
x2=b

+
h
x(n)

2 ( �Qi; Qi; qi)
i
x2=�b

�
;

�
�P (n)
i ; P (n)

i ; p(n)
i

�
=
Z b

�b
xn2
� �Qi; Qi; qi

�
dx2: (23)

In Eq. (21), ��U
(n)
i was replaced with �u(n)

i . The nth-
order equation of motion and the traction boundary
condition for the �nal state are the same as the
equations obtained in [11,23].

By replacing the barred quantities with unbarred
ones in Eqs. (21) and (22), the equation of motion for
the initial state is obtained as:�

T (n)
ij +

X
m

�
T (m+n)
kj U (m)

i;k +mT (m+n�1)
2j U (m)

i

��
;j

� n
�
T (n�1)

2i +
X
m

�
T (m+n�1)

2j U (m)
i;j

+mT (m+n�2)
22 U (m)

i

��
+Q(n)

i

+ �
X
m

a(mn)B
(m)
i = 0 in A; (24)

and the boundary condition is obtained by:

nj
�
T (n)
ij +

X
m

�
T (m+n)
kj U (m)

i;k +mT (m+n�1)
2j

�U (m)
i

��
= P (n)

i ; on C: (25)
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Also, according to Eq. (19), for the stress in the initial
state, we obtain:

T (p)
ij =

X
p;q

apqC�ijkl

�
E(q)
kl � E0(q)kl

�
+

1
2

X
p;q;r

qpqrC�ijklmn

�
E(q)
kl E

(r)
mn

� E0(q)kl E0(r)mn
�
: (26)

By subtracting Eqs. (24), (25), and (26) from Eqs.
(21), (22), and (19), respectively, and neglecting
very small temperature changes from the initial to
the �nal state and products of incremental quanti-
ties [12,15], the incremental equation of motion and
traction boundary condition are obtained:�

t(n)
ij +

X
m

�
T (m+n)
kj u(m)

i;k +mT (m+n�1)
2j u(m)

i

+ t(m+n)
kj U (m)

i;k +mt(m+n�1)
2j U (m)

i

��
;j

� n
�
t(n�1)
2i +

X
m

�
T (m+n�1)

2k u(m)
i;k

+mT (m+n�2)
22 u(m)

i + t(m+n�1)
2k U (m)

i;k

+mt(m+n�2)
22 U (m)

i

��
+ q(n)

i + �
X
m

a(mn)b
(m)
i

= �
X
m

a(mn)�u(n)
i ; in A;

nj
�
t(n)
ij +

X
m

�
T (m+n)
jk u(m)

i;k +mT (m+n�1)
2j u(m)

i

+ t(m+n)
jk U (m)

i;k +mt(m+n�1)
2j U (m)

i

��
= p(n)

i ;

on C; (27)

where:

t(p)ij =
X
q

a(pq)C�ijkl�
(q)
kl

+
X
q;r

a(pqr)C�ijklmnE
(q)
kl �

(r)
mn: (28)

The equations listed here can be applied to analyze the
vibrations of crystal plates. Here, the thickness-shear
modes of the crystal plate are of interest; therefore, the
�rst-order equations are derived for the crystal plates
in the next section.

4. First-order incremental equations and
frequency changes

In this article, the e�ects of the mass and deformation
of the electrodes on the resonance frequencies are not
considered. Indeed, the electrodes have an impact
on the resonance frequencies, but do not a�ect the
frequency changes [19]. To investigate the resonance
frequency of thickness-shear vibrations, as mentioned
above, it is su�cient to retain terms of order zero and
one only for the two-dimensional equations obtained
in the previous section [22,23]. This means that U (n)

i ,
u(n)
i = 0 for n > 1 and T (n)

ij , t(n)
ij , E(n)

ij and �(n)
ij are

disregarded for n > 1 [11,19,23,24]. The resulting equa-
tions accommodate the coupling of the six lowest modes
of vibration, and the strain-displacement relation (i.e.,
Eq. (6)) reduces to:

E(0)
ij =

1
2

�
U (0)
i;j + U (0)

j;i + �2iU
(1)
j + �2jU

(1)
i

+ U (0)
k;i U

(0)
k;j + �2iU

(1)
k U (0)

k;j + �2jU
(1)
k U (0)

k;i

+ �2i�2jU
(1)
k U (1)

k

�
;

E(1)
ij =

1
2

�
U (1)
i;j + U (1)

j;i + U (0)
k;i U

(1)
k;j + U (1)

k;i U
(0)
k;j

+ �2iU
(1)
k U (1)

k;j + �2jU
(1)
k U (1)

k;i

�
;

�(0)
ij =

1
2

�
u(0)
i;j + u(0)

j;i + �2iu
(1)
j + �2ju

(1)
i + U (0)

k;i u
(0)
k;j

+ U (0)
k;j u

(0)
k;i + �2i

�
U (1)
k u(0)

k;j + u(1)
k U (0)

k;j

�
+ �2j

�
U (1)
k u(0)

k;i + u(1)
k U (0)

k;i

�
+ 2�2i�2jU

(1)
k u(1)

k

�
;

�(1)
ij =

1
2

�
u(1)
i;j + u(1)

j;i + U (0)
k;i u

(1)
k;j + U (0)

k;j u
(1)
k;i

+ U (1)
k;i u

(0)
k;j + U (1)

k;j u
(0)
k;i + �2i

�
U (1)
k u(1)

k;j

+ u(1)
k U (1)

k;j

�
+�2j

�
U (1)
k u(1)

k;i+u
(1)
k U (1)

k;i

��
: (29)

By applying Eq. (26), zero and �rst order initial
stresses can be obtained easily by setting E(n)

ij , E0(n)
kl =

0 for n > 1:

T (0)
ij = 2bC�ijkl

�
E(0)
kl � E0(0)

kl

�
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+ bC�ijklmn

�
E(0)
kl E

(0)
mn � E0(0)

kl E
0(0)
mn

�
+
b3

3
C�ijklmn

�
E(1)
kl E

(1)
mn � E0(1)

kl E
0(1)
mn

�
;

T (1)
ij =

2
3
b3
�
C�ijkl

�
E(1)
kl � E0(1)

kl

�
+ C�ijklmn

�
E(0)
mnE

(1)
kl � E0(0)

mnE
0(1)
kl

��
: (30)

Following a method similar to that proposed in [11,19]
and by involving some correction factors in the
thickness-shear and thickness stretch strains in Eq. (28)
and compensating for the approximations in displace-
ment variations of the simple thickness modes [19,24],
we obtain:

t(0)
ij =2b

�
C�ijkl + C�ijklmnE

(0)
mn

�
k(ij)k(kl)�

(0)
kl

+
2
3
b3C�ijklmnk(ij)�

(1)
kl E

(1)
mn;

t(1)
ij =

2
3
b3C�ijklmnk(ij)�

(0)
kl E

(1)
mn

+
2
3
b3
�
C�ijkl + C�ijklmnE

(0)
mn

�
�(1)
kl ; (31)

where k(ij) is the correction factor, and we have k(2i) =
k(i2), and k(ij) = 1, except k2

(21) = k2
(22) = k2

(23) = �2

12 .
From the �rst relation of Eq. (27), the equations

of motion are, in A:�
t(0)
ij + T (0)

kj u
(0)
i;k + T (1)

kj u
(1)
i;k + t(0)

kj U
(0)
i;k + t(1)

kj U
(1)
i;k

+ T (0)
2j u

(1)
i + t(0)

2j U
(1)
i

�
;j

+ q(0)
i + 2b�b(0)

i

= 2b��u(0)
i ;�

t(1)
ij + T (1)

kj u
(0)
i;k + t(1)

kj U
(0)
i;k + T (1)

2j u
(1)
i + t(1)

2j U
(1)
i

�
;j

�
�
t(0)
2j + T (0)

2k u
(0)
i;k + T (1)

2k u
(1)
i;k + t(0)

2k U
(0)
i;k

+ t(1)
2k U

(1)
i;k + T (0)

