
Scientia Iranica E (2017) 24(1), 319{329

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
www.scientiairanica.com

Adjusting an infeasible network by minimizing the sum
of the violation costs

M. Ghiyasvand�

Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran.

Received 14 February 2015; received in revised form 24 November 2015; accepted 9 January 2016

KEYWORDS
Infeasible network;
The cost scaling
algorithm;
The minimum cost

ow problem;
Parallel arcs;
Convex cost.

Abstract. In this paper, for a given infeasible network, we change the lower and upper
bounds, such that the sum of the violations costs from the lower and upper bounds is
minimum. We call this problem as the adjusting problem and show that it is transformed
to a minimum cost 
ow problem on a special parallel network. Thus, the adjusting problem
is solved using minimum cost 
ow algorithms. Solving a minimum cost 
ow problem with
parallel arcs, in practice, is complicated and needs more time in comparison with a minimum
cost 
ow problem without parallel arcs. If the parallel arcs are eliminated, then, we achieve
substantial saving in the storage requirements, which translates into enhanced speed of
algorithms. One of the best algorithms to solve the minimum cost 
ow problem is the cost
scaling algorithm of Goldberg and Tajan (1990). In this paper, we present two modi�ed
versions of their algorithm to solve the adjusting problem. In the �rst modi�cation, in
order to achieve an enhanced speed of algorithm, the parallel arcs are eliminated using an
especial residual network. In the second modi�cation, the adjusting problem is transformed
to a convex cost 
ow problem, and the cost scaling algorithm is modi�ed in a way which
performs fewer operations than our �rst implementation.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

A wide variety of engineering and management prob-
lems involve optimization of network 
ows, that is, how
objects move through a network. Examples include
coordination of trucks in a transportation system,
routing of packets in a communication network, and
sequencing of legs for air travel. Such problems often
involve few indivisible objects, and this leads to a
�nite set of feasible solutions. Li et al. [1] presented
a good survey of network 
ow applications. Some
recent applications of network 
ows problem have been
presented in [2-10].

Let D = (N;A) be a directed network with node
set, N , arc set, A, lower bounds, l, and the upper
bounds, u. Network D is feasible if there is a 
ow,

*. Tel.: 081-38380987; Fax: 081-38380987
E-mail address: mghiyasvand@basu.ac.ir

x, satisfying in the following conditions:

Conservation:X
j2N

xij �X
j2N

xji = 0; for each i 2 N: (1)

Boundedness:

lij � xij � uij ; for each (i; j) 2 A: (2)

A classic method to diagnose the feasibility or infea-
sibility of D is to �rst choose any x0, satisfying the
boundedness, and compute excess ei at each node i,
de�ned by ei =

P
j2N x0ji �Pj2N x0ij . De�ne a source

node s, and a sink node t. For every node i with
ei > 0, introduce an arc (s; i) with upper bound ei,
and for every node j with ej < 0, introduce an arc
(j; t) with upper bound �ej . For each arc (i; j) in the
original network, de�ne two arcs (i; j) and (j; i) with
upper bounds uij � x0ij and x0ij � lij . All arcs in the



320 M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329

transformed network have a lower bound of zero. There
exists a feasible 
ow for the original network if and
only if the maximum 
ow from node s to node t in the
transformed network saturates all arcs from s (to t)
(see [11]). A faster algorithm to solve the maximum

ow problem was presented by Orlin [12]. Other
methods, for diagnosing feasibility or infeasibility of a
network, were discussed in [13-31]. Some recent related
results are presented in [32-35].

