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Abstract. The Exponentially Weighted Moving Average (EWMA) control chart is an
e�ective tool for the detection of small shifts in the process variability. This research studied
the properties of EWMA charts based on unbiased sample variance, S2, for monitoring of
changes in the process dispersion. However, since an increase in process variance could
lead to an increased number of defective products, we only considered upward shifts in
the process variance. The proposed schemes were based on simple random sampling
and extreme variations of ranked set sampling technique for e�cient monitoring. Using
Monte Carlo simulations, we compared the relative performance of EWMA charts based
on unbiased sample variance, S2, and its logarithmic transformation ln(S2) as well as some
existing schemes for monitoring the increases in variability of a normal process. It is found
that the proposed schemes signi�cantly outperform several other procedures for detecting
increases in the process dispersion. Numerical example is given to illustrate the practical
application of the proposed schemes using real industrial data.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

The Exponentially Weighted Moving Average
(EWMA) control chart, introduced by Roberts [1]
for monitoring the process mean, has gained wide
acceptance among practitioners due to its simplicity
and e�ectiveness. The scheme has also found its way
into detecting changes in process variability. Since the
pioneering work of Wortham and Ringer [2], several
enhancements of EWMA dispersion chart have been
suggested. Crowder and Hamilton [3] proposed an
EWMA control chart based on the natural logarithmic
transformation of the ratio of sample variance S2

to the in-control process variance �2
0 , ln(S2=�2

0), for
monitoring of the increases in the process variance.
Their design structure resets the EWMA statistic to
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zero whenever it falls below zero. Shu and Jiang [4],
on the other hand, proposed resetting the EWMA
dispersion chart by truncating the term ln(S2=�2

0) to
its approximate target value, which is the in-control
mean of ln(S2=�2

0), whenever it is less than the target.
More recently, Huwang et al. [5] proposed two

EWMA control charts for monitoring the process vari-
ance. The two schemes were one-sided and designed
to detect increases and decreases in process variability,
respectively. Haq [6] suggested an improved mean
deviation EWMA control chart [7] based on Ranked
Set Sampling (RSS). Furthermore, Haq et al. [8-10]
proposed new EWMA control charts for monitoring
changes in the variance of a normally distributed
process based on the Best Linear Unbiased Estima-
tors (BLUE). The design structure of these schemes
uses the RSS, Ordered RSS (ORSS), and Ordered
Double RSS (ODRSS), respectively. RSS is a well-
structured statistical technique for data collection that
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is more e�cient than SRS in applications where the
actual measurements of quality characteristics of in-
terest may be costly, destructive, or time-consuming
but they could be ranked by visual inspection or
some inexpensive method without actual measure-
ments [11,12].

Although the RSS scheme was, �rstly, proposed
for estimating mean pasture and forage yields in
agriculture, the technique now has applications in
many areas such as environmental and ecological stud-
ies [13,14], reliability theory [15], medical studies [16],
marketing survey [17], and statistical quality control
[18-20], to name but few. For more on recent ap-
plications and theoretical developments of RSS, see
Wolfe [21], Al-Omari and Bouza [22], and references
therein. Literature has shown that further gain in the
e�ciency of RSS is achievable when an appropriate
unequal allocation of ranked units is used instead of
equal allocation.

In practice, the highly recommended statistics
for monitoring changes in the process dispersion are
S2 and its logarithmic transformation, ln(S2) [4]. In
this article, we propose new EWMA S2 control charts
for monitoring the variance of a process based on
the extreme variations of RSS, namely, Extreme RSS
(ERSS) [23] and Double Extreme RSS (DERSS) [24]
sampling techniques.

The rest of the article is organized as follows:
In the next section, we briey introduce the design
structure of the classical EWMA S2 control chart.
In Section 3, we present the design structure and
statistical performance of the proposed EWMA S2

charts based on the extreme variations of RSS. In
Section 4, a comprehensive numerical comparison of
the newly developed control schemes with some earlier
EWMA charts for monitoring changes in the process
dispersion are provided. Section 5 presents application
examples of the proposed scheme using a real industrial
data set and, �nally, Section 6 provides the concluding
remarks.

2. Classical EWMA S2 control chart

To design the classical EWMA S2 control chart based
on SRS, let X1;t; X2;t; X3;t; :::; Xn;t, t = 1; 2; 3; :::
be n independent and identically distributed normal
N(�0; �2

0) random samples in a subgroup number, t,
where �0 and �2

0 are the in-control process mean and
variance, respectively. In a dispersion control chart, the
process is initially assumed to be in-control with mean
�0 and variance �2

0 , and remains in-control until it goes
out-of-control with a shift in the process variance from
�2

0 to �2
t > �2

0 . De�ne �t = �t=�0 to be the magnitude
of shift and let S2

srst represent the sequence of sample
variances based on X1;t; X2;t; X3;t; :::; Xn;t and given
by:

S2
srst =

1
n� 1

nX
i=1

�
Xi;t � �Xsrst

�2 ; (1)

where �Xsrst = (1=n)
Pn
i=1Xi;t is the sample mean

of the tth subgroup of size n. Following Shu and
Jiang [4], we only considered the case of monitor-
ing upward drifts in process variance as it resulted
in an increased number of defective items. Sim-
ilar to Crowder and Hamilton [3] EWMA statis-
tic for monitoring of increases in process variability,
Qsrst = max

�
0; � ln(S2

srst=�2
0) + (1� �)Qsrst�1

�
, a

corresponding statistic based on S2 is de�ned as:

~Qsrst=max
h
�2

0 ; �(S2
srst=�

2
0)+(1� �) ~Qsrst�1

i
; (2)

where 0 < � � 1 is a smoothing constant and ~Qsrso =
0 [4]. It is well known that S2

srst=�2
0 follows a gamma

distribution with shape and scale parameters � = (n�
1)=2 and � = 2�2

t =(n � 1), respectively. Using the
extended version of EWMA chart based on S2

srst and
sugguested by Shu and Jiang [4], we write:

Csrs0 = 0

Csrst = �Zsrst + (1� �)Csrst�1; (3)

where Zsrst = (Wsrst � �Wsrstj�t=1) and Wsrst =
max

�
�2

0 ; (S2
srst=�2

0)
�
. Clearly, the variance of Csrst

is time varing [25] and by continuous substitution of
Csrst�j , j = 1; 2; 3; :::; t, we obtain:

Csrst = �
t�1X
j=0

(1� �)jZsrst�j + (1� �)tCsrs0: (4)

Observe that:

var(Csrst) = �2
Wsrstj�t=1�

�
1� (1� �)2t� =(2� �);

where �2
Wsrstj�t=1 is the in-control variance of Wsrst.

Thus, the new EWMA chart gives an out-of-control
signal when Csrst exceeds the upper control limit:

UCL = L�Wsrst

p
� [1� (1� �)2t] =(2� �); (5)

where L is chosen to satisfy the process control needs.
The statistical performance of a control chart is

often measured in terms of the Run Length (RL) prop-
erties, which include its average (ARL) and standard
deviation (SDRL). ARL represents the average number
of samples required to signal an out-of-control or issue a
false alarm. Using Monte Carlo simulations through an
algorithm developed in FORTRAN, RL properties of
the new EWMA S2 charts are computed based on the
assumption that quality characteristics of interest are
normally distributed with an in-control process mean,
�0 = 0, and standard deviation, �0 = 1, without loss of
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Table 1. RL characteristics of the classical EWMA S2 control chart (n = 5, ARL0 = 500).

� L RL �t
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 AEQL

0.05 2.750 ARL 500.73 47.98 16.32 8.60 5.58 4.06 3.20 2.66 2.29 2.02 1.85 1.030
SDRL 517.53 46.88 14.89 7.53 4.71 3.25 2.46 1.94 1.60 1.34 1.17

0.10 3.318 ARL 500.55 60.29 19.81 10.13 6.44 4.64 3.60 2.94 2.52 2.22 1.99 1.164
SDRL 503.55 58.51 17.84 8.60 5.22 3.63 2.71 2.14 1.75 1.49 1.27

0.25 4.265 ARL 500.03 86.18 27.98 13.31 8.00 5.58 4.23 3.40 2.85 2.48 2.20 1.397
SDRL 499.31 85.18 26.47 11.87 6.71 4.43 3.23 2.50 2.02 1.68 1.44

0.50 5.131 ARL 500.14 112.29 38.54 18.02 10.28 6.80 4.93 3.89 3.19 2.71 2.38 1.673
SDRL 498.54 110.99 37.83 17.05 9.33 5.89 4.06 3.09 2.40 1.97 1.64

0.75 5.594 ARL 500.39 127.45 46.50 21.87 12.40 7.97 5.64 4.32 3.48 2.90 2.52 1.906
SDRL 497.92 126.69 46.12 21.21 11.78 7.30 4.99 3.65 2.81 2.25 1.88

1.00 5.749 ARL 500.25 136.33 51.87 24.84 14.07 8.99 6.34 4.75 3.76 3.13 2.66 2.105
(Shewhart chart) SDRL SDRL 135.45 51.67 24.29 13.56 8.48 5.84 4.20 3.23 2.59 2.11

generality. Simulations are conducted based on 100,000
iterations for di�erent shift �t values using a subgroup
size of n = 5. Setting � = 0.05, 0.1, 0.25, 0.5, 0.75,
and 1.0, the value of L is chosen to achieve in-control
ARL0 of 500, and the results are tabulated in Table 1.
Observe that when � = 1.0, the EWMA coincides with
the Shewhart control chart.

