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Abstract. In this paper, we propose an algorithm to �nd approximate solutions of the
proposed system of the fractional heat-like equations. The proposed algorithm, basically,
illustrates how the two powerful algorithms, the Homotopy Perturbation Method (HPM)
and the Sumudu Transform Method (STM), can be combined and used to get exact
solutions of fractional partial di�erential equations. We also present some examples to
illustrate the accuracy and the e�ectiveness of this algorithm.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Fractional Di�erential Equations (FDEs) have recently
been applied to various areas of engineering, science,
�nance, applied mathematics, bio-engineering, and
others. However, many researchers remain unaware of
this �eld. FDEs have been the focus of many studies
due to their frequent appearance in various applications
in 
uid mechanics, viscoelasticity, biology, physics, and
engineering [1]. Consequently, considerable attention
has been given to the solutions of FDEs of physical
interest. Most FDEs do not have exact solutions; so,
approximate and numerical techniques [2-4] must be
used. Recently, several numerical methods for solving
FDEs have been given, such as homotopy perturbation
method [5], Adomian decomposition method [6], and
collocation method [7-15].

There are numerous integral transforms such as
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Laplace, Sumudu, Fourier, Mellin, and Hankel to solve
FDEs. Some of these, the Laplace transformation
and Sumudu transformation, are most widely used.
The Sumudu transformation method [16-18] is one of
the most important transform methods introduced in
the early 1990s by Watugala [19]. It is a powerful
tool for solving many kinds of di�erential equations
in various �elds of science and engineering. And,
various methods are also combined with the Sumudu
transformation method, such as the homotopy analysis
Sumudu transform method [20], which is a combi-
nation of the homotopy analysis method and the
Sumudu transformation method. Another example is
the Sumudu decomposition method [21,22], which is a
combination of the Sumudu transform method and the
Adomian decomposition method.

In this paper, we use the Homotopy Pertur-
bation Sumudu Transform Method (HPSTM) to de-
rive the exact and approximate solutions of various
types of fractional partial di�erential equations. This
method is a combination of the homotopy perturbation
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method and the Sumudu transform method. However,
Singh [23] used the homotopy perturbation Sumudu
transform method to obtain the exact solution of
nonlinear equations which are PDEs of integer or-
der.

Our concern in this work is to consider the
numerical solution of the fractional version of the multi-
dimensional heat-like equation. Heat-like model can
describe many physical problems in di�erent �elds of
science and engineering. These physical problems de-
scribe some nonlinear phenomena, such as di�usion of
alleles in population genetics. The presented fractional
heat-like equation has been applied in modelling to
describe practical sub-di�usive problems in 
uid 
ow
process and �nance [24,25].

2. Basic de�nitions of fractional calculus and
the Sumudu transform method

We describe some necessary de�nitions and mathe-
matical preliminaries of the fractional calculus theory
and the Sumudu transform method which will be used
further in this work.

De�nition 1. The Caputo fractional derivative oper-
ator D� of order � is de�ned in the following form [26]:

D�[f(x)] =
1

�(n� �)

Z x

0
(x� t)n���1 dnf(t)

dtn
dt:

Similar to integer-order di�erentiation, Caputo frac-
tional derivative operator is a linear operation:

D�(�f(x) + �g(x)) = �D�f(x) + �D�g(x);

where � and � are constants. For the Caputo's
derivative, we have D�C = 0, if C is a constant and:

D�xn=

8><>:0; for n2N0 and n<d�e;
�(n+1)

�(n+1��)x
n��; for n2N0 and n�d�e:

We use the ceiling function d�e to denote the smallest
integer greater than or equal to � and N0 = f0; 1; � � � g.
Recall that for � 2 N, the Caputo di�erential operator
coincides with the usual di�erential operator of integer
order. For more details on fractional derivatives
de�nitions and their properties, see [27].

De�nition 2. The single-parameter and the two-
parameter variants of the Mittag-Le�er function are
denoted by E`(t) and E`;k(t), respectively, which are
relevant for their connection with fractional calculus,
and are de�ned as:

E`(t) =
1X
j=0

tj`

�(`j + 1)
; ` > 0; t 2 C;

E`;k(t) =
1X
j=0

tj`

�(`j + k)
; `; k > 0; t 2 C:

Some special cases of the Mittag-Le�er function are as
follows:

E1(t) = et;

E`;1(t) = E`(t);

dm

dtm
�
tk�1E`;k

�
t`
��

= tk�m�1E`;k�m
�
t`
�
:

Other properties of the Mittag-Le�er functions can be
found in [1]. These functions are generalizations of the
exponential function, because most linear di�erential
equations of fractional order have solutions that are
expressed in terms of these functions.