Infeasibility may be introduced into a network
during formation, reformation, or when combining
several smaller models into one large model (as is often
done in econometrics). But, what should we do if the
network D is infeasible? In this paper, we decrease
some lower bounds and increase some upper bounds
in order to achieve feasibility. Let bij be the cost
of increasing uij or decreasing lij by one unit. It is
very important that the bounds are relaxed, such that
the sum of costs of relaxation is minimum. Denote
the lower and upper relaxations of the bounds by pij
and qij , respectively. Consider the following problem,
which we call it the adjusting problem:

min
X

(i;j)2A
bij(pij + qij);

s.t.
X
j2N

xij �X
j2N

xji = 0; for each i 2 N;

max (0; lij � pij) � xij � uij + qij ;

for each (i; j) 2 A:
Note that max(0; lij � pij) is used instead of lij � pij
in order to have nonnegative lower bounds. Mc-
Cormick [16] considered a special case of this problem
with bij = 1 for each (i; j) 2 A. He called this
special case as the minsum objective and presented
some methods to solve it (see Pages 185-187 of [16]). In
this paper, we consider the general case of bijs and show
that the adjusting problem is solved by the minimum
cost 
ow algorithms using a parallel network that has
three parallel arcs between each pair node. Thus, the
adjusting problem is transformed to a minimum cost

ow problem on a special parallel network; we call this
problem as the PA-problem. Therefore, each minimum
cost 
ow algorithm solves the adjusting problem.

Let n, m, U , and C be the number of vertices,
number of arcs, maximum arc capacity, and maximum
absolute value of an arc cost, respectively. The best
running times for the minimum cost 
ow problem
are the O((m logU)(m+ n log n))-time method of Ed-
monds and Karp [36], the O(nm log(n2=m) log(nC))-
time method of Goldberg and Tarjan [37], the
O((m log n)(m+n logn))-time method of Orlin [38] and
Vygen [39], and the O(nm(log logU) log(nC))-time of

Ahuja et al. [40]. Each of these algorithms is the best
for a di�erent range of parameters n, m, U , and C.
Some recent papers on the minimum cost 
ow problem
have been presented in [41-51].

Ahuja et al. [11] called the algorithm of Goldberg
and Tarjan as the cost scaling algorithm. Solving
a minimum cost 
ow problem with parallel arcs, in
practice, is complicated and needs more time in com-
parison with a minimum cost 
ow problem without
parallel arcs. In the �rst part of this paper, the
cost scaling algorithm is modi�ed for the PA-problem,
in which there exist three arcs between each pair
node; the number of arcs is 3m. Although using
3m instead of m cannot improve the running time of
the cost scaling algorithm, but if the parallel arcs are
eliminated, then we achieve substantial saving in the
storage requirements, which translates into enhanced
speed of algorithms. We construct a special residual
network that permits us to eliminate the parallel arcs.

In the second part of this paper, our second
implementation of the cost scaling algorithm is pre-
sented. We convert the adjusting problem to a convex
minimum cost 
ow problem and modify the cost scaling
algorithm to solve it. We prove that our second
implementation of the cost scaling algorithm performs
fewer operations than our �rst implementation.

This paper consists of �ve sections, in addition
to Introduction. Section 2 is a review of the cost
scaling algorithm due to Goldberg and Tarjan [37].
In Section 3.1, the adjusting problem is transformed
to a minimum cost 
ow problem, where there exist
three parallel arcs between any pair of nodes. The
adjusting problem is transformed to a convex cost 
ow
problem in Section 3.2. In Section 4.1, our modi�cation
of the cost scaling algorithm to solve the adjusting
problem on the parallel network is presented. Our
implementation on the convex cost 
ow problem is
described in Section 4.2. The comparison of our two
implementations is presented in Section 5. Finally,
Section 6 concludes the paper.

2. Goldberg and Tarjan's algorithm

Our algorithm requires some understanding of the
linear cost scaling algorithm for minimum cost 
ow
problem. We refer the readers to the paper by Goldberg
and Tarjan [37] or the book of Ahuja et al. [11] for a
description of this algorithm. We now brie
y describe
it using the notation given in [11]. The minimum cost

ow problem is:

min
X

(i;j)2A
cijxij ;

s.t. Conditions (1) and (2) are satis�ed:



M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329 321

A pseudo
ow x is any function x : A! R that satis�es
the boundedness on arc 
ows, but may violate the
conservation constraints at nodes. For any pseudo
ow
x, the imbalance of node i is de�ned as:

e(i) =
X

fj:(j;i)2Ag
xji � X

fj:(i;j)2Ag
xij ; for all i 2 N:

We refer to a pseudo
ow x with e(i) = 0 for all i 2 N
as a 
ow.

