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Abstract. In this study, a multi-state degraded system is studied, where status of system
is continuously degrading over time. As time progresses, system may either deteriorate
gradually and go to lower performance state, or it may fail suddenly. If the system
fails, some repairs are carried out to restore the system to the previous state. When
the inspections reveal that the system has reached its last acceptable state, a PM is carried
out to restore the system to the higher performance states. The goal is to �nd the optimal
PM level, so that the mean availability of the system is maximized and the total cost of
the system is minimized. In this regard, Markov process is employed to represent di�erent
states of system. An integrated optimization approach is also suggested based on the
desirability function of statistical approach. The suggested aggregation method is robust
to the potential dependency between the total cost and the mean availability. It also ensures
that both objective functions fall in decision-maker's acceptable region. In order to show
the e�ciency of the proposed approach, a numerical example is presented and analyzed.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

A degraded system is an operating one whose status is
degrading over time, and this degradation may a�ect
its performance [1,2]. This phenomenon occurs in many
real-world applications like transmission line networks,
chemical processes, manufacturing industries, etc. In
recent years, system availability has received extensive
interest in many real-world systems such as com-
puter [3] and communication systems [4], transporta-
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tion systems [5], oil/gas production systems [6], etc.
Most of studies considered two states for each system,
so that the system was either working, or it com-
pletely failed. This is called a binary-state system [7].
However, in many real-world cases, this binary-state
assumption may not be su�cient [8]. System may
have more than two levels of performance varying from
perfect functioning to complete failure. In other words,
system may perform at various intermediate states
between working perfectly and total failure [9,10]. The
presence of degradation is a common situation in which
a system should be considered to be a Multi-State Sys-
tem (MSS). The gradual deterioration of system may
be due to several reasons including the operating hours,
the environmental conditions of the equipment, the
failures of non-essential components, and the number of
random shocks on the system. Basic concepts of multi-
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stage systems have been introduced in [11-14]. Also,
two pieces in literature review on multi-state systems
can be found in [15,16]. A variety of approaches used in
multi-state systems follow di�erent perspectives which
include:

1. The structure function approach in which Boolean
models have been used for the multi-valued cases
(e.g., in [12-14]);

2. The MonteCarlo simulation technique(e.g., in [17]);
3. The Markov process approach (e.g., in [18,19]);
4. The method of Universal Moment Generating Func-

tion (UMGF) (e.g., see [20,21]).

One of the possible ways to improve a multi-state
degraded system and to increase its availability is the
use of Preventive Maintenance (PM). This will dra-
matically reduce the costs of stopping the system [9].
Perfect PM aims to make the system as good as before
starting to work, while imperfect PM may bring the
system back to an intermediate state between the
current state and the perfect functioning state [22].
In some papers like [23,24], a multi-state system with
the state-dependent cost was investigated. In [25], a
deteriorating repairable multi-state system with an
imperfect policy was o�ered based on the number of
system failures. In [26], a monotone process mainte-
nance model for a multi-state system was developed.
An analytical approach based on the failure number
of the system was used to determine the optimal
replacement policy. Soro et al. [27] suggested that if
the system reaches the last acceptable degraded state,
it is brought back to one of the states with higher ef-
�ciency employing preventive maintenance. Nourelfath
et al. [28] formulated a joint redundancy and imperfect
preventive maintenance planning optimization model
for series-parallel multi-state degraded systems.

The majority of solution approaches used in the
literature are single-objective approaches. In other
words, most of the existing approaches concentrated
only on maximizing system availability, and assumed

that there is no cost limitation [29-37], or consid-
ered the cost limitation only as a constraint [38-40].
However, it is usually impossible for a single-objective
approach to represent a practical problem truly. More-
over, we can �nd several reliability/availability ap-
proaches to address di�erent problems [41-46].