Furthermore, we have also presented, in Table 1,
the estimated Average Extra Quadratic Loss (AEQL)
of the new EWMA S2 charts as an overall performance
measure over the entire process variance shifts as no
control chart will give a better performance than others
for all shift values in terms of out-of-control ARL and
SDRL alone [26,27]. AEQL is based on a loss function
and is used to measure the overall e�ectiveness of a
control chart. It is computed by solving the integral
equation:

AEQL =
1

�tmax � �tmin

Z �tmax

�tmin

�2
t ARL(�t)d�t; (6)

where ARL(�t) is the ARL value of a particular
chart at shift �t, �tmax, and �tmin are the upper and
lower bounds of shifts in process variance, respectively.
Smaller values of AEQL indicate the overall e�ective-
ness of a control chart. The advantage of the above
procedure is its simplicity and excellent performance in
detecting upward shifts in the process variability. To
further enhance the ability of the EWMA S2 control
chart to detect shifts more quickly, we propose the
design structure based on ERSS and DERSS sampling
techniques.

3. New EWMA S2 charts under ERSS and
DERSS

Application of RSS in a statistical quality control chart

for monitoring the process mean is gaining popular-
ity among researchers. For example, see [19,20,28-
32] among others. However, only recently has the
technique found its way into monitoring of process
dispersion [6,8,10,33-35]. Moreover, extreme variations
of RSS are more e�ective in the estimation of process
variance than the RSS if the underlying distribution is
normal [36].

3.1. ERSS method
ERSS is an extreme variation of RSS that does
not require complete ranking of units as it involves
the measurement of the smallest or largest observa-
tions [23,37,38]. The scheme has practical advantages
over the regular RSS in the sense that it is prone
to fewer errors associated with ranking of units in a
subgroup and much easier to apply in the �eld. The
ERSS procedure is as follows:

a. Identify n2 samples from the target population;

b. Randomly group these samples into n sets, each of
size n units;

c. Rank the units within each set with respect to a
variable of interest by visual inspection or some less-
expensive method;

d. If the set size is even, select the smallest unit from
the �rst n=2 sets and the largest unit from the other
n=2 sets;

e. If the set size is odd, select the smallest unit from
the �rst (n � 1)=2 sets and the largest unit from
the other (n � 1)=2 sets, and measure the median
observation from the remaining set;

f. This completes one cycle of ERSS data of size n.
The procedure may be repeated m times to obtain
a sample of nm units of ERSS data.
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Let X(i:e)t for i = 1; 2; :::; n, and t = 1; 2; :::;m
denote the smallest ith (i = 1; 2; :::; k = n=2) set and
the largest ith (i = k + 1; k + 2; :::; n) set for the tth
cycle if the subgroup size n is even. For odd subgroup
size n, use the same notation to denote the smallest
of the ith (i = 1; 2; :::; l = (n � 1)=2) set, the median
of the ith (i = (n + 1)=2) set, and the largest of the
ith (i = l + 1; l + 2; :::; n) set. Then, the unbiased
estimator of the population variance (cf. Sinha and
Purkayastha [39] and Yu et al. [40]) for the tth cycle is
given by:

S2
ersst =

1
n� 1 + vn

nX
i=1

�
X(i:e)t � �Xersst

�2 ; (7)

where �Xersst = (1=n)
Pn
i=1X(i:e)t is the mean estima-

tor for the tth cycle; vn = (1=n)
Pn
i=1 v

2
(i:e) is a known

correction constant that depends on sample size n; and
v(i:e) =

�
�(i:e) � �� =�; see Yu et al. [40] for more detail.

Generally, the performance of RSS depends on the
accuracy of ranking of units in a subgroup with respect
to the quality characteristic of interest. But, since
the identi�cation of extreme values in a set is much
easier than identifying the ith units, ERSS is prone
to fewer ranking errors [23]. However, the technique
may not be entirely free of errors associated with
ranking of units in practical applications. In other
words, human judgements and decisions on ranking
may not always be accurate and, hence, have adverse
e�ect on the e�ciency of the ERSS estimators. This is
called imperfect ranking. Assume that (X;Y ) denotes
a bivariate normal random variable and suppose the
regression of X on Y is linear. Let X be the quality
characteristic of interest that is di�cult to rank and
Y be the corresponding auxiliary variable that could
readily be measured [37,38]; then, we have:

X = �x + �xy(�x=�y)(Y � �y) + "; (8)

where �x, �y, �x, and �y are the population means and
standard deviations of X and Y ; �xy is the correlation
between X and Y ; and " is an error term, which is
independent of the auxilliary variable Y . This error
term has a mean of zero and variance �2

x(1� �2
xy). Let

Y(i:e)t for i = 1; 2; :::; n and t = 1; 2; :::;m denote the ith
smallest and largest values in the tth cycle of Y based
on perfect ranking of subgroup size n; and X[i:e]t be
the corresponding judgment ordering of X associated
with Y(i:e)t. Thus, the Imperfect ERSS (IERSS) based
variance estimator can be written as:

S2
iersst =

1
n� 1 + vn

nX
i=1

�
X[i:e]t � �Xiersst

�2 ; (9)

where X[i:e]t = �x + �xy(�x=�y)(Y(i:e)t � �y) + "it; and
�Xiersst = (1=n)

Pn
i=1X[i:e]t is the estimator of mean

based on IERSS for the tth cycle.