The cost scaling algorithm proceeds by construct-
ing the residual network G(x) de�ned as follows with
respect to a pseudo
ow x. For each (i; j) 2 A, the
residual network G(x) contains two arcs: (i; j) and
(j; i). The arc (i; j) has cost cij and residual capacity
rij = uij � xij ; the arc (j; i) has cost cji = �cij and
residual capacity rji = xij .

The linear cost scaling algorithm maintains a
value �(i) for each node i 2 N . We refer to the
vector � as a vector of node potentials. For a given
residual network, G(x), and a set of node potentials,
�, the reduced cost of an arc (i; j) is de�ned as c�ij =
cij ��(i) +�(j). A 
ow or a pseudo
ow x is said to be
�-optimal for some � > 0 if x, together with some node
potential vector �, satis�es the "-optimality conditions:
c�ij � �" for every arc (i; j) in G(x).

Lemma 1 [37]. For a minimum cost 
ow problem
with integer costs, any feasible 
ow is �-optimal when-
ever � � C. Moreover, if � < 1=n, then any �-optimal
feasible 
ow is an optimal 
ow. �

The algorithm treats � as a parameter obtaining
�-optimal 
ows for successively smaller values of �.
Initially, � = C and � = 0. The algorithm performs
cost scaling phases by repeatedly applying an improve-
approximation procedure that transforms an �-optimal

ow into an �=2-optimal 
ow.

Hence, by Lemma 1, after 1 + log(nC) phases,
the algorithm terminates with an optimal 
ow. Al-
gorithm 1 shows the framework of the cost scaling
algorithm.

The essential operation in each phase is the
improve-approximation procedure that transforms an
�-optimal 
ow into an �=2-optimal 
ow. It does this

Algorithm 1. Framework of Goldberg and Tarjan's algo-
rithm.

by converting the input �-optimal 
ow into a 0-optimal
pseudo
ow, and then converting the pseudo
ow into a

ow while always maintaining an �=2-optimal solution.
For converting the �-optimal 
ow into a 0-optimal
pseudo
ow, the improve-approximation procedure lets
xij = 0 if c�ij > 0, and lets xij = uij if c�ij < 0. An
arc (i; j) in the residual network is called admissible if
��=2 � c�ij � 0, and a node i is called active if e(i) > 0.

For changing the 0-optimal 
ow into an �=2-
optimal 
ow, the basic operation is to select an active
node i and perform pushes on admissible arcs (i; j)
emanating from node i. If � < rij , then the push is
called a nonsaturating push, or else a saturating push.
When the network contains no admissible arc, the
algorithm updates the node potential �(i) by relabeling.
Algorithm 2 summarizes the improve-approximation
procedure.

The improve-approximation procedure performs
O(n2m) pushes and O(n2) labels [37]. Thus, the
procedure runs in O(n2m) time, and the running time
of the algorithm is O(n2m log(nC)). Goldberg and
Tarjan [37] used the dynamic tree data structure to
improve the procedure. The heart of this method is the
procedure send(i), which pushes 
ow along a path P
from a nonroot active node i to the root of the tree
containing the node i and repeats these steps until
e(i) = 0 or node i is a tree root. The value of push
on path P is computed by � = minfe(i);minfrij :
(i; j) 2 Pgg. The improve-approximation procedure
using the dynamic tree structure is implemented in
O(nm log(n2=m)) time [37]. Therefore, the cost scal-
ing algorithm runs in O(nm log(n2=m) log(nC)) time,
which is one of the best running times to solve the
minimum cost 
ow problem.

3. Transformations of the adjusting problem

3.1. Solving the adjusting problem using
min-cost 
ow algorithms

In this section, the adjusting problem is transformed
to a min-cost 
ow problem using a parallel network.
Supposing that an infeasible network is given, we

Algorithm 2. Procedure improve-approximation.