22 u
(1)
i + t(0)

22 U
(1)
i

�
+ q(1)

i

+
2
3
b3�b(1)

i =
2
3
b3��u(1)

i : (32)

Also, from the second relation of Eq. (27), the traction
boundary conditions on C are:

nj
�
t(0)
ij + T (0)

jk u
(0)
i;k + T (1)

jk u
(1)
i;k + t(0)

jk U
(0)
i;k + t(1)

jk U
(1)
i;k

+ T (0)
2j u

(1)
i + t(0)

2j U
(1)
i

�
= p(0)

i ;

nj
�
t(1)
ij +T (1)

jk u
(0)
i;k + t(1)

jk U
(0)
i;k + T (1)

2j u
(1)
i + t(1)

2j U
(1)
i

�
= p(1)

i : (33)

For convenience, the abbreviated (Voigt) notation is
employed. On this basis, a pair of indices like pq is
replaced with a single index according to 11! 1, 22!
2, 33 ! 3, 23 ! 4, 13 ! 5, 21 ! 6 . The equation
of motion, Eq. (32), may be written in six expanded
forms, two of which are important to us:

@
@x1

�
U (0)

2;1 t
(0)
1 + U (0)

2;3 t
(0)
5 + (1 + U (1)

2 )t(0)
6 + U (1)

2;1 t
(1)
1

+ U (1)
2;3 t

(1)
5 + T (0)

1 u(0)
2;1 + T (0)

5 u(0)
2;3

+ T (1)
1 u(1)

2;1 + T (1)
5 u(1)

2;3 + T (0)
6 u(1)

2

�
+

@
@x3

�
U (0)

2;1 t
(0)
5 + U (0)

2;3 t
(0)
3

+ (1 + U (1)
2 )t(0)

4 + U (1)
2;1 t

(1)
5 + U (1)

2;3 t
(1)
3

+ T (0)
5 u(0)

2;1 + T (0)
3 u(0)

2;3 + T (1)
5 u(1)

2;1

+ T (1)
3 u(1)

2;3 + T (0)
4 u(1)

2

�
+ q(0)

2 + 2b�b(0)
2

= 2b��u(0)
2 ;

@
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�
(1 + U (0)
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1 + U (0)

1;3 t
(1)
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1 u(0)
1;1

+ T (1)
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6 u(1)

1

�
+

@
@x3

�
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+ U (0)
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(1)
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4 + T (1)

5 u(0)
1;1 + T (1)

3 u(0)
1;3

+ T (1)
4 u(1)
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�
�
�
(1 + U (0)

1;1 )t(0)
6 + U (0)

1;3 t
(0)
4

+ U (1)
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(1)
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(1)
4 + T (0)

6 u(0)
1;1

+ T (0)
4 u(0)
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4 u(1)
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�
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1 +
2
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2
3
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1 : (34)
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The equations of motion have a similar form to those
obtained by Lee et al. [11], and the homogenous steady
thermal strains do not change the form of the equation
of motion, though these strains change the initial
strains, displacement gradients, and the incremental
stresses.

5. Resonance frequency shift of rotated Y-cut
quartz due to initial thermal and
mechanical strains

In this section, the change in the resonance frequency of
a rotated Y-cut quartz crystal, vibrating predominately
in the thickness-shear mode, is evaluated by using the
equations obtained in the last section.

In Y-cut crystals, x1 is the diagonal axis in x1
and x3 planes of the plate, and some of the second-
and third-order elastic coe�cients are zero. For rotated
Y-cut, we have:

Cpq = 0; p = 1; 2; 3; 4 and q = 5; 6;

Cpqr = 0; p; q = 1; 2; 3; 4 and r = 5; 6;

or p; q; r = 5; 6: (35)

In this article, the measured values of the second-
order elastic sti�ness coe�cient by Bechmann [25],
the temperature derivatives of the second-order elastic
sti�ness by Lee and Yong [26], and the third-order
elastic sti�ness coe�cients by Thurston et al. [27] are
used.