3.2. DERSS method
The performance of ERSS can be enhanced by double
application of the scheme. DERSS methodology is
more e�ective in the estimation of the population
parameters than SRS, RSS, and ERSS [24,41]. The
DERSS is a two-stage ERSS procedure described as
follows:

a. Identify n3 samples from the target population;
b. Randomly allocate these samples to n sets, each of

size n2 samples;
c. Use the ERSS procedure on each set to obtain n

units of ERSS data, each of size n;
d. Apply the ERSS procedure again in step (c) to

obtain DERSS of size n;
e. Repeat the procedure m times to obtain a sample

with nm units of DERSS data.

The corresponding unbiased estimator of the pop-
ulation variance S2

dersst, based on DERSS samples for
the tth cycle, can be written as:

S2
dersst =

1
n� 1 + vn

nX
i=1

�
X(i:~et) � �Xdersst

�2 ; (10)

where X(i:~e)t and �Xdersst = (1=n)
Pn
i=1X(i:~e)t denote

the DERSS observations and mean estimators, respec-
tively. vn = (1=n)

Pn
i=1 v

2
(i:~e) is a known correction

constant [40]. The corresponding imperfect DERSS is
de�ned as:

S2
idersst =

1
n� 1 + vn

nX
i=1

�
X[i:~e]t � �Xidersst

�2 ;
where:

X[i:~e]t = �x + �xy(�x=�y)(Y(i:~e)t � �y) + "it;

and:

�Xidersst = (1=n)
nX
i=1

X[i:~e]t;

is the mean estimator of IDERSS for the tth cycle.

3.3. The design of EWMA S2 charts using
ERSS and DERSS

For simplicity, denote both the variances of ERSS
and DERSS by S2

Xtrmt. The design structure of the
new EWMA S2 charts under ERSS and DERSS for
monitoring of increases in process variability is based
on the statistic:

CXtrm0 = 0;

CXtrmt = �ZXtrmt + (1� �)CXtrmt�1; (11)
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where ZXtrmt =
�
WXtrmt � �WXtrmtj�t=1

�
; WXtrmt =

max
�
�2

0 ; (S2
Xtrmt=�2

0)
�
; and �WXtrmtj�t=1 is the in-

control mean of WXtrmr. It is shown in the appendix
that the variance of CXtrmt, based on ERSS, can be
written as:

var(CXtrmt) = �2
WXtrmtj�t=1

�[1� (1� �)2t]=(2� �);

where �2
WXtrmtj�t=1

is the in-control variance of
WXtrme. Both �WXtrmtj�t=1 and �2

WXtrmtj�t=1
values

were estimated using Monte Carlo simulations. The
upper control limit of the proposed chart is given by:

UCL = L�WXtrmt

p
� [1� (1� �)2t] =(2� �); (12)

and the scheme triggers an out-of-control signal when-
ever CXtrmt > UCL.

The statistical performance of the proposed
schemes was evaluated using n = 5 and ARL0 = 200,
370, and 500. Without loss of generality, we assume the
in-control observations to be from a standard normal
distribution. Setting � = 0.05, 0.1, 0.25, 0.5, 0.75,
and 1.0, the control limit, L, is adjusted to obtain
the desired ARL0. Using Monte Carlo simulations, the
RL properties of the proposed ERSS based charts are
computed based on the following outlined steps, while
those of other sampling schemes have similar fashions.

1. Generate pseudo random numbers, Xi;t, from a
standard normal distribution;

2. Apply the ERSS procedure to Xi;t, estimate �Xersst,
and directly compute S2

ersst, Eq. (7);
3. Compute the ERSS based �WXtrmt , �WXtrmt , and

ZXtrmt in Subsection 3.3;
4. Initialize the control chart statistic, CXtrm0,

Eq. (11), equal to zero;

5. Set the control chart parameter, 0 < � � 1, and
update the statistic CXtrmt, Eq. (11);

6. Calculate the experimental control limit UCL,
Eq. (12), using experimental L values;

7. Compare the statistic CXtrmt with UCL and record
run-length;

8. After 100,000 iterations, compute the Average Run-
Length (ARL) and standard deviation (SDRL);

9. Repeat steps 6 to 8 until the desired ARL0 is
achived.

The above design procedure is for the computa-
tion of ARL0 when �t = 1. To compute the out-of-
control ARL for di�erent shift �t > 1 values, only steps
1 to 8 are required, since the UCL is pre-determined
from the computation of ARL0. The results obtained
based on ERSS and DERSS are presented in Tables 2
and 3. In this article, only the case of ARL0 =
500 is reported for lack of space. For simplicity,
the design structure based on ERSS and DERSS will
hence be referred to as Schemes I and II, respectively,
throughout the remainder of the article.