De�nition 3. The Sumudu transform is de�ned over
the set of functions:

A = ff(t) j 9M; �1; �2 > 0; j f(t) j< Mejtj=�j ;

if t 2 (�1)j � [0;1)g;
by the following formula:

F (u)=S[f(t)]=
1Z

0

f(ut)e�tdt; u 2 (��1; �2): (1)

Some special properties of the Sumudu transform
(denoted throughout this paper by S) are as follows:

1. S[1] = 1;
2. S[ tn

�(n+1) ] = un; n > 0;

3. S[eat] = 1
1�au ;

4. S[�f(t) + �g(t)] = �S[f(t)] + �S[g(t)].

Other properties of the Sumudu transform can be
found in [21].

De�nition 4. The Sumudu transform, S[D�f(t)] of
the Caputo fractional derivative, is de�ned as [20]:

S[D�f(t)]=
F (u)
u�
�
n�1X
k=0

f (k)(0)
u��k ; n�1<��n;

where F (u) is the Sumudu transform of f(t). Then, it
can be easily understood that:

S[D�
t f(x; t)] =

S[f(x; t)]
u�

�
n�1X
k=0

f (k)(x; 0)
u��k : (2)
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3. The basic idea of HPM

In this section, we will brie
y present the algorithm
of HPM. At �rst, we consider the following nonlinear
di�erential equation:

A(u)� f(r) = 0; r 2 
; (3)

with the boundary conditions:

B
�
u;
@u
@n

�
= 0; r 2 �; (4)

where A, B, f(r), and � are the general di�erential
function operator, the boundary operator, the known
analytical function, and the boundary of the domain

, respectively.

The operator A can be decomposed into a linear
operator denoted by L, and a nonlinear operator
denoted by N . Therefore, Eq. (3) can be written as
follows:

L(u) +N(u)� f(r) = 0: (5)

Now, we construct a homotopy v(r; p) : 
� [0; 1]! <
which satis�es:

H(v; p)=(1�p)[L(v)�L(u0)]+p[A(v)�f(r)]=0;

0 � p � 1; (6)

which is equivalent to:

H(v; p)=L(v)�L(u0)+pL(u0)+p[N(v)�f(r)]=0;

0 � p � 1; (7)

where u0 is the initial approximation of Eq. (3) that
satis�es the boundary conditions (4), and p is an
embedding parameter.

When the value of p is changed from zero to unity,
we can easily see that:

H(v; 0) = L(v)� L(u0) = 0; (8)

H(v; 1) =L(v) +N(v)� f(r) = A(v)

� f(r) = 0: (9)

In topology, this changing process is called deforma-
tion, and Eqs. (8) and (9) are called homotopic. If the
p-parameter is considered as small, then the solution of
Eq. (5) can be expressed as a power series in p:

v = v0 + pv1 + p2v2 + p3v3 + � � � ; (10)

u = lim
p!1

v = v0 + v1 + v2 + v3 + � � � (11)

4. The homotopy perturbation Sumudu
transform method

In order to elucidate the solution procedure of this
method, we consider the general fractional nonlinear
partial di�erential equation of the form [20]:

D�
t w(r; t) = Lw(r; t) +Nw(r; t) + q(r; t);

n� 1 < � � n; (12)

subject to the initial conditions:

w(m)(r; 0) = fm(r); m = 0; 1; � � � ; n� 1; (13)

where D�
t w(r; t) is the Caputo fractional derivative

with respect to t, q(r; t) is the source term, L is
the linear operator, and N is the general nonlinear
operator.