In this paper, a multi-state degraded system is
considered. Even if the system deteriorates continu-
ously, it is assumed that this process is done in a �nite
number of discrete states, and Markov chain is used
to show the di�erent states. It is also assumed that
preventive maintenance can be performed in several
di�erent levels, varying from minor maintenance to
major maintenance. A minor PM restores the system
to the previous degraded state, while a major PM
restores it to the \as good as new" state. The goal is to
�nd the optimal PM level, so that the mean availability
of the system is maximized, and the total cost of the
system is minimized during the useful lifetime of the
system. The suggested integration approach includes
the following features:

1. It is robust to the potential dependences between
the total cost and the mean availability;

2. It aims to identify the settings of the decision vari-
ables to maximize the degree of overall satisfaction
with respect to total cost and mean availability.

The remainder of the paper is organized as follows. In
Section 2, the assumptions are presented and the multi-
state degraded system under study is described. In
Section 3, the availability and cost functions are repre-
sented and a \minimum" operator for aggregating them
is employed. In Section 4, an illustrative example is
presented. Conclusions and some remarks are provided
in Section 5.

2. Model description

Initially, there is a system which is in its perfect
functioning state (state 1). Over time as shown in
Figure 1, two things may happen: the system may

Figure 1. System state transition diagram.
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either deteriorate gradually and go to the �rst degraded
state, or it may suddenly and randomly fail according
to a Poisson process and go to a failed state. If the
system fails, minimal repairs are carried out on it that
restore the system to the previous state. When the
system reaches the �rst degraded state, it may either
go to the second degraded state upon degradation, or
may go to a failed state from which a minimal repair
is performed. The same process will continue for all
acceptable degraded states. When the system reaches
an unacceptable state, it cannot satisfy the customers'
demand in a required performance level and must be
treated as a failure. If the inspection �nds the system
in its last acceptable state (state d), a PM is carried out
to restore the system to one of the higher performance
states. The described process is considered as a Markov
process; the system-state transition diagram is shown
in Figure 1.

2.1. Assumptions
The considered assumptions in the proposed model are
as follows:

1. System can have di�erent levels of degradation
corresponding to discrete performance rates, which
vary from perfect state to completely failed state;

2. System can randomly fail from any operational
state, and then a minimal repair is done on it;

3. The repair time is negligible compared to the
system's useful life. Therefore, it does not enter
into the calculations;

4. All transition rates are constant with the exponen-
tial distribution;

5. The current state of the system can be observed,
and the time required for inspection is negligible.
In other words, the inspection is carried out imme-
diately.

2.2. System description
System-state transition can be described by the follow-
ing notations and is illustrated in Figure 1:

: State (i), i = 1; � � � ; n and n = 2d+m

State (1): Perfect functioning;

State (2j � 1), j = 2; � � � ; d: The system satis�es the
customer demand with an acceptable performance
level;

State (2d+1): The system cannot satisfy the required
demand after a degradation process and is in an
unacceptable performance level;

State (2j), j = 1; � � � ; d: The system encounters
failure from an operational state and minimal repair
must be carried out on it.

�j : Failure rate or the transition rate
from state (2j � 1) to the state (2j);
j = 1; � � � ; d;

�j : Minimal repair rate or transition rate
from state (2j) to state (2j � 1);
j = 1; � � � ; d;

�j : Degradation rate or transition rate
from state (2j � 1) to state (2j + 1);
j = 1; � � � ; d;

�j : The preventive maintenance transition
rate from state (2d � 1) to state
(2j � 1); j = 1; � � � ; d� 1.

3. The formulation of the problem

As mentioned before, the proposed method aims to
simultaneously optimize the total cost and the mean
availability of the system throughout its useful lifetime.
Next, the method of calculating the total cost function
and the mean availability function are described.

3.1. The total cost function
The total cost is the sum of the costs of preventive
maintenance and repair during the system life cycle.
The variable  j is de�ned as a binary variable, so
that it is 1 if preventive maintenance is carried out
from state (2d � 1) to state (2j � 1; j = 1; � � � ; d � 1);
otherwise, it is zero. CPMj is the cost per unit time
incurred if a PM is performed from state (2d � 1) to
(2j� 1; j = 1; � � � ; d� 1). pi is the probability of being
in the state i. It is assumed that the study period is
given by the system life cycle T . Considering that T is
large enough, there exists a steady-state distribution of
state probabilities. In this case, the expected PM cost
of system is a function of the decision variable,  j , and
it is written as:

E(CPM) = T:p2d�1

d�1X
j=1

(CPMj �  j): (1)

Since in state (2d � 1), a PM is certainly performed.
Also, we have

Pd�1
j=1  j = 1. In addition, CRj is the

cost per unit time incurred to repair system when it
is in failed state (2j); j = 1; � � � ; d. Therefore, the
expected repair cost can be de�ned as follows:

E(CR) = T
dX
j=1

CRj :p2j : (2)

Consequently, over the time interval [0; T ], the total
cost of PM and repair is:

TC=T

24p2d�1

d�1X
j=1

(CPMj �  j)+
dX
j=1

CRj :p2j

35 : (3)
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3.2. The availability function
In Figure 1, each state (2j � 1; j = 1; � � � ; d � 1)
is characterized by a performance rate (or capacity)
explained by G2j�1, ranging from the best performance
rate G1 to the lowest one G2d�1 (G1 � G2 � � � � �
G2d�1). It should be noted that the performance rate of
the failed states is zero (i.e., G2j = 0, j = 1; 2; � � � ; d).
Finally, the performance rate of the unacceptable state
(2d + 1) is less than customer demand. Since the
performance rate at any time is a random variable,
for the time interval [0; T ], the performance rate is a
stochastic process. The probabilities associated with
the various states at any time t � 0 are given by the
set P (t) = fp1(t); � � � ; p2d+1(t)g, where:

pi(t) = Pr(G(t) = Gi); i = 1; � � � ; 2d+ 1: (4)

The system state acceptability depends on the relation
between the system performance and the customer
demand. This demand W (t) is usually a random
variable that changes over time and can take a discrete
value of the set W = fW1; � � � ;W2d+1g. It is assumed
that demand is constant over time (W (t) = W ). As
the system performance should exceed demand W ,
the acceptability function is de�ned as F (G(t);W ) =
G(t)�W [46]. According to our notations, it is assumed
that G2d+1 < W � G2d�1. Instantaneous availability,
A(t), is the probability that the system performance
level at the moment t is greater than the customers'
demand. In other word, system availability is the
probability that the system is in one of acceptable
states at time t.

A(t) = Pr(G(t) �W ) =
dX
j=1

p2j�1(t): (5)

Since every system enters the absorbing state as t
becomes extremely large, the �nal state probabilities
are as follows:

lim
t!1 p2d+1 = 1; (6)

lim
t!1 pj = 0 j = 1; � � � ; 2d: (7)

According to the proposed Markov model in Figure 1,
Chapman-Kolmogorov equations [27] are used to cal-
culate pi(t). These equations are as follows:

dP1(t)
dt

=�(�1+�1)P1(t)+�1P2(t)+�1P2d�1(t) 1;
(8.1)

dP2j�1(t)
dt

=� (�j + �j)P2j�1(t) + �jP2j(t)

+ �j�1P2j�3(t) + �jP2d�1(t) j

for j = 2; � � � ; d� 1; (8.2)

dP2d�1(t)
dt

=� (�j j + �d + �d)P2d�1(t)

+ �dP2d(t) + �d�1P2d�3(t)

for j corresponding to  j = 1; (8.3)

dP2j(t)
dt

= ��jP2j(t) + �jP2j�1(t)

j = 1; 2; � � � ; d; (8.4)

dP2d+1(t)
dt

= �dP2d�1(t); (8.5)

with the following initial values:
p1(t) = 1; p2(t) = p3(t) = � � � = p2d+1(t) = 0: (9)

Also, for each t, 0 � t � T , we have:
2d+1X
i=1

pi(t) = 1: (10)

Thus, Eqs. (8)-(10) are the constraints of optimization
problem for a particular time of t. The objective
function is maximizing the mean availability over the
useful life of the system. The mean availability function
of the system during the useful lifetime of the system
is written as follows:

�A =

TR
t=0

A(t)

T
: (11)