Examination of Tables 2 and 3 shows that both
the out-of-control ARL and SDRL decrease rapidly
as changes in the process dispersion increase, while
the in-control SDRL values for both schemes are
approximately same as the corresponding ARL0 values.
Furthermore, the out-of-control ARL and SDRL values
indicate that the proposed schemes are particularly
more e�ective in detecting small changes when the
value of � is small while a large value of � is more sen-
sitive to moderate and large changes in the variability
of a process. In the overall performance, the proposed
schemes have signi�cantly minimized the AEQL values
of the EWMA S2 control chart. Moreover, the pro-
posed Scheme II appeared to be the best choice as it

Table 2. RL characteristics of proposed Scheme I (n = 5, ARL0 = 500).

� L RL �t
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 AEQL

0.05 2.702 ARL 500.36 28.35 9.22 4.90 3.25 2.44 1.98 1.70 1.51 1.38 1.29 0.650
SDRL 518.26 26.40 7.87 3.89 2.40 1.66 1.26 1.00 0.81 0.67 0.57

0.10 3.228 ARL 500.26 35.50 10.95 5.69 3.69 2.72 2.17 1.84 1.62 1.47 1.35 0.716
SDRL 506.29 33.06 9.04 4.38 2.65 1.84 1.37 1.08 0.89 0.75 0.63

0.25 4.067 ARL 500.77 52.57 14.79 7.04 4.38 3.13 2.45 2.04 1.77 1.57 1.44 0.824
SDRL 501.42 50.80 13.09 5.61 3.23 2.14 1.57 1.23 0.99 0.83 0.71

0.50 4.819 ARL 500.22 74.91 21.26 9.22 5.27 3.57 2.71 2.19 1.87 1.65 1.49 0.949
SDRL 496.95 73.95 20.14 8.14 4.27 2.69 1.89 1.41 1.12 0.93 0.78

0.75 5.227 ARL 500.21 91.23 27.24 11.70 6.36 4.10 2.98 2.35 1.95 1.70 1.52 1.071
SDRL 498.73 90.79 26.54 10.96 5.66 3.40 2.29 1.68 1.28 1.03 0.85

1.00 5.366 ARL 500.09 101.69 32.42 13.92 7.46 4.71 3.30 2.54 2.06 1.76 1.57 1.190
(Shewhart chart) SDRL SDRL 101.28 31.89 13.45 6.94 4.18 2.76 1.98 1.47 1.16 0.94
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Table 3. RL characteristics of proposed Scheme II (n = 5, ARL0 = 500).

� L RL �t
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 AEQL

0.05 2.689 ARL 500.05 17.92 5.76 3.12 2.14 1.67 1.41 1.25 1.16 1.10 1.06 0.473
SDRL 518.94 15.68 4.53 2.18 1.33 0.92 0.67 0.51 0.40 0.31 0.25

0.10 3.198 ARL 500.02 22.24 6.74 3.57 2.39 1.83 1.51 1.33 1.21 1.13 1.08 0.508
SDRL 505.24 19.44 5.11 2.43 1.46 1.02 0.75 0.58 0.45 0.36 0.29

0.25 3.999 ARL 500.05 33.32 8.72 4.25 2.75 2.04 1.66 1.42 1.27 1.18 1.12 0.563
SDRL 503.74 31.31 6.98 2.96 1.72 1.16 0.85 0.66 0.52 0.42 0.34

0.50 4.711 ARL 500.52 51.23 12.38 5.33 3.15 2.23 1.75 1.48 1.31 1.21 1.13 0.629
SDRL 500.59 50.58 11.08 4.25 2.20 1.38 0.97 0.73 0.57 0.46 0.36

0.75 5.094 ARL 500.53 66.48 16.89 6.73 3.64 2.45 1.84 1.52 1.33 1.21 1.14 0.695
SDRL 498.75 65.79 16.11 5.96 2.90 1.74 1.15 0.82 0.62 0.48 0.38

1.00 5.228 ARL 500.50 77.83 21.03 8.36 4.35 2.71 1 .97 1.58 1.35 1.22 1.14 0.765
(Shewhart chart) SDRL SDRL 77.05 20.48 7.79 3.85 2.15 1.38 0.96 0.69 0.51 0.39

exhibited better overall performance, in terms of ARL,
SDRL, and AEQL, than the proposed Scheme I and
classical chart.

4. Comparative studies

In this section, we compare the performance of the
proposed schemes with that of six other EWMA control
charts for monitoring the process variability. Using
n = 5, we set ARL0 = 200 for a fair comparison. All
the control charts are designed to detect small (� =
0:05) and moderate (� = 0:3) increases in the process
dispersion based on the assumption that the underlying
distribution is normal with a constant process mean.
The performance of each control chart is evaluated
in terms of ARL and overall performance measures,
AEQL, Average Ratio of ARL (ARARL), and Perfor-
mance Comparison Index (PCI). The ARARL is an
integral equation that measures the overall e�ectiveness
of a control chart across a range of shifts [42]. It is
de�ned by:

ARARL=
1

�tmax��tmin

Z �tmax

�tmin

ARL(�t)
ARL(�t)benchmark

d�t;
(13)

where �tmax and �tmin are the maximum and minimum
shifts; and ARL(�t) and ARL(�t)benchmark are the ARL
values of particular and benchmark control charts,
respectively. Benchmark chart is one with the smallest
out-of-control ARL. The PCI, on the other hand, is the
ratio of the AEQL of a particular chart to AEQL of the
best-performing control chart [43]:

PCI = AEQL=AEQLbenchmark: (14)

The ARL values based on 100,000 iterations as well as
the ARARL, AQEL, and PCI values are presented in

Tables 4 and 5, ordered from left to right based on their
detection ability. The smaller the ARARL, AQEL, and
PCI values, the better the performance of the scheme.