We consider a circular disc of rotated Y-cut that
is subjected to a uniform temperature change. Then,
two opposed diametric forces are applied to the disc.
This condition induces in-plane stress components T (0)

1 ,
T (0)

3 , and T (0)
5 that only depend on the diametric forces;

all other components of stress can be disregarded [11].
The values of the initial stresses can be computed by
applying Eq. (30).

In calculating the values of the initial stresses,
Lee [15] linearized the stress equation without a sig-
ni�cant decrease in accuracy. In our case, due to the
insertion of thermal strains into Eq. (30), the e�ect
of linearization on the accuracy should be veri�ed.
Assuming that the change in temperature of the initial
state is less than 100�C in the Y-cut quartz, the
thermal strains can be calculated from Eq. (36) [14]:

E0(0)
ij = ��ij�T; (36)

where ��ij is the thermal expansion coe�cients, mea-
sured by Bechmann [25]. For Y-cut quartz crystals,
only E0(0)

1 , E0(0)
2 , and E0(0)

3 are non-zero. These strain
components are calculated, and the e�ect of nonlinear
terms on Eq. (30) is found to be less than 2 percent of

the linear terms at 100�C. The error decreases rapidly
with lowering of the temperature. Thus, with a high
degree of accuracy, the initial stresses can be calculated
using this equation:

T (0)
ij = 2bCijkl

�
E(0)
kl � E0(0)

kl

�
; (37)

where E(0)
kl is the sum of the thermal and mechanical

strains [12]. The thermal strain, E0(0)
kl , compensates for

the e�ect of the thermal strain involved in E(0)
kl . Thus,

with a high degree of accuracy, the initial stress is only
induced by mechanical strains.

Setting U (n)
i , u(n)

i = 0 for n > 1 in the �rst
relation of Eq. (6) and disregarding the products of
displacement gradient, the initial strain components
can be obtained. If the initial displacement gradi-
ents are only due to application of diametric forces,
then the components of U (0)

2;1 and U (0)
2;3 can be set

to zero [11]. Nevertheless, in our problem with an
initial thermal loading, these components cannot be
disregarded. These displacement gradient components
a�ect E(0)

4 and E(0)
6 ; thus, we have:

E(0)
1 = U (0)

1;1 ; E(0)
2 = U (0)

2;2 ;

E(0)
3 = U (0)

3;3 ; E(0)
4 = U (0)

2;3 + U (1)
3 ;

E(0)
5 = U (0)

3;1 + U (0)
1;3 ; E(0)

6 = U (0)
2;1 + U (1)

1 : (38)

By assuming 
exural and thickness-shear vibrations,
which are predominant in the x1 direction and are
independent of x3, the components of u(1)

1 and u(0)
2 are

functions of t and x1. All other components of the
incremental displacements are set to zero. The non-
zero incremental strain components are:

�(0)
2 = U (1)

1 u(1)
1 ;

�(0)
4 = U (0)

1;3u
(1)
1 ;

�(0)
6 = (1 + U (1)

2 )u(0)
2;1 + (1 + U (0)

1;1 )u(1)
1 ;

�(1)
1 = (1 + U (0)

1;1 )u(1)
1;1;

�(1)
5 = U (0)

1;3u
(1)
1;1 + U (0)

2;3u
(1)
2;1;

�(1)
6 = U (1)

1 u(1)
1;1; (39)

which di�er in �(0)
6 and �(1)

5 from the similar strain
components which were derived for pure mechanical
problem in [11]. Consequently, by substituting the
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initial and incremental strains into Eq. (34), the dis-
placement equations of motion can be obtained without
face tractions and body forces:

@
@x1

�
U (0)

2;3 t
(0)
5 + (1 + U (1)

2 )t(0)
6 + T (0)

1 u(0)
2;1

�
= 2b��u(0)

2 ;

@
@x1

�
(1 + U (0)

1;1 )t(1)
1 + U (0)

1;3 t
(1)
5 + U (1)

1 t(1)
6

�
� (1 + U (0)

1;1 )t(0)
6 � U (0)