Taking the Sumudu transform on both sides of
Eq. (12), we get:

S[D�
t w(r; t)] = S[Lw(r; t) +Nw(r; t) + q(r; t)]: (14)

Using the property of the Sumudu transform and the
initial conditions in Eq. (13), we have:

u��S[w(r; t)]�
n�1X
k=0

u�(��k)w(k)(r; 0)

= S[Lw(r; t) +Nw(r; t) + q(r; t)];

and:

S[w(r; t)] =
n�1X
k=0

ukfk(r) + u�S[Lw(r; t)

+Nw(r; t) + q(r; t)]: (15)

Operating with the Sumudu inverse on both sides of
Eq. (15), we get:

w(r; t) =S�1

"
n�1X
k=0

ukfk(r)

#
+ S�1[u�S[Lw(r; t)

+Nw(r; t) + q(r; t)]]: (16)

Now, by applying the classical perturbation technique,
we can �nd the solution of Eq. 16) in the form:

w(r; t) =
1X
k=0

pkwk(r; t); (17)

where p 2 [0; 1] is the homotopy parameter. The
nonlinear term of Eq. (16) can be decomposed as:

Nw(r; t) =
1X
k=0

pkHk(w); (18)
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where Hk is He's polynomial, which can be calculated
with the formulas [6,20] as follows:

Hk(w0; w1; w2; � � � ; wn)=
1
k!

@k

@pk

"
N

 1X
i=0

piwi

!#
p=0

;

k=0; 1; � � � (19)

Substituting Eqs. (17) and (18) into Eq. (16), we get:

1X
k=0

pkwk(r; t) = S�1

"
n�1X
k=0

ukfk(r)

#
+ pS�1

"
u�S

"
L

 1X
k=0

pkwk(r; t)

!
+
1X
k=0

pkHk(w) + q(r; t)

##
: (20)

Equating the terms with identical powers of p, we can
obtain a series of equations as follows:

p0 : w0(r; t) = S�1

"
n�1X
k=0

ukfk(r)

#
;

p1 : w1(r; t) =S�1[u�S[Lw0(r; t)

+H0(w) + q(r; t)]];

p2 : w2(r; t) =S�1[u�S[Lw1(r; t)

+H1(w) + q(r; t)]]; � � � ;
pn : wn(r; t) =S�1[u�S[Lwn�1(r; t)

+Hn�1(w) + q(r; t)]]: (21)

By utilizing the results in Eq. (21) and substituting
them into Eq. (17), the solution of Eq. (12) can be ex-
pressed as a power series in p. The best approximation
for the solution of Eq. (12) is:

w(r; t)=lim
p!1

1X
k=0

pkwk(r; t)=w0+w1+w2+� � � (22)

The solutions in Eq. (22) generally converge very
rapidly [20].

5. Illustrative examples

In this section, in order to assess the applicability and
the accuracy of the fractional homotopy perturbation
Sumudu transform method in the last section, we
consider the following two examples.

Example 1. Consider the following fractional two-
dimensional heat-like equation of the form:

D�
t w(x; y; t)=

1
2
�
y2wxx+x2wyy

�
; 0<��1; (23)

subject to the initial condition:

w(x; y; 0) = y2; (24)

subject to the boundary conditions:
wx(0; y; t) = 0; wy(x; 0; t) = 0;

wx(1; y; t) = 2 sinh t; wy(x; 1; t) = 2 cosh t:

Taking the Sumudu transform on both sides of Eq. (23),
we get:

S[D�
t w(x; y; t)] = S

�
1
2
�
y2wxx + x2wyy

��
: (25)

Using the property of the Sumudu transform and the
initial condition in Eq. (24), we have:

S[w(x; y; t)]=w(x; y; 0)+u�S
�
1
2
�
y2wxx+x2wyy

��
:

(26)

Operating with the inverse of Sumudu on both sides of
Eq. (26), we get:

w(x; y; t)=S�1[y2]+S�1
�
1
2
u�S

�
y2wxx+x2wyy

��
:(27)

By applying the homotopy perturbation method and
substituting Eq. (17) into Eq. (27), we have:
1X
k=0

pkwk(x; y; t) = y2

+ pS�1

"
1
2
u�S

"
y2

 1X
k=0

pkwkxx(x; y; t)

!
+ x2

 1X
k=0

pkwkyy(x; y; t)

!##
: (28)