4.1. CH-EWMA control chart (Crowder and
Hamilton, 1992)

The CH-EWMA chart by Crowder and Hamilton [3]
is the �rst scheme to use the normal approximation of
(S2=�2

0) for monitoring upward shifts in the process
dispersion. The ARL values for the CH-EWMA
chart based on time-varying control limits are given
in column 1 of both Tables 4 and 5. Comparison
indicates that the proposed schemes have smaller ARL
values than the CH-EWMA chart. In fact, the ARL
values of Scheme II are less than half those of the CH-
EWMA chart. Furthermore, the overall performance
in terms of AEQL, ARARL, and PCI reveals that the
CH-EWMA control chart is substantially less e�ective
than all the proposed schemes. Based on their positions
in Tables 4 and 5, CH-EWMA chart is the weakest
performing scheme in detecting increases in process
variability.

4.2. NEWMA control chart (Shu and Jiang,
2008)

The New EWMA (NEWMA) chart by Shu and Jiang
[4] is also based on the log transformation ln(S2=�2

0)
and is an improvement on CH-EWMA chart, particu-
larly when small shifts are of interest. The scheme uses
truncation method, which helps in quick detection of
upward shifts in the process variability. The RL per-
formance of the NEWMA chart in detecting increases
in variance is presented in column 2 of both Tables 4
and 5. As expected, the corresponding NEWMA chart
based on S2=�2

0 in column 3 is slightly more e�cient
in detecting increases in the process dispersion for
moderate to large shifts. Further comparison indicates



384 M.R. Abujiya et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 378{389

Table 4. ARL comparison among EWMA dispersion control charts for � = 0:05 when n = 5 at ARL0 = 200.

� CHEWMA NEWMA Classica
lEWMA S2 FNEWMA RSS

EWMA
Scheme I ODRSS

EWMA
Scheme II

L = 1:087 L = 1:992 L = 2:106 L = 2:093 L = 1:910 L = 2:085 L = 1:914 L = 2:083
1.0 200.250 200.558 200.209 200.236 200.530 200.241 200.318 200.181
1.1 34.388 27.909 29.234 23.672 19.670 18.481 16.941 12.244
1.2 12.549 11.262 11.439 8.590 7.310 6.784 6.301 4.390
1.3 6.803 6.510 6.432 4.675 4.220 3.848 3.639 2.524
1.4 4.612 4.507 4.350 3.149 2.970 2.671 2.569 1.824
1.5 3.517 3.447 3.285 2.407 2.250 2.075 2.011 1.472
1.6 2.854 2.818 2.669 1.982 1.870 1.730 1.660 1.278
1.7 2.437 2.396 2.249 1.724 1.642 1.511 1.482 1.166
1.8 2.147 2.108 1.985 1.559 1.468 1.374 1.338 1.104
1.9 1.934 1.900 1.784 1.440 1.350 1.277 1.240 1.061
2.0 1.776 1.742 1.646 1.353 1.280 1.210 1.170 1.037

AEQL 0.913 0.885 0.845 0.651 0.606 0.563 0.543 0.430
PCI 2.121 2.056 1.964 1.512 1.408 1.309 1.263 1.000

ARARL 2.273 2.154 2.095 1.605 1.469 1.363 1.305 1.000

Table 5. ARL comparison among EWMA dispersion control charts for � = 0:30 when n = 5 at ARL0 = 200.

� CHEWMA NEWMA Classica
lEWMA S2 FNEWMA RSS

EWMA
Scheme I ODRSS

EWMA
Scheme II

L = 1:600 L = 2:887 L = 3:666 L = 2:591 L = 2:971 L = 3:527 L = 2:612 L = 3:480
1.0 200.694 200.104 200.156 200.127 200.284 200.190 200.112 200.095
1.1 48.262 43.157 47.961 32.300 34.428 32.050 28.889 21.890
1.2 19.034 16.825 18.656 11.370 11.487 10.923 10.021 6.853
1.3 10.297 9.260 9.877 6.130 5.669 5.627 5.309 3.577
1.4 6.754 6.147 6.350 4.080 3.660 3.672 3.501 2.378
1.5 4.992 4.554 4.583 2.970 2.720 2.713 2.633 1.816
1.6 3.929 3.642 3.578 2.380 2.211 2.169 2.097 1.510
1.7 3.281 3.050 2.942 2.040 1.902 1.826 1.802 1.315
1.8 2.816 2.643 2.509 1.778 1.692 1.616 1.602 1.203
1.9 2.503 2.337 2.210 1.590 1.553 1.460 1.429 1.130
2.0 2.259 2.114 1.979 1.480 1.440 1.346 1.329 1.082