322 M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329

replace each arc by three parallel arcs with upper
bounds lij , uij� lij ,1, lower bounds 0, 0, 0, and costs
�bij , 0, bij , respectively. The new network is a parallel
network, which each arc (i; j) on the original network is
replaced with three arcs (i; j)1, (i; j)2, and (i; j)3 on the
parallel network (see Figure 1). Consider the minimum
cost 
ow problem on the parallel network; we call it the
parallel adjusting problem or the PA-problem.

Theorem 1. The adjusting problem is solved using
each solution of the PA-problem.

Proof. Let x� be an optimal 
ow for the PA-problem
and x�ij(1), x�ij(2), and x�ij(3) be the 
ows on arcs
(i; j)1, (i; j)2, and (i; j)3, respectively. For each arc
(i; j), de�ne:

xij = x�ij(1) + x�ij(2) + x�ij(3): (3)

By Eq. (3), Figure 1, and the de�nition of bij , we yield
the sum of the violations costs from the lower and upper
bounds in the original network with respect to x is
minimum. �

Therefore, for solving the adjusting problem, it
is enough that we solve a minimum cost 
ow problem
on the parallel network. Sometimes, the values of the
adjustment costs in the adjusting and PA problems are
di�erent, but they conclude the same feasible 
ow. For
example, consider the given network in Figure 2. This
network is infeasible and can be feasible by lowering
the capacity lower bound of (y; z) from 3 to 2. So,
the adjustment cost is 1. In the corresponding PA-
problem, we have arcs (x; y)1 and (z; x)1 with (cost,

Figure 1. The arcs between a pair of nodes in the
parallel network.

Figure 2. An example network.

lower, upper) = (-1,0,1), arc (y; z)1 with (cost, lower,
upper) = (-1,0,3), arcs (x; y)2, (y; z)2, and (z; x)2 with
(cost, lower, upper) = (0,0,1), and arcs (x; y)3, (y; z)3,
and (z; x)3 with (cost,lower,upper) = (1; 0;1). Then,
we get a feasible 
ow by assigning 
ow of 1 unit on
arcs (x; y)1, (x; y)2, (z; x)1, and (z; x)2, and 2 units on
(y; z)1. The total cost is -4, which is minimum. Even
the adjustment costs are di�erent, but both of them
present a feasible network by lowering the capacity of
the lower bound of (y; z) from 3 to 2.

3.2. Transformation of the adjusting problem
as a convex cost 
ow problem

In this section, we look at the adjusting problem in
another way in which there is no bound on the arcs,
but the cost of 
ow is the following convex function:

Cij(xij) =

8><>:�bij ; if xij < lij ;
0; if lij � xij < uij ;
bij ; if xij � uij :

Thus, the adjusting problem is transformed to:

min
X

(i;j)2A
Cij(xij);

s.t.
X
j2N

xij �X
j2N

xji = 0; i 2 N:

Although there are no lower and upper constrains on
the variables xij , the next lemma shows that we can
bound it.

Lemma 2. For changing an infeasible network into
a feasible network, the maximum relaxation in a lower
bound or upper bound is nmU .

Proof. Consider an infeasible network D = (N;A).
In phase I max 
ow, the maximum 
ow from source to
sink cannot saturate all the arcs of the source. By the
phase I max 
ow, the sum of capacities of all arcs of
the source is

P
ei>0 ei. Consider arc (i; j) 2 A in the

worst case for saturating all arcs of the source, we relax
lij or uij by

P
ei>0 ei. Therefore, by

P
ei>0 ei � nmU ,

the maximum increase in uij or the maximum decrease
in lij is nmU . �

By Lemma 2, we conclude the following problem:

min
X

(i;j)2A
Cij(xij);

s.t.
X
j2N

xij �X
j2N

xji = 0; for each i 2 N;

kij�xij�uij+M; for each (i; j) 2 A;



M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329 323

where M = nmU and kij = maxf0; lij �Mg. We call
this problem the convex-adjusting problem or the CA-
problem. Note that kij is used instead of lij �M in
order to have a nonnegative lower bound.

