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Abstract. A real manufacturing system faces lots of real-world situations, such as
stochastic behaviors; the lack of attention to this issue is noticeable in the previous research.
The aim of this paper is to �nd the optimum layout and the most appropriate handling
transporters for the problem by a novel solving algorithm. The new model contains two
objective functions including the Material Handling Costs (MHC) and the complication
time of jobs (makespan). Real-world situations such as stochastic processing times, random
breakdowns, and cross tra�cs among transporters are considered in this paper. Several
experiment designs have been produced using DOE technique in simulation software and an
Arti�cial Neural Network (ANN) as a meta-model is used to estimate the objective functions
in the metaheuristic algorithms. A hybrid non-dominated sorting genetic algorithm (H-
NSGA-II) is applied for the optimization task. The proposed methodology is evaluated
through a real case study. First, simulation model is validated by comparing it with a real
data set. Then, the prediction performance of ANN is investigated. Finally, the ability
of H-NSGA-II in searching the solution space is compared with the traditional NSGA-II.
The results show that the proposed approach, combing simulation, ANN, and H-NSGA-II,
provides promising solutions for practical applications.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

A facility layout problem is concerned with determining
the arrangement of machines, departments, or cells
on the shop oor. The most important performance
measure to evaluate the e�ciency of a layout is the
Material Handling Costs (MHC) [1]. Tompkins [2]
claimed that 20 to 50 percent of the total operating
expenses in manufacturing were attributed to MHC
and e�ective facility layout could reduce these costs by
10 to 30 percent. The ow of materials and the distance
between machines are important determinants of MHC.
Also, MHC depends on the employed material handling
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vehicles. Material handling vehicles such as forklifts,
trucks, and Automated Guided Vehicles (AGVs) are
used to transport materials between various points.
The type of these transporters inuences the layout of
the machines and vice versa. In traditional systems,
the decisions related to material handling systems
are made after �nalizing the layout or vice versa.
According to Meller and Gau [3], there exists a lack of
parallel engineering in selecting the material handling
system with respect to the facility layout. The lack
of concurrent engineering results in a high degree of
disharmony between the facility layout and material
handling system. Therefore, the decisions on deter-
mining the type of material handling equipment and
the place of machines should be made simultaneously.

While MHC remains the critical index of layout
e�ciency, shorter cycle times have become much im-
portant in today's manufacturing systems [4]. Today's
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consumer market demands that manufacturers must be
competitive. This requires e�cient operation of man-
ufacturing plants and their ability to satisfy customer
demand as quick as possible. On-time delivery and
short manufacturing cycle times, as practical issues,
should be considered during the layout design process.

This paper considers both MHC and completion
time of jobs (makespan) as optimality criteria of
the layout. To be more practical, this paper takes
the stochastic nature of transporters handling time
and transporters failure into account when calculating
the makespan. Also, this paper considers e�ect of
workow interference as a major concern, which has
previously been considered very poorly, in estimating
the makespan. The cross tra�c of transporters can
result in considerable delays [5]. These delays lead
to an increase in cycle times of production system.
Consequently, by taking into account the above factors,
we estimate the makespan with the highest possible
precision. Because of the described complexity of the
manufacturing system, a closed-form analytical expres-
sion to calculate makespan does not exist. Therefore,
we utilize an Arti�cial Neural Network (ANN) to
estimate the makespan. More speci�cally, we �rst
build a series of random layout designs and then
discrete-event simulation model is used to evaluate the
makespan of these designs. The obtained makespan
is applied to structure an ANN. The ANN works as
makespan estimator during the search process. In
order to search the solution space, a hybrid algorithm
based on non-dominated sorting genetic algorithm
(NSGA-II) and an adaptive local search are devel-
oped. The remainder of this paper is organized as
follows.

Section 2 reviews the existing literature. Section 3
presents the mathematical formulation and properties
of the problem. Section 4 explains the proposed
methodology. To show performance of the suggested
method, computational experiments are done in Sec-
tion 5. Finally, the possible extensions of this research
are listed along with the conclusions on the proposed
approach.

2. Literature review

There is no research similar to the work accomplished
in this paper as we review a series of approximately
correlated studies. Rosenblatt [6] was the �rst who
introduced the concept of multi-objective approach to
facility layout problems. He considered both qualita-
tive and quantitative objectives together to come up
with a multi-objective formulation. Rosenblatt also
proposed a graphical method to generate a series of
e�cient solutions based on the conicting objectives of
minimizing the ow cost and maximizing the closeness
rating.

Simulation is known as a powerful tool to evaluate
various alternatives of facility layout. Computer simu-
lation has been applied in di�erent facility layout prob-
lems (for example, see [4,7-11]). Gupta [12] employed
a simulation model to select the best layout from a set
of candidate layouts. He �rstly generated a number
of material ows based on a prede�ned probability
distribution and found the optimum layouts of each
ow. He de�ned the best solution as the layout with
each department pair being separated by the average
distance of the generated layouts. Then, the exibility
of the layout was measured by evaluating its deviation
from the ideal distances.