Equating the terms with identical powers of p, we get:

p0 : w0(x; y; t) = y2;

p1 : w1(x; y; t) = x2 t�

�(�+ 1)
;

p2 : w2(x; y; t) = y2 t2�

�(2�+ 1)
;

p3 : w3(x; y; t) = x2 t3�

�(3�+ 1)
;

p4 : w4(x; y; t) = y2 t4�

�(4�+ 1)
;

p5 : w5(x; y; t) = x2 t5�

�(5�+ 1)
; � � � : (29)
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Thus, the approximate solution of Eq. (23) is given by:

w(x; y; t) = lim
p!1

1X
k=0

pkwk(x; y; t)

= x2

"
t�

�(�+ 1)
+

t3�

�(3�+ 1)
+ � � �

#
+ y2

"
1 +

t2�

�(2�+ 1)
+

t4�

�(4�+ 1)
+ � � �

#
= x2

�X
k=0

t(2k+1)�

�((2k + 1)�+ 1)
+ y2

�X
k=0

t2k�

�(2k�+ 1)

= x2 sinh(t�; �) + y2 cosh(t�; �); (30)

where sinh(`; �) and cosh(`; �) are de�ned as follows:

sinh(`; �) =
E�(`)� E�(�`)

2
;

cosh(`; �) =
E�(`) + E�(�`)

2
:

If we put � ! 1 in Eq. (30), we obtain the exact
solution of Eq. (23).

w(x; y; t) = x2 sinh(t) + y2 cosh(t): (31)

The results for the exact solution of Eq. (31) and
the approximate solution of Eq. (30) obtained using
HPSTM for the special case of � = 1, at x = y =
1:5, t 2 [0; 2], are shown in Figure 1. From this
�gure, it can be seen that the solution obtained by
the presented method is nearly identical to the exact
solution. Figure 2 shows the approximate solution
with di�erent values of � (� = 0:7; 0:8; 0:9; 1) at x =
y = 1, t 2 [0; 2]. It is to be noted that only the
�ve-order term of the solution was used in evaluating

Figure 1. The behavior of the approximate solution and
the exact solution with � = 1, at x = y = 1:5.

Figure 2. The behavior of the approximate solution of
Example 1 with di�erent values of �.

the approximate solutions for Figure 2. It is evident
that the e�ciency of this approach can be dramatically
enhanced by computing further terms of w(x; y; t) when
the homotopy perturbation Sumudu transform method
is used.

Example 2. Consider the following fractional three-
dimensional heat-like equation of the form:

D�
t w(x; y; z; t) = x4y4z4

+
1
36
�
x2wxx+y2wyy+z2wzz

�
; 0 < � � 1; (32)

subject to the initial condition:

w(x; y; z; 0) = 0; (33)

subject to Neumann boundary conditions:

w(0; y; z; t) = w(x; 0; z; t) = w(x; y; 0; t) = 0;

w(1; y; z; t) = y4z4(et � 1);

w(x; 1; z; t) = x4z4(et � 1);

w(x; y; 1; t) = x4y4(et � 1):

Taking the Sumudu transform on both sides of Eq. (32),
we get:

S [D�
t w(x; y; z; t)]

= S

"
x4y4z4 +

1
36
�
x2wxx + y2wyy + z2wzz

�#
: (34)

Using the property of the Sumudu transform and the
initial condition in Eq. (33), we have:



M.M. Khader/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 648{655 653

S[w(x; y; z; t)] = u�S
�
x4y4z4�

+ u�S
�

1
36
�
x2wxx + y2wyy + z2wzz

��
: (35)

Operating with the inverse of Sumudu on both sides of
Eq. (35), we get:

w(x; y; z; t) = S�1

"
u�S

"
x4y4z4

+
1
36
�
x2wxx + y2wyy + z2wzz

�##
: (36)

By applying the homotopy perturbation method and
substituting Eq. (17) into Eq. (36), we have:

1X
k=0

pkwk(x; y; z; t) = pS�1

"
u�S

�
x4y4z4�

+
1
36
u�S

"
x2

 1X
k=0

pkwkxx(x; y; z; t)

!
+ y2

 1X
k=0

pkwkyy(x; y; z; t)

!
+ z2

� 1X
k=0

pkwkzz(x; y; z; t)

!##
: (37)

Equating the terms with identical powers of p, we get:

p0 : w0(x; y; z; t) = 0;

p1 : w1(x; y; z; t) =
x4y4z4t�

�(�+ 1)
;

p2 : w2(x; y; z; t) =
x4y4z4t2�

�(2�+ 1)
; � � � ;

pn : wn(x; y; z; t) =
x4y4z4tn�

�(n�+ 1)
: (38)