4. Solving the parallel adjusting and convex
adjusting problems using the cost scaling
algorithm

4.1. Describing Goldberg and Tarjan's
algorithm for the parallel adjusting
problem

By Theorem 1, the adjusting problem is solved using
minimum cost 
ow algorithms on the PA-problem.
In fact, we can consider the adjusting problem as a
minimum cost 
ow problem by replacing each arc (i; j)
with three parallel arcs (i; j)1, (i; j)2, and (i; j)3. As
mentioned in Section 2, the cost scaling algorithm
maintains a residual network at every step. The par-
allel and residual networks have parallel arcs between
any pair of nodes. For example, consider a 
ow of 5
units in arc (i; j) of Figure 3(a). The resulting 
ow in
the parallel network has 3 units on (i; j)1, 2 units on
(i; j)2, and zero units on (i; j)3 (see Figure 3(b)). The
de�nition of the residual network in Section 2 implies
that the residual network contains arcs (j; i)1, (j; i)2,
(i; j)2, and (i; j)3 (see Figure 3(c)).

The solution of the PA-problem satis�es the
property that if the 
ow on arc (i; j)k is positive, the

ow on each of the arc (i; j)1; � � � ; (i; j)k�1 equals the
arc's capacity, and if the 
ow on arc (i; j)k is strictly
less than its upper bound, the 
ow on each of the
arcs (i; j)k+1; � � � ; (i; j)3 is zero. Thus, each solution
of the PA-problem is called as a contiguous solution
(see [11]). The contiguity of the solution implies that if
we wish to send additional 
ow from node i to node j,
we will send it through the arc (i; j)2, and if we wish
to send 
ow from node j to node i, we send it through
the arc (j; i)2. This observation implies that we do
not need to maintain other arcs between this pair of
nodes in the residual network; maintaining just two
arcs (i; j)2 and (j; i)2 is su�cient, because those are the
arcs that matter at this point. Eliminating parallel arcs

Figure 3. (a) An (i; j) in original network. (b) Flows on
parallel arcs in the parallel network corresponding to (i; j).
(c) Arcs in the residual network.

permits us to achieve substantial saving in the storage
requirements, which translates into enhanced speed of
algorithm (for more information see [11]).

By the preceding discussion, we construct the
condensed residual network by the following method.
For each arc (i; j) 2 A, the residual network contains
two arcs (i; j) and (j; i) with the following costs and
residual capacities:

If xij < lij , then rij = lij � xij , cij = �bij , rji =
xij � kij and cji = bij .
If xij = lij , then rij = uij� lij , cij = 0, rji = kij� lij
and cji = bij .
If lij < xij < uij , then rij = uij � xij , cij = 0,
rji = xij � lij and cji = 0.
If xij = uij , then rij = M , cij = bij , rji = uij � lij
and cji = 0.
If xij > uij , then rij = uij + M � xij , cij = bij ,
rji = xij � uij and cji = �bij .

For each arc (i; j) in the condensed residual
network, the residual capacity is the maximum of 
ow
change, such that the 
ow cost remains consist. For
example, in Figure 3, we have 3 = lij < xij = 5 <
uij = 10, so, we have rij = 5, cij = 0, rji = 2; and
cji = 0.

The cost scaling algorithm for the parallel network
is exactly the same as the algorithm discussed in
Section 2. But, we construct the condensed residual
network in a di�erent way. After each push, updating
the residual network might add some arcs to the
condensed residual network, delete some others, and
change the costs of some arcs remained in the residual
network. In the dynamic tree structure of the cost
scaling algorithm, we use rijs of the condensed residual
network to compute value �. After sending � units of

ow on the path P , we update values of rij , rji, cij ,
and cji for each arc (i; j) using the de�nition of the
condensed residual network. In the condensed residual
network, we do not need to have the parallel arcs, so, we
achieve substantial saving in the storage requirements.
Hence, the condensed residual network helps to get
an enhanced speed of the algorithm to solve the PA-
problem.