1;3 t
(0)
4 � U (1)

1 t(0)
2

=
2
3
b3��u(1)

1 ; (40)

where the �rst equation is related to the 
exural
vibrations, and the second equation is related to the
thickness-shear vibrations. This result shows that
the 
exural motion equation di�ers from the equation
proposed by Lee for pure mechanical problem, but the
thickness-shear equation is similar. From Eq. (31), the
zeros and �rst-order incremental stresses are [11,19,23]:

t(0)
p = 2bk�+v

�
C�pq + C�pqrE

(0)
r

�
�(0)
q ; q = 2; 4; 6;

t(1)
p =

2b3

3

�
C�pq + C�pqrE

(0)
r

�
�(1)
q ; q = 1; 5; 6; (41)

where k = k(21) = k(22) = k(23) = �=
p

12, and we
have [23]:

� = cos2
�p�

2

�
; v = cos2

�q�
2

�
: (42)

By substituting Eqs. (38) and (39) into Eqs. (41),
and then into Eq. (40), the 
exural and thickness-shear
time-displacement equations can be obtained:�

k2
�
C�66(1 + 2U (1)

2 ) + C�66rE
(0)
r

�
+

1
2b
T (0)

1

+ U (0)
2;3C

�
56

�
u(0)

2;11 + k2
�
C�66

�
1 + U (0)

1;1

+ U (1)
2 + C�66rE

(0)
r

�
+ U (0)

2;3C
�
56

�
u(1)

1;1

= ��u2;�
C�11(1 + U (0)

1;1 ) + C�11rE
(0)
r

�
u(1)

1;11 � 3
b2
k2
��
C�66(1

+ U (0)
1;1 + U (1)

2 ) + C�66rE
(0)
r

�
u(0)

2;1

+
�
C�66(1 + 2U (0)

1;1 ) + C�66rE
(0)
r

�
u(1)

1

�
=��u(1)

1 :
(43)

Assume the straight-crested wave propagated in the x1
direction to be [11,19]:

u(1)
1 = A(1)

1 ei(�x1�!t);

u(0)
2 = �iA(0)

2 bei(�x1�!t); (44)

where A(1)
1 and A(0)

2 are the wave amplitudes, and � is
the wave number.

By substituting Eq. (44) into Eqs. (43), the
frequency equation can be obtained:


2 =
1
2

�
M2 + (M1 +M4=3)z2 �

��
M2 +

�
M1

� M4

3

�
z2
�2

+
4M2

3 z2

3

� 1
2
�
; (45)

where:

M1 =
�
(1 + 2U (0)

1;1 )C�11=C
�
66 + C�11rE

(0)
r =C�66

�
=3k2;

M2 = 1 + 2U (0)
1;1 + C�66rE

(0)
r =c�66;

M3 = 1 + U (0)
1;1 + U (1)

2 +
C�66rE

(0)
r

C�66
+
C�56U

(1)
1;1

k2C�66
;

M4 = 1 + 2U (1)
2 +

C�66rE
(0)
r

C�66
+

T (0)
1

2bk2C�66
+
C56U

(0)
2;3

k2C�66
;


 = !=!1; z = �b;

!1 =
�

3k2C�66
�b2

�1=2

; (46)

where !1 is the lowest thickness-shear cut-o� frequency
of the quartz without initial stress [11,19]. For jzj << 1
and jzj << 
, the terms associated with z4 can
be disregarded in Eq. (45), and by using the Taylor
expansion and keeping the �rst two terms only, the
frequency equation can be obtained:


2 = M2 +
�
M1 +M2

3 =3M2
�
z2; (47)

which leads to the cut-o� frequency of thickness-shear
vibration by setting z = 0:


2 = 1 + 2U (0)
1;1 +

C�66rE
(0)
r

C�66
: (48)

Frequency Eq. (48) gives the resonance frequency of
thickness-shear mode of vibration in the rotated Y-
cut quartz, which is under homogenous initial thermal
and mechanical strains. This equation is identical to
Lee's, which is obtained for initial mechanical stresses
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only. The similarity shows that the initial steady
homogenous thermal strains do not change the form
of the frequency equation in thickness-shear mode.
Eq. (48) for an AT-cut quartz disc can be rewritten
as:

�f
f0

=
� 1 = U (0)
1;1 +

1
2C�66

�
C�661E

(0)
1 + C�662E

(0)
2

+ C�663E
(0)
3 + C�664E

(0)
4

�
; (49)

where strain components include both mechanical and
thermal strains. Using Eq. (49), the force-frequency
coe�cient of rotated Y-cut quartz can be predicted at
various temperatures. The force-frequency coe�cient
at any temperature is related to the frequency shift
arising from the application of opposing diametric
forces at that temperature. Since all the initial strains
and displacement gradients, as mentioned in the pre-
vious section, are the sum of mechanical and thermal
strains and gradients, Eq. (49) can be rewritten in the
form of:

�f
f0

=
� 1 = (U (0)
1;1 )m + (U (0)

1;1 )T

+
1

2C�66

�
C�661

�
(E(0)

1 )m + (E(0)
1 )T

�
+ C�662

�
(E(0)

2 )m + (E(0)
2 )T

�
+ C�663

�
(E(0)

3 )m + (E(0)
3 )T

�
+ C�664

�
(E(0)

4 )m + (E(0)
4 )T

��
=
�

�f
f0

�
mechanical

+
�

�f
f0

�
thermal

; (50)

where �f
f0

is the frequency shift due to the application
of both initial mechanical and thermal strains; (Ei)m
and (U (0)

1;1 )m are the mechanical strain and displace-
ment gradient. Also, (Ei)T and (U (0)

1;1 )T are the thermal
strain and displacement gradient.

The force-frequency e�ect, at a de�nite tempera-
ture as mentioned above, is related to the mechanical
strains only. Due to linear superposition of strains
in Eq. (50), both mechanical and thermal strains
have distinct e�ects on frequency. Nevertheless, to
obtain the force-frequency coe�cient in quartz, only
the mechanical strains at the working temperature
are involved. By taking into account only the �rst
temperature derivative of TOEs, we have [21]:

C�66i = C25�C
66i + ~C66i ��T; (51)

where C25�C
66i is the value of C66i at temperature of

25�C, the coe�cient ~C66i is the �rst temperature
derivative of the coe�cient C66i, and �T = (��25)�C,
where � is the �nal temperature of the disk. The
mechanical version of Eq. (50) is related to the force-
frequency e�ect. Thus, by substituting Eq. (51) into
Eq. (50), for mechanical version of Eq. (50), we obtain:�

�f
f0

�
m

=(U (0)
1;1 )m +

1
2C�66

��
C25�C

661 + ~C661

��T
�

(E(0)
1 )m +

�
C25�C

662 + ~C662

��T
�

(E(0)
2 )m +

�
C25�C

663 + ~C663

��T
�

(E(0)
3 )m +

�
C25�C

664 + ~C664

��T
�

(E(0)
4 )m

�
: (52)

6. Results and discussion

As mentioned in the introduction, due to the force-
frequency e�ect, the resonance frequency of piezoelec-
tric resonators will change in proportion to a pair of
external opposite diametrical forces applied at the rim
of the resonator [19]. The force-frequency e�ect can
be quanti�ed by force-the frequency coe�cient, K( ),
which is de�ned by [28]:

�f
f0

= K( )
F ( )N

2bD
; (53)

where F ( ) is the applied force with azimuth angle of
 , �f=f0 is the fractional frequency shift, N is the
frequency constant, and D is the plate diameter, and
2b is its thickness.

6.1. Calculating the force-frequency constants
at 25�C for circular disks

The force-frequency coe�cient for singly and doubly
rotated quartz resonators was measured previously at
room temperature [29]. To measure the force-frequency
coe�cients, a circular plate of quartz is subjected
to a pair of diametric forces at a constant uniform
temperature. The forces make an angle of  (azimuth
angle) with x1 axis, as shown in Figure 4. In these cir-
cumstances, the initial stress �eld is not homogenous.