Thus, the approximate solution of Eq. (32) is given by:

w(x; y; z; t) = lim
p!1

1X
k=0

pkwk(x; y; z; t)

=
�
x4y4z4� [E�(t�)� 1]: (39)

If we put �! 1 in Eq. (39) or solve Eqs. (32) and (33)
with � = 1, we obtain the exact solution:

w(x; y; z; t) = x4y4z4(et � 1): (40)

The results for the exact solution of Eq. (40) and
the approximate solution of Eq. (39) obtained using

Figure 3. The behavior of the approximate solution and
the exact solution with � = 1, at x = y = z = 1:0.

Figure 4. The behavior of the approximate solution of
example 2 with di�erent values of �.

HPSTM for the special case of � = 1, at x = y =
z = 1:0; t 2 [0; 2], are shown in Figure 3. From this
�gure, it can be seen that the solution obtained by
the presented method is nearly identical to the exact
solution. Figure 4 shows the approximate solution with
di�erent values of � (� = 0:7; 0:8; 0:9; 1) at x = y =
z = 1:0, t 2 [0; 2]. It is to be noted that only the
�ve-order term of the solution was used in evaluating
the approximate solutions for Figure 3. It is evident
that the e�ciency of this approach can be dramatically
enhanced by computing further terms of w(x; y; z; t)
when the homotopy perturbation Sumudu transform
method is used. In addition, from all presented
Figures 1-4, we can con�rm that the behavior of the
numerical solution has satis�ed the physical meaning
of the problem under consideration.

6. Conclusion and remarks

In this article, we implemented the homotopy per-
turbation Sumudu transform method to obtain the
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approximate solutions of the multi-dimensional frac-
tional heat-like equations. However, HPSTM has an
advantage over SDM, that is, it solves the nonlinear
problems without using Adomian's polynomials. In
conclusion, HPSTM may be considered as a nice
re�nement in existing numerical technique and might
�nd the wide applications. The obtained approximate
solution using the suggested method is in excellent
agreement with the exact solution, and shows that
these approaches can solve the problem e�ectively and
illustrate the validity and the great potential of the
proposed technique. All computations in this paper
are done using Matlab 8.

References

1. Podlubny, I., Fractional Di�erential Equations, Aca-
demic Press, New York (1999).

2. He, J.H. \A tutorial review on fractal space-time and
fractional calculus", International Journal of Theoret-
ical Physics, 53(11), pp. 3698-3718 (2014).

3. Sweilam, N.H. and Khader, M.M. \A Chebyshev
pseudo-spectral method for solving fractional integro-
di�erential equations", ANZIAM Journal, 51, pp. 464-
475 (2010).

4. Sweilam, N.H., Khader, M.M. and Nagy, A.M. \Nu-
merical solution of two-sided space-fractional wave
equation using �nite di�erence method", J. of Com-
putional and Applied Mathematics, 235, pp. 2832-2841
(2011).

5. Ghorbani, A. and Saberi-Nadja�, J. \He's homotopy
perturbation method for calculating Adomian's poly-
nomials", Inter. J. of Nonlinear Sciences and Numer-
ical Simulation, 8, pp. 229-232 (2007).

6. Ghorbani, A. \Beyond Adomian's polynomials: He's
polynomials", Chaos Solitons and Fractals, 39, pp.
1486-1492 (2009).

7. Khader, M.M. \On the numerical solutions for the frac-
tional di�usion equation", Communications in Nonlin-
ear Science and Numerical Simulations, 16, pp. 2535-
2542 (2011).

8. Khader, M.M. \An e�cient approximate method for
solving linear fractional Klein-Gordon equation based
on the generalized Laguerre polynomials", Interna-
tional Journal of Computer Mathematics, 90(9), pp.
1853-1864 (2013).

9. Khader, M.M. \An e�cient approximate method for
solving fractional variational problems", Applied Math-
ematical Modelling, 39, pp. 1643-1649 (2015).

10. Khader, M.M. and Sweilam, N.H. \On the ap-
proximate solutions for system of fractional integro-
di�erential equations using Chebyshev pseudo-spectral
method", Applied Mathematical Modelling, 37, pp.
9819-9828 (2013).