According to Grajo [13], layout optimization and
simulation are two tasks that are crucial to any facility
planning and layout study. This is because simulation
models can reect all of the attributes of real systems
that are di�cult to consider using analytical models for
the layout optimization problems. Azadivar and Tomp-
kins [14] suggested a simulation model with a GA-based
optimization algorithm. In their method, simulation
models were used to evaluate the objective functions
and GA-based algorithm was used to search the op-
timum solution. Azadivar and Wang [4] presented a
facility layout optimization technique that considered
the dynamic features and operational constraints of the
system as a whole. In their proposed approach, the
performance measures of system, such as cycle time
and productivity, were evaluated by simulation. Pagell
and Melnyk [9] investigated three layouts consisting
of the existing worker-paced assembly line, a modi�ed
assembly line, and service cells to improve the overall
operation of a service process. They used computer
simulation to stimulate a critical analysis of the pro-
cess.

Kulturel-Konak et al. [15] presented a case in
which the demand rate was considered as a stochastic
parameter. They also allowed routing exibility for the
products so that they were permitted to follow di�erent
routes in the facility. They used a simulation approach
to model the uncertainty. In their simulation, the
mean, variance, and covariance of interdepartmental
ows were estimated; then, these estimations were
used in the design process. Tabu search metaheuristic
was employed to solve the problem. Jithavech and
Krishnan [11] presented a simulation-based method to
evaluate the uncertainty associated with the layout.
They validated their simulation model against analyt-
ical methods. Results from case studies showed that
the simulation-based procedure resulted in reduction
of risk as high as 80%. Zhou et al. [10] introduced
a method where simulation was combined with Ge-
netic Algorithm (GA) to optimize the layout. They
tested the optimized site layout within a simulation
environment. Altuntas and Selim [16] proposed four
di�erent weighted association rule-based data mining
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approaches to solve facility layout problem. They
constructed a simulation model and compared the
layouts obtained by the proposed approaches in terms
of �ve performance measures, namely machine utiliza-
tion, total amount of products produced, cycle time,
transfer time, and waiting time in queue. Dombrowskia
and Ernst [17] presented a scenario-based simulation
approach that used scenario technique, morphological
analysis, and discrete event simulation to �nd out
factory layout. Karpe et al. [18] presented a state
of the art review of simulation methods for facility
layout problems. Azadeh et al. [19] presented an
integrated computer simulation-stochastic data envel-
opment analysis approach to deal with the facility
layout problem. In their research, computer simulation
network was used for performance modeling of each
layout design. The outputs of simulation were average
time-in-system, average queue length, and average
machine utilization. By comparing their study with
some of the relevant studies and methodologies in the
literature, they revealed the high ability of the method
to handle complex layout problems in manufacturing
systems.

This is the �rst study that introduces an inte-
grated computer simulation, ANN, and H-NSGA-II as
an optimization approach for handling imprecision and
non-linearity of layout problems in a special case of
manufacturing system.

3. Problem description

The manufacturing system addressed here consists of
m machines in which n types of parts, each requiring
a set of operations, are to be processed. During
the manufacturing process, the transporters move the
materials from one machine to another until all the
processes are completed. The transporters' handling
time is stochastic with known probability distribution.

A desired design for the system requires an ar-
rangement of m machines in m prede�ned positions
and assignment of transporters to each pair of machines
such that both MHC and makespan are minimized.
Since minimization of MHC does not match minimiza-
tion of makespan, the problem falls into the class of
multi-objective optimization problems. To explain the
conict between two objective functions, adapted from
Chiang et al. [20], an eight-machine example with the
workow matrix has been shown in Figure 1. The
solution to this problem using MHC-based layout is
shown in Figure 1(a). While this layout planning will
minimize the MHC, it is clear that there are numerous
points at which transporters interference occurs. An
alternative layout, taking workow interference into
account, can be providing a workow in which there
are any conicting workows (Figure 1(b)).

Other assumptions considered are as follows:

� The distances between machines are determined a
priori;

� Flow between machines is deterministic;
� Machines and locations are of equal size;
� The initial allocation cost of a machine in a location

is ignored;
� The transporters' failure may occur, which leads to

increase in their processing time.

3.1. Model formulation
In this section, the nonlinear integer programming
formulations of the problem are presented. Before
proceeding to the mathematical model, we introduce
the indices, parameters, and decision variables:

Indices and parameters
i; j Index of machines
k; l Index of locations
tr Index of transporter
M The number of machines or the

locations
Fi;j Amount of material ow among

machines i and j
Dk;l The distance between the locations k

and l
Ci;j Unit material handling cost between

machines i and j

Figure 1. Solution to the eight-facility example: (a)
Minimizing MHC, and (b) minimizing workow
interference [20].
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FCtr Fixed cost of establishing the
transporter type tr

mtr Maximum available transporter type tr
captr Capacity of the transporter type tr

Decision variables

Xi;k

8><>:1; if the machine i
is assigned to the location k

0; otherwise

Y tri;j

8><>:1; if the transporter tr is selected to transfer
parts from the machine i to the machine j

0; otherwise

MinZ1 =
� MX
i=1

MX
j=1

MX
k=1

MX
l=1

TRX
tr=1

�
Fi;j
captr

�
� Ci;j

�Dk;l �Xi;k �Xj;l � Y tri;j
�

+
MX
i=1

MX
j=1

TRX
tr=1

Y tri;j � FCtr; (1)

MinZ2 = Makespan; (2)

MX
k=1

Xi;k = 1; 8i = 1; 2; :::;M; (3)

MX
i=1

Xi;k = 1; 8k = 1; 2; :::;M; (4)