4.2. Modifying Goldberg and Tarjan's
algorithm for the convex adjusting
problem

In Section 3.2, we showed that the adjusting problem
is solved using the CA-problem. In this section, the
cost scaling algorithm is modi�ed to solve the CA-
problem. For a given arc 
ow x, we construct the
residual network G(x) as follows: for each (i; j) 2 A,
the residual network G(x) contains two arcs (i; j) and
(j; i) with costs cij(x) and cji(x), respectively. The
values cij(x) and cji(x) depend on the value of xij :



324 M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329

If xij < lij , then cij(x) = �bij and cji(x) = bij .
If xij = lij , then cij(x) = 0 and cji(x) = bij .
If lij < xij < uij , then cij(x) = cji(x) = 0.
If xij = uij , then cij(x) = bij and cji(x) = 0.
If xij > uij , then cij(x) = bij and cji(x) = �bij .

As Section 2, the reduced cost of an arc, (i; j) 2
G(x), is de�ned by c�ij(x) = cij(x) � �i + �j , and arc
(i; j) is called an admissible arc if ��=2 � c�ij(x) <
0. An arc (i; j) 2 G(x) is called a forward arc if
(i; j) 2 A and is called a backward arc if (j; i) 2 A.
For modifying the cost scaling algorithm, we need the
following lemmas.

Lemma 3. In G(x), the reduced costs of arcs (i; j)
and (j; i) are not satis�ed in the case of c�ij(x) < 0 and
c�ji(x) < 0.

Proof. Supposing that for a pair (i; j) and (j; i) in
G(x), we have c�ij(x) < 0 and c�ji(x) < 0, which means
cij(x)��i +�j < 0 and cji(x)��j +�i < 0. Thus, we
get:

cij(x) + cji(x) < 0: (4)

We show that there does not exist xij to satisfy
Relation (4). If xij < lij , xij > uij , or lij < xij < uij ,
then cij(x) = �cji(x), which contradicts Relation (4).
If xij = lij , then cij(x) = 0 and cji(x) = bij . Also, if
xij = uij , then cij(x) = bij and cji(x) = 0. Hence, if
xij = lij or xij = uij , then cij(x) + cji(x) � 0, which
contradicts Relation (4). �

Lemma 3 says, for each (i; j) 2 A, at most one
of arcs (i; j) or (j; i) in G(x) violates the 0-optimality
condition. Therefore, if a forward (resp. backward) arc
(i; j) violates 0-optimality condition, then we conclude
Figure 4 (resp. Figure 5). The next lemmas show how
0-optimality condition is satis�ed when a forward or
backward arc (i; j) violates 0-optimality condition.

Lemma 4. Let (i; j) be a forward arc which violates
0-optimality conditions. fij is de�ned as shown in
Box I.

If we send fij units of 
ow on (i; j), then (i; j)
and (j; i) are satis�ed in 0-optimality condition.

Figure 4. A forward arc (i; j) which violates 0-optimality
condition.

Figure 5. A backward arc (i; j) which violates
0-optimality condition.

Proof. By Lemma 3, we have c�ij(x) < 0 and c�ji(x) �
0 (see Figure 4). Consider the following cases:

a) kij � xij < lij . In this case, we have cij(x) = �bij ,
so, by c�ij(x) < 0, we get �bij � �i + �j < 0, which
means:

��i + �j < bij : (5)

a.1) If ��i+�j � 0, then by increasing xij to lij ,
we get cij(x) = 0 and cji(x) = bij . Thus,
c�ij(x) = 0 � �i + �j � 0, which means that
by Relation (5), c�ji(x) = bij � �j + �i > 0;

a.2) If �bij � ��i+�j < 0, then by increasing xij
to uij , we have cij(x) = bij and cji(x) = 0,
which means c�ij(x) = bij � �i + �j � 0 and
c�ji(x) = 0� �j + �i > 0;

a.3) If ��i + �j < �bij , then by increasing xij
to uij + M , we get cji(x) = �bij . Hence,
c�ji(x) = �bij � �j + �i > 0 (note that if
xij = uij + M , then G(x) does not have arc
(i; j)).