11. Khader, M.M. and Hendy, A.S. \A numerical tech-

nique for solving fractional variational problems",
Mathematical Methods in Applied Sciences, 36(10), pp.
1281-1289 (2013).

12. Khader, M.M., Sweilam, N.H. and Mahdy, A.M.S.
\Numerical study for the fractional di�erential equa-
tions generated by optimization problem using Cheby-
shev collocation method and FDM", Applied Mathe-
matics and Information Science, 7(5), pp. 2013-2020
(2013).

13. Khader, M.M. and Adel, M. \Numerical solutions
of fractional wave equations using an e�cient class
of FDM based on Hermite formula", Advances in
Di�erence Equations, 2016(34), pp. 1-10 (2016).

14. Khader, M.M., Sweilam, N.H., Mahdy, A.M.S. and
Abdel Moniem, N.K. \Numerical simulation for the
fractional SIRC model and in
uenza A", Applied Math-
ematics and Information Science, 8(3), pp. 1029-1036
(2014).

15. Sweilam, N.H., Khader, M.M. and Mahdy, A.M.S.
\Numerical studies for fractional-order Logistic di�er-
ential equation with two di�erent delays", Journal of
Applied Mathematics, 2012, pp. 1-14 (2012).

16. Atangana, A. and Adem, K. \The use of Sumudu
transform for solving certain nonlinear fractional heat-
like equations", Abstract and Applied Analysis, 2013,
pp. 1-12 (2013).

17. Aydin, S. \Approximate analytic solution of fractional
heat-like and wave-like equations with variable co-
e�cients using the di�erential transforms method",
Advances in Di�erence Equations, 2012(198), pp. 1-
9 (2012).

18. Das, S. \A note on fractional di�usion equations",
Chaos, Solitons and Fractals, 42, pp. 2074-2079
(2009).

19. Watugala, G.K. \Sumudu transform -a new integral
transform to solve di�erential equations and control
engineering problems", Math. Engg. Indust., 6(4), pp.
319-329 (1998).

20. Karbalaie, A., Montazeri, M.M. and Muhammed, H.H.
\Exact solution of time-fractional partial di�erential
equations using Sumudu transform", WSEAS Trans-
actions on Mathematics, 13, pp. 142-151 (2014).

21. Belgacem, F.B.M. and Karaballi, A.A. \Sumudu trans-
form fundamental properties investigations and appli-
cations", Inter. J. Appl. Math. Stoch. Anal., 2006, pp.
1-23 (2005).

22. Kumar, D., Singh, J. and Sushila, \Sumudu decompo-
sition method for nonlinear equations", International
Mathematical Forum, 7(11), pp. 515-521 (2012).

23. Singh, B.K. and Srivastava, V.K. \Approximate series
solution of multi-dimensional, time fractional-order
(heat-like) di�usion equations using FRDTM", Royal
Society Open Science, 2(4), pp. 140511-140524 (2015).

24. Jamshad, A., Iftikhar, A. and Bilal, A. \Solutions of



M.M. Khader/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 648{655 655

fractional heat-and wave-like equations via fractional
variational iteration method", Journal of Mathemati-
cal Sciences: Advances and Applications, 21, pp. 1-15
(2013).

25. Yousif, E.A. and Hamed, S.H.M. \Solution of nonlinear
fractional di�erential equations using the homotopy
perturbation Sumudu transform method", Applied
Mathematical Sciences, 8(44), pp. 2195-2210 (2014).

26. Liu, F.J., Li, Z.B., Zhang, S. and Liu, H.Y. \He's
fractional derivative for heat conduction in a fractal
medium arising in Silkworm Cocoon hierarchy", Ther-
mal Science, 19(4), pp. 1155-1159 (2015).

27. Oldham, K.B. and Spanier, J., The Fractional Calcu-
lus, Academic Press, New York (1974).

Biography

Mohamed Meabed Khader was born in 1973 in
Egypt. He received his BS, MS, and PhD degrees
from Benha University, Egypt, in 1995, 2001, and 2009,
respectively, and is currently an Associate Professor
in the Mathematical Department of IMAM University,
KSA. His main research interests are the Numerical
Analysis and Computational Fluid.