TRX
tr=1

Y tri;j = sgni;j ; 8i = 1; 2; :::;M � 1;

8k = i+ 1; 2; :::;M ; (5)

sgni;j

8><>:1; if Fi;j > 0
8i; j = 1; 2; :::;M

0; otherwise (6)

Y trj;i = Y tri;j ; 8i; j = 1; 2; :::;M ; 8tr = 1; 2; :::; TR;
(7)

M�1X
i=1

MX
j=i+1

Y tri;j � mtr; 8tr = 1; 2; :::; TR; (8)

Xi;k; Y tri;j 2 f0; 1g; i; j; k = 1; 2; ::;M ;

8tr = 1; 2; :::; TR: (9)

The �rst term of objective function (1) is related to

the variable MHC and the second term of it is related
to �xed cost of the transporters. The �rst objective
function of the problem is computed by analytical
relationships and it focuses on minimizing the handling
costs. Objective function (2), which is evaluated by
ANNs, focuses on minimizing the whole processing
completion time. Constraint set (3) states that each
machine is assigned to a location and Constraint set
(4) guarantees that each location is occupied by only
one machine. Constraint set (5) allocates a trans-
porter for movement between two special machines
only when material ow exists. Constraint set (8)
controls the maximum available number of each type
of transporters. The decision variables are kept either
at 1 or at 0 by Constraint set (9).

4. Proposed ANN-based optimization

Because of complexity and uncertainty of many real-
life problems, it is very di�cult to create a precise
analytical model. In such complicated situations,
simulation is proven as a powerful computer-based
tool that can be used instead of the analytical models
to study the behavior of complex real systems [21].
Even though simulation models are skillful in capturing
complex system behaviors, simulation is essentially a
test approach and the way to get the optimum solutions
is not clear in it. Therefore, as Fu [21] pointed
out, there is a need to develop algorithms that take
advantage of the optimization technique, while being
as accurate as simulation. The principle of simulation
optimization is that during the optimization process,
objective function and constraints are evaluated by
simulation model.

Another weakness of simulation model comes
from its requirement of a number of replications, which
usually make simulation a very time consuming pro-
cess. In order to take a step towards �lling this gap, this
paper proposes a novel simulation-based optimization
framework, which integrates the simulation modeling,
arti�cial neural network, and metaheuristic optimiza-
tion algorithm. The framework is shown in Figure 2. A
series of di�erent scenarios are generated. Then, based
on these scenarios, discrete event simulation model is
run. This input-output data is used to train an ANN
to approximate the objective function. ANN acts just
like a tremendous intelligent brain, which is trained
by simulation data and has the capability to estimate
the makespan as fast as analytical relationships and as
accurate as simulation models.

To search the solution space, a multi-objective
optimization algorithm, called NSGA-II, has been com-
bined with an adaptive local search. The NSGA-II
showed the capacity to robustly solve large complicated
multi-objective problems [22]. In our hybrid NSGA-
II (H-NSGA-II), ANN is considered as a chromosomes
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Figure 2. Framework of the proposed method.

�tness function evaluator. The combination of sim-
ulation, ANN, and optimization technique provides
an e�ective means for the high complex optimiza-
tion problems. For more information on simulation-
optimization approaches, advances, and applications,
we refer readers to recent reviews by Swisher et al. [23]
and Fu et al. [24].

4.1. Arti�cial neural networks
Arti�cial Neural Networks (ANNs) are known as ef-
fective techniques for approximating non-linear model
functions [25]. Considering the highly non-linear re-
lation between the makespan and the selected trans-
porters, the ANNs can be e�ectively applied to �nd
this inde�nite relation. ANNs consist of di�erent
interconnected processing elements that aim to solve
a speci�c problem. These small computing elements
are called neurons (Figure 3). The neuron takes inputs,
processes them, and transfers the outputs. Neurons are
connected to each other by links known as synapses,
and associated with each synapse there is a weight
factor. First, all the input signals, design con�guration
(Xi), transferred by synapses, have to be multiplied
by their own weighting (Wi). Then, a special value
bias (b) is added to the signals to generate a value (u).
Finally, an activation function transfers the value (u) to
the output (Y ). The bias and activation function form
a node. The output can be the input of other nodes.
Through a learning algorithm, all the weights (Wi) are
iteratively modi�ed to minimize the di�erence between

Figure 3. An example of a neuron for the interested
problem.

Figure 4. An example to input in ANN model.

outputs (Y ) and desired outputs. Finally, the trained
neural network can be used to immediately predict the
simulation results of new con�gurations.

There are many kinds of neural network models.
Multi-Layered Perceptron Neural Networks (MLPNNs)
with nonlinear transfer functions have been considered
in the present study. They are purely empirical models
that can theoretically mimic any relationship to any
degree of precision ([26,27]). They consist of three
layers, including one input layer, one or more hidden
layers, and one output layer. The input layer consists of
the decision variables associated with machines' loca-
tion (Xi;k) and transporters' allocation considerations
(Y tri;j); and the output layer gives the outcome of the
process or the makespan. An example of the inputs is
given in Figure 4. In this con�guration, machine 1 is
assigned to location 3, machine 2 is assigned to location
1, etc. Also, materials between machines 1 and 2 are
moved by transporter 1, materials between machines 1
and 3 are moved by transporter 2, etc.