AEQL 1.248 1.151 1.139 0.775 0.737 0.709 0.687 0.506
PCI 2.465 2.272 2.250 1.530 1.455 1.401 1.357 1.000

ARARL 2.465 2.258 2.293 1.540 1.473 1.425 1.366 1.000

that the proposed Schemes I and II have smaller
ARL values than the NEWMA chart. In the overall
performance, both the proposed schemes dominate the
NEWMA chart. For example, Scheme I outperformed
NEWMA by over 57% in detecting increases in the
process dispersion.

4.3. FNEWMA control chart (Abbasi and
Miller, 2011a)

Using the Fast Initial Response (FIR) feature of [44],
Abbasi and Miller [25] analyzed the performance of the

FIR NEWMA (FNEWMA) chart and revealed that the
scheme was more sensitive than the NEWMA chart in
monitoring increases in process variance. The addition
of FIR feature signi�cantly enhanced the sensitivity of
the NEWMA chart. Based on the RL properties of
the FNEWMA chart presented in columns 4 and 5 of
Tables 4 and 5, respectively, the scheme has smaller
ARL values than the classical EWMA S2 chart, but
larger ARL values than the proposed Schemes I and II.
Furthermore, AEQL, ARARL, and PCI indicate that
the proposed Schemes I and II are more powerful than
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the FNEWMA chart in the detection of changes in pro-
cess variability. The performance, however, decreases
with an increase in value of the smoothing constant �.

4.4. RSS EWMA S2 chart (Haq et al., 2014a)
Haq et al. [8] proposed two EWMA S2 charts based on
BLUE using SRS and RSS methods. They showed that
ARL pro�les of their schemes not only were smaller
than those of CH-EWMA and NEWMA charts, but
also uniformly outperformed the ARL values of HHW1-
EWMA and HH2-EWMA control charts proposed by
Huwang et al. [5]. In this comparison, we considered
the best-performing RSS EWMA S2 chart, whose RL
pro�les are tabulated in columns 4 and 5 of Tables 4
and 5, respectively. Expectedly, the scheme dominates
CH-EWMA and NEWMA charts, but is not as e�ective
as the FNEWMA chart for moderate to large values of
� (cf. Table 5). Results also indicate that the proposed
Schemes I and II have smaller ARL values than the
RSS EWMA chart. Moreover, the proposed Schemes
I and II are not only more powerful than the BLUE
based RSS EWMA control chart, but also much easier
to compute and implement.

4.5. ODRSS EWMA S2 chart (Haq et al.,
2014b)

As an improvement on the �rst-stage RSS EWMA
S2 charts based on BLUE, Haq et al. [9] suggested a
second-stage Ordered Double-RSS (ODRSS) EWMA
S2 control chart to monitor process departures from
target mean and variance. The upper-sided RL
characteristics of the ODRSS EWMA S2 charts are
presented in column 7 of Tables 4 and 5. Comparison
indicates that the scheme has smaller ARL values
than the CH-EWMA chart, NEWMA chart, Classical

EWMA S2 chart, FNEWMA chart, RSS EWMA
chart, and the proposed Scheme I. In other words, the
scheme outperforms all other charts in the comparison,
except the proposed Scheme II, which uniformly
outperforms the former in detecting increases in the
process dispersion. For example, the proposed Scheme
II is superior to the ODRSS EWMA S2 charts in
detecting increases by at least 26.3% in terms of
AEQL (cf. Table 4). The percentage performance
increases as the value of � increases.

4.6. The e�ect of wrong judgement ranking
It is well known that SRS and perfect ranking are
special cases of imperfect ranking with correlation
coe�cients of �xy = 0 and �xy = 1, respectively.
To investigate the e�ect of imperfect ranking on the
performance of the proposed Schemes I and II, we
compute the ARL pro�les based on n = 5 using
Monte Carlo simulations. Setting ARL0 = 200 and
�xy = 0:5; 0:75; 0:9, the imperfect extreme samples
were generated from a bivariate standard normal dis-
tribution. Using a graphical display of RL curves, we
compare the performance of the imperfect charts with
some existing schemes, namely, the CH-EWMA chart,
classical EWMA S2 chart, and NEWMA chart.