b) lij � xij < uij . In this case, we have cij(x) = 0.
Thus, by c�ij(x) < 0, we get:

��i + �j < 0: (6)

b.1) If ��i +�j < �bij , then by increasing xij to

fij =

8>>>>>><>>>>>>:
lij � xij ; if kij � xij < lij , ��i + �j � 0; (�� 1)
uij � xij ; if kij � xij < lij , 0 > ��i + �j � �bij ; (�� 2)
uij +M � xij ; if kij � xij < lij , ��i + �j < �bij ; (�� 3)
uij +M � xij ; if lij � xij < uij , ��i + �j < �bij ; (�� 4)
uij � xij ; if lij � xij < uij , ��i + �j � �bij ; (�� 5)
uij +M � xij ; if uij � xij < uij +M . (�� 6)

Box I



M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329 325

uij+M , we have cji(x) = �bij , which means
c�ji(x) = �bij � �j + �i > 0;

b.2) If ��i + �j � �bij , then by increasing xij
to uij , we get cij(x) = bij and cji(x) = 0.
Hence, c�ij(x) = bij � �i + �j � 0, which
means that by Relation (6), c�ji(x) = 0 �
�j + �i > 0.

c) uij � xij < uij +M . In this case, we have cij(x) =
bij . So, by c�ij(x) < 0, bij � �i + �j < 0. Thus, by
increasing xij to uij +M , we get cji(x) = �bij and
c�ji(x) = �bij � �j + �i > 0. �

Lemma 5. Let (i; j) be a backward arc which violates
0-optimality conditions. fij is de�ned as shown in
Box II. If we send fij units of 
ow on (i; j), then (i; j)
and (j; i) are satis�ed in the 0-optimality condition.

Proof. By Lemma 3, we have c�ij(x) < 0 and c�ji(x) �
0 (see Figure 5). Also, by sending fij units of 
ow on
arc (i; j) in G(x), the value of xji is decreased by fij
on the arc (j; i) in the original network. Consider the
following cases:

a) kji < xji � lji. In this case, we have cij(x) = bji.
Thus, by c�ij(x) < 0, we get bji � �i + �j < 0. By
decreasing xji to kji, we have cji(x) = �bji. Hence,
c�ji(x) = �bji � �j + �i > 0 (note that if xji = kji,
then there does not exist arc (i; j) in G(x));

b) lji < xji � uji. In this case, we have cij(x) = 0.
Hence, by c�ij(x) < 0, we get 0��i +�j < 0, which
means:

��j + �i > 0: (7)

b.1) If ��j + �i < bji, then by decreasing xji to
lji, we get cij(x) = bji and cji(x) = 0. Hence,
c�ij(x) = bji � �i + �j > 0, which means that
by Relation (7), c�ji(x) = 0� �j + �i > 0;

b.2) If ��j + �i � bji, then by increasing xji to
kji, we have cji(x) = �bji, so c�ji(x) = �bji�
�j + �i � 0.

c) uji < xji � uji+M . In this case, we have cij(x) =
�bji. So, by c�ij(x) < 0, we get �bji � �i + �j < 0,
or:

��j + �i > �bji: (8)

c.1) If ��j + �i � 0, then by decreasing xji to
uji, we get cij(x) = 0 and cji(x) = bji. Thus,
c�ij(x) = 0� �i + �j � 0, so, by Relation (8),
c�ji(x) = bji � �j + �i > 0;

c.2) If 0 < ��j + �i � bji, then by decreasing xji
to lji, we have cji(x) = 0 and cij(x) = bji.
Hence, c�ji(x) = 0� �j + �i > 0 and c�ij(x) =
bji � �i + �j � 0;

c.3) If ��j + �i > bji, then, by decreasing xji
to kij , we get cji(x) = �bji, which means
c�ji(x) = �bji � �j + �i > 0. �

We use Lemmas 4 and 5 to modify the cost
scaling algorithm in order to solve the CA-problem.
Algorithm 3 shows the method, which uses fijs instead
of rijs. The next lemma says that the procedure of
Algorithm 3 computes an �=2-optimal 
ow.