Some researchers [28,11] have used the uniform
stress solution to obtain the strain components by using
an anisotropic constitutive model. They showed that
such an approach closely matches the force-frequency
experiments. Based on this approach, the stress
distributions for the resonator with a diameter of D
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Figure 4. Circular quartz disc subjected to two opposed
diametric forces.

and thickness of 2b, when is subjected to a pair of
diametrical forces, can be obtained as:

T1 =
�2
�

F
2bD

(1 + 2 cos 2 );

T3 =
�2
�

F
2bD

(1� 2 cos 2 ); T5 =
�4
�

F
2bD

sin 2 :
(54)

Then, the strain components for rotated Y-cut of
quartz can be obtained as follows:

E1 = S�11T1 + S�13T3 + S�15T5;

E2 = S�21T1 + S�23T3 + S�25T5;

E3 = S�31T1 + S�33T3 + S�35T5;

E4 = S�41T1 + S�43T3 + S�45T5; (55)

where S�ij is the compliance of AT-Cut quartz at
temperature �. From Eq. (19) and by neglecting
higher-order components of stresses, we obtain [11,28]:

T (0)
i = 2bTi = 2bCijE

(0)
j : (56)

Eq. (55) gives the components of strains due to
mechanical load, which are necessary for calculating
the frequency shift with Eq. (52). By substituting
Eq. (52) into Eq. (53), the force-frequency coe�cient
at a constant uniform temperature can be obtained:

K�( ) =
1

2b�f0

�
U (0)

1 ( ) +
1

2C�66

��
C25�C

661 + ~C661

��T
�

(E(0)
1 )m +

�
C25�C

662 + ~C662 ��T
�

(E(0)
2 )m +

�
C25�C

663 + ~C663 ��T
�

(E(0)
3 )m

+
�
C25�C

664 + ~C664 ��T
�

(E(0)
4 )m

��
: (57)

Eq. (57) gives the force-frequency coe�cient for any

Figure 5. Theoretical and experimental force-frequency
coe�cients at 25�C.

azimuth angle at the working temperature. Using
this equation and the second- and third-order elastic
sti�ness coe�cients for AT-cut, as published in [30],
the force-frequency coe�cients at room temperature
are calculated as a function of the azimuth an-
gle.

To calculate force-frequency constants at room
temperature by Eq. (57), we considered a circular AT-
cut quartz disc with a diameter of 6 mm, thickness
of 0.1660 mm, and fundamental �rst thickness-shear
frequency of 10 MHz subjected to two diametrically
opposed forces. Figure 5 shows the calculated force-
frequency constants as a function of azimuth angle in
comparison with the experimental results obtained by
Ratajskey and EerNisse [9,30]. It should be mentioned
that our model produces similar results to the Lee's
model at room temperature.

To increase the accuracy of the force-frequency
curve, the initial stress �eld is solved by �nite element
method for quartz disc with anisotropic characteris-
tics and non-uniform stress distribution. Since the
quartz crystals have anisotropic characteristics, their
governing equations are non-linear, and they cannot
be implemented using the default feature of the FEA
software. Therefore, the whole governing equations
and the boundary conditions are converted to weak-
form expressions. So, the anisotropic characteristics
of quartz can be implemented using the PDE (Partial
Di�erential Equation) interference of the software. Our
model includes 2094 Lagrangian quadratic elements.
As the thickness-shear mode is important, in the
investigation of the force-frequency e�ect, a swept
mesh is utilized to control the mesh number in the
thickness direction. The three-dimensional govern-
ing equations for quartz, adopted in FEM model,
are [19,23]:
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Figure 6. Force-frequency curve based on anisotropic
assumptions in calculating the initial stresses.

Tij = C�ijklEkl +
1
2
C�ijklmnEklEmn � ��ij ; (58)

and:

(Tij + TjkUi;k);j = 0 in V;

Pi = nj(Tij + TjkUi;k) on S: (59)

The initial strain components are obtained by the
second relation of Eq. (1).