4.2. Hybrid non-dominated sorting genetic
algorithm

NSGA-II is one of the contemporary multi-objective
evolutionary algorithms that exhibits high performance
and has been widely applied in various disciplines. The
algorithm makes use of a fast non-dominating sorting
approach to discriminate solutions, which is based on
the concept of Pareto dominance and optimality. The
concept of Pareto dominance for minimization problem
can be expressed as follows:

Consider a multi-objective model with a set of
conict objectives, f(~x) = (f1(~x); f2(~x); :::; fn(~x)),
subject to g(x) = (g1(~x); g2(~x); :::; gm(~x)) � 0, where
~x 2 X. ~x is the decision vector and X is the feasible
solution space. f(~x) is the vector-valued function and
g(x) is a vector of constraints. We say solution ~a
dominates solution ~b if fi(~a) � fi(~b) 8i = 1; 2; :::; n
and 9i : fi(~a) < fi(~b).

The NSGA-II starts with random generation of
population. The binary tournament selection selects
the parents based on the rank and crowding distance.
Then, genetic operations such as crossover and muta-
tion are used to generate the child populations. The
detail of the complete method can be found in Deb's
paper [28]. Also, in order to perform a careful search
around the most promising area, an adaptive local
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search is combined with NSGA-II. The local search
operator helps to intensify the search in various areas
pointed by the genetic mechanisms that in return can
improve convergence towards real Pareto front. The
local search is applied in a heuristic manner so that
it is only applied over some special generations. The
main components of the algorithm and the concepts of
adaptive local search are explained in the next sections.

4.2.1. Non-dominated sorting
Before selection is performed, every individual (chro-
mosome) in the population is assigned a rank based on
non-domination. First, the non-dominated solutions
are assigned rank 1. Then, the individuals of rank 1 are
eliminated and non-dominated solutions are assigned
rank 2. This process is repeated until all individuals
are classi�ed. The crowding distance metric proposed
by [28] is utilized, where the crowding distance of an
individual is the perimeter of the rectangle with its
nearest neighbors at diagonally opposite corners. Thus,
if two individuals have the same rank, the one with a
larger crowding distance is better.

4.2.2. Adaptive local search scheme
The H-NSGA-II presented in this article uses adaptive
Simulated Annealing (SA) algorithm as the local search
because of its good convergence rate. In order to adapt
SA to optimize multiple objectives simultaneously, the
Pareto dominance concept is utilized; this means that
a dominated or non-dominated neighbor is treated like
a worse neighbor and moving towards it is done with
a certain probability. The rest of the algorithm is just
like a typical SA procedure. Since the SA is applied to
all the Pareto front solutions and this may lead to high
computational e�orts, local search scheme is applied
only in some generations. We develop a heuristic
index, called Similarity Coe�cient (SC), based on the
executed local search. First, we compute the SC for
each pair of chromosomes by Eq. (10):

SCab =PM
i=1

n
@(Xia; Xib) +

PM
i=1
PM
j=1f@(Yija; Yijb)g

o
M

;
(10)

where Xia and Xib are the locations of machine `i' in
the chromosomes `a' and `b' and Yija and Yijb are the
selected transporters to handle pares between machine
`i' and machine `j' in the chromosomes a and b. M 0 is
the number of genes which are not empty. @(�; �) is the
similarity between two especial genes and is expressed
by Eq. (11);

@(�; �) =

(
1 if � = �
0 otherwise

(11)

The average similarity coe�cient of the population is

calculated as follows:

SC =
PN�1
a=1

PN
b=a+1 SC ab�
N
2

� ; (12)

in which N is the number of chromosomes in pop-
ulation. Finally, considering a pre-de�ned threshold
similarity coe�cient (') and the obtained average
similarity coe�cient, the local search scheme will be
automatically incorporated into the NSGA-II loop as
follows:8>>>>><>>>>>:

apply local search
scheme to NSGA-II loop if SC < '

do not use local search
in NSGA-II loop otherwise

4.2.3. Chromosome structure
The proposed chromosome consists of two matrices,
each representing a special area of decision making.
The �rst part shows how machines are placed in
locations; the second part represents the allocation
of transporters to each pair of machines. Figure 5
shows an example chromosome in which machine 1 is
placed in location 1, machine 3 is placed in location 2,
machine 2 is placed in location 3, and machine 4 is
placed in location 4. The materials between machine 1
and machine 2 are moved by transporter 1, materials
between machine 1 and machine 3 are moved by
transporter 4, etc.

4.2.4. Crossover operator
The crossover operator combines two chromosomes to
produce a new chromosome. We apply two crossover
types that only generate feasible solutions. The �rst
proposed crossover operator has the following steps;

1. Strings related to machine layout are selected;
2. A cross point is randomly selected (cross points

1; :::;M);
3. The machine numbers before the cross point of

parent 1 are copied in the o�spring. The remaining
machine numbers are put into empty positions
according to their relative locations in parent 2.

Figure 5. An example of chromosome representation.
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Figure 6. An example of crossover type 1.

Figure 6 shows the crossover for a problem with
4 machines.

In order to cross the sub-matrices related to
transporters, a uniform crossover operator is used in
which, �rst, a Boolean matrix is generated; then, in
cells in which Boolean matrix is equal to one, the data
are �lled similar to the o�spring from parent 1 and
in cells in which Boolean matrix is equal to zero, the
o�spring is �lled similar to that from parent 2.