3.3. The integration method
In order to do simultaneous optimization of the sys-
tem cost and availability, an integrated optimization
approach is suggested based on the desirability func-
tion. The desirability function approach systematically
transforms the objective function into a scale-free value
called desirability. It assigns values between 0 and 1
to the possible values of objective function, in which
desirability function gets 1 as the objective function
gets its target value, and it will be zero when objective
function lies outside its corresponding acceptable levels.
Desirability function for system availability is shown in
Eq. (12):

d
� �A
�

=

8><>:
�A�LA
UA�LA LA � A � UA
0; A � LA

(12)

where �A is the obtained value for the system availability
from Eq. (11), and UA can be set at the extreme value
of the system availability:
UA = max �A;

S.t. (Eqs. (8) to (10)): (13)

UA, determined by Eq. (13), represents the maximum
possible value of system availability within a feasible
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region. LA is the lowest acceptable limit of system
availability which can be determined on the basis of
the decision-maker's subjective judgment. In other
words, the degree of satisfaction of a decision-maker
with respect to system availability is maximized when
�A equals its target value (UA) and decreases as �A moves
away from UA. Finally, it will be zero when system
availability is less than LA.

Similarly, the desirability function of system cost
is obtained from Eq. (14):

d(TC) =

8><>:
TC�UTC
LTC�UTC LTC � TC � UTC
0 TC � UTC

(14)

where TC is the value obtained for the total cost
function from Eq. (3), LTC is acquired by minimizing
the total cost function in a feasible region, and UTC is
asked from the decision-maker.

If a minimum operator is employed for aggre-
gating the desirability functions of system cost and
availability, an optimization problem can be stated as:

Max �: (15.1)

Subject to:

d
� �A
� � �; (15.2)

d(TC) � �; (15.3)

dP1(t)
dt

=�(�1+�1)P1(t)+�1P2(t)+�1P2d�1(t) 1;
(15.4)

dP2j�1(t)
dt

=� (�j + �j)P2j�1(t) + �jP2j(t)

+ �j�1P2j�3(t) + �jP2d�1(t) j

for j = 2; � � � ; d� 1; (15.5)

dP2d�1(t)
dt

=� (�j j + �d + �d)P2d�1(t)

+ �dP2d(t) + �d�1P2d�3(t)

for j corresponding to  j = 1 (15.6)

dP2j(t)
dt

= ��jP2j(t) + �jP2j�1(t)

j = 1; 2; � � � ; d; (15.7)

dP2d+1(t)
dt

= �dP2d�1(t); (15.8)

A(t) = Pr(G(t) � w) =
dX
j=1

p2j�1(t); (15.9)

2d+1X
i=1

pi(t) = 1; (15.10)

pi(t) � 0: (15.11)

This formulation aims to maximize the minimum sat-
isfaction level of the decision-maker with respect to
the system cost and the availability. It has several
advantages over the existing methods.

Firstly, the majority of solution approaches in
the literature assumed that there is no cost limitation
or considered the cost limitation only as a constraint,
whereas the proposed method optimizes total cost and
system availability simultaneously.

Secondly, in contrast to other existing multi-
objective approaches in literature, the suggested max-
imin approach is robust to the potential dependency
between the total cost and availability of the system.
In other words, the correlation between the objective
functions will not a�ect the optimization process. As
a result, existing aggregation approaches used can lead
to misleading results for this problem.

Thirdly, the suggested maximin approach creates
a better balance between the objective functions in
comparison with other existing aggregation methods.
In other words, many aggregation methods may lead
to a decision variable vector that the value of some
of the objective functions may not be incredible in
the decision-makers' view. In the proposed approach,
�rst, the acceptable range for each objective function
is determined separately, and then it maximizes the
overall satisfaction level within the ranges, such that
the share of each objective function is properly reected
in the optimization process.

4. Numerical example

Consider a production system that has seven perfor-
mance levels measured by hourly production rate, Gi.
These production rates are presented in Table 1. The
customer demand, W , to be satis�ed is 500 parts per
hour. The Markov model of this multi-state system is
illustrated in Figure 2.

According to the Markov model, there are two
possible preventive maintenance actions. It is assumed
that the transition rate of perfect PM (�1) is equal
to 0.08, and the transition rate of imperfect PM (�2)
is 0.02. The other used parameters are presented in
Table 2.