The calculated values for non-uniform stresses at
the center of the disk are substituted into Eq. (59)
to calculate the new force-frequency constants as a
function of azimuth angle. Figure 6 depicts the new
force-frequency curve in comparison with experimental
data.

Consideration of the anisotropy in determining
the initial stress bias can enhance the accuracy of
the force-frequency model, especially at azimuth angle
between 0� and 25�, as is depicted in Figure 6 [31].

6.2. Calculating the force-frequency constants
at 78�C

Analytical calculation of the force-frequency coe�-
cients of quartz at higher temperatures has not been
carried out up to now. Experimental values of the
force-frequency coe�cient of circular AT-cut quartz
crystal at temperatures of 78�C are available [30].
Based on Eq. (57), variations in plate thickness,
the second-order elastic sti�ness and compliance, and
TOEs can lead to the variations in the force-frequency
coe�cient. Among these parameters, only the tem-
perature derivatives of the TOEs are still unknown.
The second-order elastic compliance and sti�ness co-
e�cients can be calculated using the temperature
derivatives of the elasticity coe�cient obtained by
Yong and Lee [26]. The thickness of the plate at

Figure 7. Analytical calculation of force-frequency curve
at 78�C based on non-uniform stress assumption.

78�C can be determined using the thermal expansion
coe�cient for AT-cut [25]. By applying the calculated
material constants at 78�C, the initial stress and
strain �elds are solved both analytically with uniform
stress assumption and numerically with non-uniform
stress assumption as mentioned in the previous section.
Then, the force-frequency constants are calculated
using Eq. (57). In this calculation, we used the room
temperature values of TOEs measured by Thurston [27]
and neglected their temperature derivatives, which are
steel unknown to us. Figure 7 shows the calculated and
experimental force-frequency curve at 78�C for AT-cut
quartz crystals.

As seen in Figure 7, the force-frequency curve ob-
tained by analytical model is close to the experimental
data at 78�C.

Performing the force-frequency experiments at
high temperatures is a hard task, and there are a few
experimental data on the force-frequency e�ect of the
crystal resonators at high temperatures. The developed
mathematical model can be utilized in calculating the
temperature dependence of the force-frequency e�ect
for rotated Y-Cut quartz resonators. This gives us
higher abilities in designing and optimizing the quartz
resonators and sensors which may work at various
temperatures. For example, as can be seen in Figure 7,
based on the experimental data and analytical model,
at azimuth angles near  = 60�, the force-frequency
coe�cient approaches zero. On this basis, for AT-
Cut quartz resonators working at temperatures near
78�C, it is suggested to connect the resonator holders to
the resonator by this azimuth angle. This reduces the
acceleration and vibration sensitivity of the resonator
and enhances its frequency stability. On the other
hand, based on the analytical model and experimental
data, the highest force sensitivity of the resonator
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occurs near the azimuth angle  = 20�. Thus, this
azimuth angle can be chosen for achieving the highest
force sensitivity in resonator load cells and some of the
resonator pressure sensors which are working at the
mentioned temperature.

7. Conclusion

In this research, the e�ect of initial homogenous ther-
mal strains on the force-frequency e�ect of quartz
crystal plates was investigated. We extracted two-
dimensional equations for high-frequency vibrations of
the crystal plates under initial mechanical stresses and
homogenous thermal strains by adopting the Mindlin
procedure. These equations are general and can
be employed for analyzing the vibration of crystal
plates with weak piezoelectricity, like quartz, under
homogenous thermal and mechanical biasing �elds.
The derived equations were solved for rotated Y-cut
quartz crystal, and an explicit formula was derived
for calculating the resonance frequency shift in the
thickness-shear mode of the crystal due to mechanical
and homogenous thermal biases. By using this formula,
the force-frequency curve for a circular AT-Cut disc at
78�C is obtained. The calculated force-frequency curve
was in good agreement with the experimental data.
The developed model can be used for more accurate
prediction of quartz crystal vibrations under thermo-
mechanical strains with vast applications in the design
and testing of pressure sensors for down-hole usage.
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