In order to apply the crossover of type 2, a 1� 2
reference vector is �rst generated. Then, if the �rst
call of reference vector is 1, the machine layout matrix
of o�spring will be copied from parent 1; if the �rst
call of reference vector is 0, the machine layout matrix
of o�spring will be copied from parent 2. This way is
repeated for transporters matrix (Figure 7).

4.2.5. Mutation
In this paper, the mutation operation is performed only
on the machine layout matrix. First, a chromosome
is randomly selected. Then, to create a hard change,
the genes of the selected chromosome are arranged
inversely (Figure 8).

4.2.6. The neighbourhood structure
2-change neighborhood is used to de�ne the neighbor-
hood in the local search algorithm. First, we select

Figure 7. An example of crossover type 2.

Figure 8. An example of mutation operator.

Figure 9. An example of neighborhood operator.

a sub-matrix randomly. Then, two di�erent cells are
selected randomly and the numbers in these cells are
exchanged. Figure 9 shows a neighborhood in which
sub-matrix 1 changes in genes 2 and 4.

4.2.7. Cooling schedule
The performance of this algorithm also depends on the
cooling schedule, which is relevant to the temperature
updating function. In the proportional decrement
scheme, temperature decreases at steps k and k + 1
of the outer loop by:

Tk+1 = �Tk; (13)

where � is the cooling rate and is obtained by some
experiments.

4.2.8. Stopping criterion
To limit the number of replications of both NSGA-II
and SA algorithms, some convergence experiments are
performed and the best criterion is applied as follows.

NSGA-II will be stopped in the case when total
number of iterations reaches a prede�ned number that
is set according to the result of experimental design.
For stopping SA in a temperature level, �rst, we de�ne
the set of m iterations as a round. If the mean change
between two successive rounds remains �xed within
0.95% con�dence interval, we reduce the temperature.
For the outer loop of SA, a certain number of iterations
is set as the stopping criterion, and this value is
determined according to the result of experiment.

5. Computational experiments

To demonstrate and validate the simulation-based op-
timization framework proposed in this paper, a real-
life production system is studied. This case study
involves 6 machines, named M1, M2, M3, M4, M5,
and M6, and 6 products. The demand of product
is known (Table 1) and so the material ow between
machines is clear. The distance between locations and
capacity and speed of the available transporters are,
respectively, shown in Tables 2 and 3. The MHC is
�xed at 1 $/meter. The model is coded in Enterprise
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Table 1. Demand rate of products (per day).

Demand Sequence
Product 1 300 1!3!6
Product 2 200 1!2!1!3!5!6
Product 3 150 1!3!5!2!6
Product 4 220 1!2!3!6
Product 5 150 1!2!4!6
Product 6 90 1!2!6

Figure 10. Representation of the real production system
in ED simulation software.

Dynamics 8 developer (ED). A graphical representation
of the system is shown in Figure 10.

The computational experiments are accomplished
in three phases. In the �rst phase, we validate the
simulation model through real data analysis. In the
second phase, an ANN is developed and its accuracy
in predicting the makespan is investigated. In the last
phase, a comparison between H-NSGA� optimization
based on arti�cial neural networks and normal NSGA-
� optimization based on arti�cial neural networks is
presented. The metaheuristic optimization algorithms
are coded by MATLAB and are implemented in a desk-
top with a 3.20-GHz CPU running Windows 7 (64 bit).

5.1. Simulation model validation
In this section, we investigate whether the simulation
model behaves in accordance with the actual system or
not. To assess this, simulation results of 30 days are
compared with the actual measurement data in terms
of makespan for each day. The results are presented in
Table 4. As presented in this table, there is an error
less than 2%, showing high accuracy of the designed
simulation model.

5.2. Developing an arti�cial neural network
In this section, a set of proper scenarios are selected
for the proposed simulation model to generate training

Table 3. Travel path distance between locations (meter).

From/to 1 2 3 4 5 6
1 0 10 20 15 20 30
2 10 0 10 20 15 20
3 20 10 0 25 20 15
4 15 20 25 0 10 20
5 20 15 20 10 0 10
6 30 20 15 20 10 0

data. Then, a neural network is trained using this data
set. Finally, some validation tests are conducted and
the ability of designed ANN to predict the makespan
is investigated. In this case, there are 16 factors,
including 6 factors related to machines' location, each
in 6 levels, and 10 factors related to transporters
selection, each in 4 levels. The total number of possible
experiments is 66 � 104, which is so computationally
intractable. To overcome this problem, the con�g-
uration of all experiments is generated by Uniform
Design (UD). UD was proposed by Fang [29]. Its
most important feature is that it decreases the number
of experimental con�gurations, especially when the
experimental region has many factors and multiple
levels. According to the uniform design table of
the form Un(616), the number of experiments can be
in the range of 17 to 30 (n is the desired number
of experiments). Because n should be the common
multiple of all the levels of factors, it can only be
24. Therefore, the uniform design table U24, shown in
Table A.1 in Appendix A, is selected. In Appendix A,
for factors 1-6 (machines location) the numbers from
1 to 4 signal location 1, the numbers from 5 to 8
signal location 2, etc. For factors 7-16 (transporters
selection), the numbers from 1 to 6 signal transporters
type 1, the numbers from 7 to 12 signal transporters
type 2, etc. The simulation results of all 24 experiments
are presented in Appendix A.