The solution space of this problem has two cases
which are:

Table 1. Hourly production rate for each state.

State i 1 2 3 4 5 6 7
Gi 1000 0 750 0 500 0 0
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Figure 2. System state transition diagram in a numerical
example.

Table 2. Transition rates for the numerical example.

�1 �2 �3 �1 �2 �3 �1 �2 �3

0.03 0.05 0.07 0.005 0.008 0.01 0.01 0.02 0.04

Table 3. The cost per hour incurred to repair system.

j 1 2 3
CRj 5.3 3.8 4.5

Table 4. Preventive maintenance cost incurred per hour.

j 1 2
CPMj 2.3 1.4

�  1 = 1,  2 = 0,

�  1 = 0,  2 = 1.

In order to evaluate the system availability, �rst,
Chapman-Kolmogorov equations are solved for the
mentioned Markov model to obtain the probabilities
Pi(t); (i = 1; � � � ; 7) separately in both cases. Then,
the system availability at time t is calculated using
A(t) = P1(t) + P3(t) + P5(t). Finally, assuming that
the useful life of the system is determined 80 hours,
system availability ( �A) and its corresponding desir-
ability (d( �A)) can be obtained by Eqs. (11) and (12),
respectively.

The repair costs and the preventive maintenance
costs are presented in Tables 3 and 4, respectively.

The expected repair and PM costs and the total
cost will be calculated using Eqs. (1), (2), and (3),
respectively. Then, the desirability function of the
total cost and system availability will be achieved by
assuming that the lower bound of acceptability for
the system availability (LA) and the upper bound of
acceptability for the total cost (UTC) are 0.5 and 80,
respectively. After this step, the �nal model can be
written as follows:

Max �;

Subject to : d(A) � �; d(TC) � �;
dP1(t)
dt

= �(�1 + �1)P1(t) + �1P2(t) + �1P5(t) 1;

dP3(t)
dt

=� (�2 + �2)P3(t) + �2P4(t) + �1P1(t)

+ �2P5(t) 2;

dP5(t)
dt

=� (�j j + �3 + �3)P5(t) + �3P6(t)

+ �2P5(t)

for j corresponding to  j = 1;

dP2(t)
dt

= ��1P2(t) + �1P1(t);

dP4(t)
dt

= ��2P4(t) + �2P3(t);

dP6(t)
dt

= ��3P6(t) + �3P5(t);

dP7(t)
dt

= �3P5(t);

A(t) = P1(t) + P3(t) + P5(t);

7X
i=1

pi(t) = 1;

pi(t) � 0:

After solving the above mathematical programming us-
ing MATLAB software package, the optimum solution
is achieved as  1 = 1,  2 = 0.

Subsequently, this  1 = 0;  2 = 0 means that
during its useful life, whenever this system reaches the
state 3, the perfect preventive maintenance is carried
out; the system is restored to the perfect functioning
state in this way.

5. Conclusion

This paper considered a multi-state degraded system
in which status of system is considered to degrade
over time, and this degradation may a�ect system
performance. In other words, as time progresses,
system may either deteriorate gradually and go to lower
performance state, or it may suddenly and randomly
fail according to a Poisson process called Poisson
failure. If the system fails, minimal repairs are carried
out to restore the system to its previous state. When
the inspections showed that the system has reached its
last acceptable state, a PM is carried out to restore the
system to one of the higher performance states, varying
from minor maintenance to major maintenance. A
minor PM restores the system to the previous degraded
state, while a major PM restores it to the \as good as
new" state. To �nd the optimal PM level, such that
the mean availability of the system is maximized and
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the total cost of the system is minimized, an integrated
optimization approach is suggested based on the desir-
ability function approach. The suggested aggregation
method is robust to the potential dependency between
the total cost and the mean availability. It also ensures
that both objective functions fall in decision-maker's
acceptable region.

As a direction for future research, the proposed
model can be extended for a joint redundancy and
imperfect preventive maintenance planning optimiza-
tion problem for series-parallel multi-state degraded
systems.
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