From Figure 1, one can observe that imperfect
ranking does have e�ect on the proposed schemes,
but does not adversely a�ect the e�ciency of the
estimators too. Clearly, the proposed schemes are not
doing badly even in the presence of errors in ranking.
This means that the extreme variations of RSS are
more robust against imperfect ranking. Although
Scheme I appeared to be struggling when �xy � 0:5,
it outperformed the CH-EWMA, classical EWMA S2,
and NEWMA charts when �xy > 0:5. Moreover, the

Figure 1. ARL curves for imperfect Schemes I and II versus CH-EWMA, NEWMA, and classical EWMA S2 charts when
� = 0:30 and n = 5 at ARL0 = 200.
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proposed Scheme II uniformly outperformed all the
other EWMA dispersion charts used in this compar-
ative study.

5. Application example

This application is based on real data obtained from a
�lling bottle process in the production line of the Pepsi-
Cola production company, Al-Khobar, Saudi Arabia,
when the process is in-control [18]. The quality
characteristic of interest is the quantity of liquid inside
each bottle. The original data reasonably satisfy the
normality assumption and, for our study purposes,
we have standardized the whole data. Using the re-
sampling approach of Takahasi and Wakimoto [12],
30 data points each of size n = 5 were randomly
collected using SRS, ERSS, and DERSS methods. The
design parameters for estimating the control limits
and plotting statistics are based on ARL0 = 200 and
� = 0:3. To measure how quickly the proposed schemes
respond to upward shifts in variance, we introduce
some noise by increasing each of the last 10 data points
by 0.02 units. This means that the process is stable
up to the 20th sample point before it goes out of
control. The plotting statistics and control limits for
the classical chart and Schemes I and II based on the
contaminated data are displayed in Figures 2, 3, and
4, respectively.

In Figure 2, the classical EWMA rS
2

chart detects
a random shift in the process dispersion at the 24th
sample point and gives a total of 6 out-of-control
points. The proposed Scheme I (cf. Figure 3), on the
other hand, detects a random shift in the process at
the 23rd sample point with a total of 7 out-of-control
points at sample points 23, 25, 26, 27, 28, 29, and
30. In Figure 4, the proposed scheme has once again
demonstrated its superiority over the classical scheme
and Scheme I by detecting a random shift at the 22nd
sample with a total of 8 out-of-control points. Thus,
the proposed EWMA S2 control charts can be used
in practice as an e�ective alternative to the existing

Figure 2. EWMA S2 chart control chart based on
classical scheme when � = 0:30 and n = 5 at ARL0 = 200.

Figure 3. EWMA S2 chart control chart based on
Scheme I when � = 0:30 and n = 5 at ARL0 = 200.

Figure 4. EWMA S2 chart control chart based on
Scheme II when � = 0:30 and n = 5 at ARL0 = 200.

EWMA schemes in detecting increases in the process
dispersion.

6. Conclusions

This article proposes new EWMA S2 chart statistics
for e�ective monitoring of increases in the dispersion
of a normal process. The performance of the classical
EWMA S2 charts was analyzed. To further increase
the sensitivity of the charts to a wide range of upward
shifts, two additional schemes based on the extreme
variations of RSS were proposed. Monte Carlo sim-
ulation was used to estimate the RL properties of
the new control charts. It is found that there are
some improvements in the performance of the classical
EWMA charts based on unbiased sample variance
over its corresponding logarithmic transformation, S2

ln(S2). Furthermore, the proposed schemes based on
the extreme variations of RSS outperform their existing
counterparts in detecting positive shifts in the process
variability.

The signi�cance of the proposed schemes to
monitor dispersion parameters has also been demon-
strated through an application example. Hence, we
recommend the use of the proposed EWMA schemes
with even subgroup sizes by practitioners, since the
identi�cation of the smallest and largest observations is
much easier than ranking all units in a subgroup. The



M.R. Abujiya et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 378{389 387

scope of this study may be extended to other control
chart structures, particularly those based on EWMA
operator, such as the adaptive cumulative sum and a
variety of combined or mixed design schemes.
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Appendix

From the ERSS based EWMA test statistic:

Cersst = �Zersst + (1� �)Cersst�1;

and by continuous substitution of Cresst�j , j = 1; 2; 3;
:::; t, we can write:

Cersst =�Zersst + �(1� �)Zersst�1

+ �(1� �)2Zersst�2 + �(1� �)3Zersst�3

+ :::+ �(1� �)t�1Zersst

+ (1� �)tCerss0 = �
t�1X
j=0

(1� �)jZersst�j

+ (1� �)tCerss0:

Taking the variance of both sides, we can write:

var(Cersst) =var
�
�
t�1X
j=0

(1� �)jZersst�j

+ (1� �)tCerss0
�

= �2
t�1X
j=0

(1� �)2j

var(Zersst�j) + (1� �)2tvar(Cerss0);

and since Xi;t, i = 1; 2; 3; :::; n are independent normal
random variables, we have:

var(Cersst) =�2
��

1� (1� �)2t�
=
�

1� (1� �)2
��
�2
Wersstj�t=1

=�2
Wersstj�t=1�

��
1�(1��)2t�� =(2��);

where �2
Wersstj�t=1 = var(Zersst�j) is the variance of

Wersst = max
�
�2

0 ; (S2
ersst=�2

0)
�
, when the process is in-

control.
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