The present problem had 16 control factors as the
input neurons, and the makespan as the single output.
Thus, our ANN includes 16 input nodes and one output
node. The number of nodes in the hidden layer can be
estimated by Eq. (14) proposed by Chen and Yang [30]:

h =
i+ o

2
+
p
N; (14)

where i is the number of input nodes, o is the number

Table 2. Characteristics of the transporters.

Capacity Speed (m/s) Fixed
cost ($)

No of available
transporters

Transporter 1 10 Normal (3,0.5) 500 4
Transporter 2 15 Normal (7,2) 700 3
Transporter 3 10 Normal (3,1) 450 5
Transporter 4 10 Normal (8,2.5) 600 2



372 P. Azimi and P. Soo�/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 364{377

Table 4. Results of real system and simulation model.

Days
Obtained makespan

% Error
no.

(minute)
Real system Simulation

1 387 389 0.52
2 340 347 2.06
3 390 401 2.82
4 395 386 2.28
5 384 394 2.60
6 364 383 5.22
7 400 397 0.75
8 400 407 1.75
9 386 393 1.81
10 342 348 1.75
11 399 390 2.26
12 358 355 0.84
13 352 348 1.14
14 396 391 1.26
15 388 394 1.55
16 382 378 1.05
17 340 351 3.24
18 383 391 2.09
19 375 379 1.07
20 342 347 1.46
21 391 380 2.81
22 363 372 2.48
23 388 393 1.29
24 356 370 3.93
25 367 371 1.09
26 399 411 3.01
27 368 361 1.90
28 372 374 0.54
29 385 382 0.78
30 378 387 2.38

Average 375 379 1.92

Table 5. The optimal ANN parameters.

Parameter value

Hidden layers 1
Nodes in hidden layer 14
Learning rate 0.015

of output nodes, N is the number experiments, and h is
the number of nodes in the hidden layer. Consequently,
h = 16+1

2 +
p

24 � 14. The optimal ANN con�guration,
which was found experimentally, is summarized in
Table 5.

After determining the structure of ANN, back-
propagation algorithm is carried out to train the
network. The back-propagation algorithm has power-
ful approximation capacity and is applicable to both
binary and continuous inputs. The type of transfer
function employed in this work is a sigmoid function
(Eq. (15)) at hidden layer and a linear transfer function
at output layer. Neural Network Toolbox V4.0 of MAT-
LAB mathematical software was used for makespan
prediction:

f(x) =
1

1 + e�x : (15)

For inter-comparisons between the simulated and mea-
sured makespans using the ANN model, two perfor-
mance measures, i.e. the Root Mean Squared Error
(RMSE) and coe�cient of determination (R2), are used
as follows [31]:

RMSE =
1
m

vuut MX
i=1

�
Yi � Yi
Yi

�2

(16)

where m is the number of samples, Yi is the actual
response of sample i, and Ŷi is the predicted response
of sample i. According to RMSE = 0.01545 and R2 =
0:9771, the ANN model has been properly trained and
has good quality predictions.

Usually, it is necessary to check the �tted model
to ensure that it provides an adequate approximation
to the new input data. To this aim, the ANN results
are compared with respect to their deviations from
the simulation results for 15 new trials, which do
not belong to the training data set. We propose the
con�dence intervals to evaluate the overall performance
of the neural network, because interval estimates are
much more useful than point estimates for decision-
making. Each trial is simulated for 10 replications
and E(Ysim) and V AR(Ysim) are combined to form
con�dence intervals for each trial (Eq. (17)):

Interval = E(Ysim)� t�
2 ;r�r

p
V AR(Ysim): (17)

As show in Figure 11, in each experiment trail, the
predicted result by ANN (red points) falls within
the interval obtained by the simulation, and so the
capabilities of structured ANN will be proven.

5.3. Evaluation of the proposed metaheuristic
algorithm

We tested the optimization framework on numerous
random data sets that di�er with respect to input
parameters such as products demand, transporters
capacity, material handling costs, etc. The main
challenge in comparing the two multi-objective algo-
rithms is that they do not try to �nd one optimal
solution, but a set of Pareto solutions. A good
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Table 6. The parameters of the algorithms and their levels.

Algorithm Parameter Description Low
level

High
level

Optimum
level

H-NSGA-II

Pc Percent of cross over 0.6 0.9 0.85
Pm Percent of mutation 0.05 0.15 0.08

N � pop Initial size of pop 50 150 130
N � iter Number of iteration 50 300 230

� Temperature decrement rate 0.96 0.99 0.985
m Number of iterations inside each inner loop 5 30 20

Out� L Number of outer loop iterations 50 200 127

NSGA-II

Pc Percent of cross over 0.6 0.9 0.80
Pm Percent of mutation 0.05 0.15 0.14

N � pop Initial size of pop 50 150 140
N � iter Number of iterations 50 300 260

Figure 11. Comparison of the results obtained by
simulation and ANN model.

Pareto front is characterized by (i) converging to
the real Pareto-optimal front, and (ii) maximizing
the diversity of the Pareto solutions. Consequently,
the quality of multi-objective optimization algorithms
is often di�cult to de�ne precisely by any single
performance metric. A list of indicators has been
introduced over the past few decades. To analyze
the performance of the H-NSGA-II, we compare its
Pareto fronts with those obtained by common NSGA-
II in terms of metrics Pareto Ratio (PR), Spacing (S),
Overall Pareto Spread (OPS), and Computational time
(CPU time). PR is the ability of a multi-objective
optimization method to produce non-dominated so-
lutions. S measures the standard deviation of the
distances among solutions of the Pareto front. The
smaller the value of the spacing metric, the better are
the solutions spread along the obtained front. OPS
quanti�es how widely the non-dominated solutions

Figure 12. Performance of the algorithms in terms of
MHC.

spread over the objectives pace considering all the
objectives.

Before evaluating the algorithms, both algorithms
are tuned by response surface methodology. The
explored bound and optimum level of each parameter
are presented in Table 6. Then, the parameters of the
algorithms are �xed to their optimum level and test
problems are solved by the algorithms. Figures 12
and 13 present the results of the proposed H-NSGA-
II and normal NSGA-II in the context of MHC and
makespan. As shown in Figure 12, in terms of the best
MHC index, H-NSGA-II outperforms NSGA-II in all
the test problems, except for P6. Also, in terms of the
best makespan, H-NSGA-II �nds better results than
NSGA-II in all problems, except for P5 (Figure 13).
Furthermore, the average values for both objectives
considerably improve with the introduction of the
adaptive scheme. We also analyze the performances
of the algorithms using statistical tests.

Appendix B highlights the values of PR, S, OPS,
and CPU time performance measures. As discussed
above, these scales are used to measure convergence
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Figure 13. Performance of the algorithms in terms of
makespan.

and diversity of Pareto-front for handling multiple
objectives. As presented in Appendix B, the H-NSGA-
II approach with adaptive local search shows better
behavior than the approach without local search. In
order to statistically analyze the results shown in
Appendix B, we use Student's t-test. The hypothesis
is:

H0 : �1 � �2 = 0;

H1 : �1 � �2 6= 0;

in which �1 is the obtained average value by H-NSGA-
II and �2 is the obtained value by NSGA-II algorithm.
The results are shown in Table 7. According to Table 7,
it can be seen that in terms of PR and CPU time index,
there is no meaningful di�erence between algorithms.
But, H-NSGA-II outperforms NSGA-II with respect to
spacing and OPS metrics. The last column of Table B.1
in Appendix B shows the computational times of the
algorithms for each test problem. Although there was
no signi�cant CPU time di�erence between algorithms,
according to \Mean" statistics, it can be claimed that
H-NSGA-II is relatively faster than NSGA-II. This
statement implies that although embedding the SA in

some generations of NSGA-II may lead to increase in
computational time, large increase in solution quality
and speed of convergence can compensate it.

6. Conclusion and remarks

This paper presents a new model and a novel solving
approach to solve facility layout optimization problems
for manufacturing systems with dynamic character-
istics. The proposed approach integrates computer
simulation, ANN, and H-NSGA-II techniques to over-
come the limitations of traditional layout optimization
methods. The main motivation behind choosing this
problem is the necessity for integrating decisions for the
layout of machines and material handling vehicles. The
results show that the application of an ANN model can
predict the makespan in a complicated manufacturing
system, e�ciently. Despite the previous models, this
paper considers real aspects of material handling such
as random breakdowns, random processing times, and
waiting times during the handling process. Since
these aspects are stochastic variables and theoretically
di�cult to obtain, the ANN model, which has been
trained by the simulation model results, computes the
problem makespan.

In the experimental results, there were 66 alterna-
tives for the layout of machines and 104 alternatives for
selecting the transporters; therefore, there were a total
number of 66�104 designs. However, in the experiment,
only 24 simulation con�gurations were run to train
the data set needed for ANN model. A case study
was presented and the simulation results were given
for validation of the ANN results. In all experiments,
the ANN precision was 95%. Finally, a hybrid non-
dominated sorting genetic algorithm was proposed to
search the solution space. The performance of the
proposed algorithm was compared with that of the
normal non-dominated sorting genetic algorithm. In
terms of PR and CPU time criteria, both algorithms

Table 7. Results of two-sample T -test.

Source No Mean St. Dev 95% CI for di�erence T -Value P -Value

PR H-NSGA-II 30 0.676 0.206 (-0.0697, 0.1217) 0.54 0.588
NSGA-II 30 0.650 0.168

OPS H-NSGA-II 30 0.557 0.177 (0.0282, 0.1812) 2.75 0.008
NSGA-II 30 0.452 0.110

Spacing H-NSGA-II 30 6.02 5.33 (-9.29, -0.27) -2.14 0.038
NSGA-II 30 10.8 11.0

CPU time H-NSGA-II 30 1116 511 (-405, 169) -0.82 0.413
NSGA-II 30 1234 579



P. Azimi and P. Soo�/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 364{377 375

performed similar. But, in terms of OPS and spac-
ing metric criteria, the performance of the proposed
hybrid algorithm was statistically better. For future
research, one may extend unequal area constraint
of departments, which demonstrates a more realistic
representation of real-world manufacturing facilities.
Also, other factors a�ecting the makespan, such as
human factors, can be investigated.
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Appendix A

The uniform design of experiments is shown in Table
A.1.

Appendix B

The multi objective performance measures obtained for
the algorithms is shown in Table B.1.
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Table A.1. Uniform design of experiments.

Exp. Factors Makespan

no. X1 X2 X3 X4 X5 X6 Y12 Y13 Y23 Y24 Y26 Y35 Y36 Y46 Y52 Y56 (min)

1 24 2 5 16 10 19 13 9 1 8 4 8 3 10 21 10 429

2 8 24 20 14 1 12 15 8 2 15 24 15 12 11 2 5 672

3 9 4 17 23 16 19 7 12 12 20 21 20 7 4 22 20 570

4 2 17 11 6 15 22 4 11 3 21 11 4 20 9 19 21 414

5 4 10 5 20 23 12 23 23 6 14 14 14 11 6 15 4 712

6 14 7 22 8 6 24 10 16 15 13 1 12 24 7 20 1 514

7 1 8 21 12 14 20 12 10 24 10 16 21 17 24 6 6 957

8 11 23 4 15 11 8 20 13 17 1 5 17 22 5 8 22 408

9 18 13 3 11 2 16 5 24 19 17 12 16 10 19 23 24 737

10 7 3 14 17 23 11 17 4 8 7 7 22 13 20 17 16 868

11 21 12 19 2 22 17 2 5 9 4 13 18 18 3 14 9 344

12 16 17 6 3 7 23 22 2 7 22 20 11 23 17 11 14 1003

13 23 18 12 3 9 7 21 14 22 19 18 24 6 12 16 3 1028

14 19 1 23 9 13 8 24 15 5 3 15 3 8 21 7 23 431

15 13 4 18 21 12 6 1 17 10 23 2 19 1 23 9 7 739

16 17 22 15 13 21 1 15 18 13 9 23 7 21 22 24 11 667

17 15 6 3 11 20 24 6 3 18 12 22 13 4 8 3 19 457

18 22 19 13 2 6 12 9 20 4 11 6 23 14 13 4 18 692

19 12 1 6 15 18 24 18 22 14 24 8 6 16 15 1 8 834

20 3 21 21 10 24 18 19 6 20 16 3 10 5 16 13 15 794

21 20 11 16 21 5 2 14 7 23 18 10 1 15 2 5 13 529

22 5 3 20 13 9 15 3 21 21 5 19 9 19 14 12 17 449

23 10 16 2 24 17 7 7 1 16 2 9 2 9 18 18 2 290

24 6 20 8 3 12 21 11 19 11 6 17 5 2 1 10 12 317
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Table B.1. Multi-objective performance measures obtained for the algorithms.

No.
Problem

Pareto Ratio
(PR)

Overall Pareto
Spread (OPS)

Spacing
(S)

CPU time
(sec)

H
-N

S
G

A
-I

I

N
S
G

A
-I

I

H
-N

S
G

A
-I

I

N
S
G

A
-I

I

H
-N

S
G

A
-I

I

N
S
G

A
-I

I

H
-N

S
G

A
-I

I

N
S
G

A
-I

I

P1 0.808 0.593 0.520 0.399 2.57 8.2 571 610

P2 0.818 0.607 0.652 0.628 3.26 5.93 489 525

P3 0.898 0.714 0.531 0.576 1.66 2.17 505 544

P4 0.880 0.696 0.695 0.600 6.73 9.55 436 441

P5 0.870 1.352 0.236 0.435 3.8 11.51 642 652

P6 0.748 0.787 0.283 0.241 4.6 2.56 566 610

P7 0.499 0.737 0.598 0.512 5.33 8.99 664 685

P8 0.834 0.431 0.195 0.416 2.14 11.11 521 562

P9 0.981 0.806 0.398 0.458 8.38 0.92 609 638

P10 0.959 0.663 0.748 0.418 2.19 18.95 400 394

P11 0.662 0.717 0.842 0.531 5.05 10.83 1038 1182

P12 0.895 0.660 0.566 0.669 7.96 0.81 1113 1220

P13 0.520 0.635 0.471 0.418 2.55 8.55 975 1083

P14 0.980 0.735 0.780 0.478 6.15 2.08 964 1012

P15 0.942 0.729 0.613 0.361 0.77 1.99 913 954

P16 0.662 0.648 0.458 0.354 3.04 3.66 963 1038

P17 0.465 0.690 0.856 0.239 18.86 39.54 1226 1384

P18 0.566 0.727 0.457 0.456 10.84 19.36 1294 1369

P19 0.674 0.632 0.516 0.510 1.69 3.55 1096 1231

P20 0.426 0.640 0.748 0.400 4.93 1.71 1146 1264

P21 0.500 0.433 0.433 0.306 10.22 18.66 1996 2181

P22 0.556 0.606 0.489 0.394 0.9 1.3 1767 1910

P23 0.485 0.586 0.462 0.546 2.87 6.25 1791 2078

P24 0.660 0.480 0.438 0.507 1.66 2.68 1933 2235

P25 0.590 0.438 0.749 0.392 9.92 17.18 1612 1863

P26 0.680 0.674 0.408 0.643 10.75 17.29 1749 1993

P27 0.360 0.550 0.856 0.529 23.52 36.98 1568 1798

P28 0.318 0.472 0.547 0.445 2.33 5.36 1752 1968

P29 0.243 0.618 0.695 0.390 3.36 7.54 1648 1837

P30 0.793 0.432 0.471 0.319 12.58 38.73 1538 1769