Lemma 6. The improve-approximation procedure
always maintains the �=2-optimality condition.

Proof. We use induction on the number of pushes
and relabels. At the beginning of the procedure, for
each arc (i; j) 2 G(x) such that c�ij < 0, 
ow is
sent on arc (i; j) using Lemmas 4 and 5. Thus, at
this point, for each (i; j) 2 G(x), we have c�ij � 0,
which means c�ij � ��=2. Hence, at the beginning
of the procedure, we have a pseudo
ow that is �=2-
optimal. By Lemmas 4 and 5, each saturating push
on an arc (i; j) holds the induction hypothesis. Now,
consider a non-saturating push on an arc (i; j). By
the procedure, we do the push operation on admissible
arcs, so ��=2 � c�ij < 0. Thus, by Lemma 3, we get
c�ji > 0. The cost of CA-problem is a convex function.
So, by sending 
ow on the (i; j), the reduced cost of the
arc (i; j) is increased (from a number which is at least
��=2), and the reduced cost of arc (j; i) is decreased.
Lemmas 4 and 5 conclude that by sending fij amount
of 
ow, both c�ij and c�ji become nonnegative. Hence,
by sending a 
ow less than fij , the reduced cost of arc
(i; j) remains between ��=2 and zero, and the reduced
cost of arc (j; i) remains nonnegative. Therefore, a non-
saturating push holds the induction hypothesis. Also,

fij =

8>>>>>><>>>>>>:
xji � kji; if kji < xji � lji; (� � 1)
xji � lji; if lji < xji � uji, ��j + �i < bji; (� � 2)
xji � kji; if lji < xji � uji, ��j + �i � bji; (� � 3)
xji � uji; if uji < xji � uji +M , ��j + �i � 0; (� � 4)
xji � lji; if uji < xji � uji +M , 0 < ��j + �i � bji; (� � 5)
xji � kji; if uji < xji � uji +M , ��j + �i > bji: (� � 6)

Box II



326 M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329

Algorithm 3. Procedure improve-approximation for the CA-problem.

a relabel operation holds the induction hypothesis (see
Section 10.3 of [11]).

Our improve-approximation procedure is similar
to Section 2, but the residual capacities of fijs are used
instead of those of rijs. Thus, all arguments of the
running time analysis are similar to the cost scaling
algorithm, which runs in O(n2m log(nC)) time. In
the dynamic tree structure version of the cost scaling
algorithm, instead of rijs, we use fijs to compute �.
For each arc (i; j), both rij and fij are computed in
O(1); therefore, it runs in O(nm log(n2=m)) time.

5. Comparison of the algorithms presented in
Sections 4.1 and 4.2

Two algorithms presented in Sections 4.1 and 4.2
di�er only on fijs and rijs; Section 4.2 uses fijs, but
Section 4.1 uses the residual capacities rij . These
values are used only in push operations. In this
section, we show that the implementation of Section
4.2 performs fewer operations than the implementation
of Section 4.1.

Lemma 7. For each (i; j) 2 G(x): fij � rij .
Proof. First, consider the case that arc (i; j) is
forward. If xij < lij , then rij = lij � xij , so, by
(�� 1), (�� 2) and (�� 3), we have fij � lij � xij . If
lij � xij < uij , then rij = uij � xij , thus, by (� � 4)
and (� � 5), we get fij � uij � xij . If xij � uij , then
rij = uij + M � xij = fij . Hence, if (i; j) is forward,
then fij � rij .

Now, consider the case that (i; j) is backward. If
xji < lji, then rij = xji � kji = fij . If lji < xji � uji,

then rij = xji� lji; so, by (�� 2) and (�� 3), we have
fij � xji � lji. If xji > uji, then rij = xji � uji; so, by
(� � 4), (� � 5), and (� � 6), we get fij � xji � uji.
Therefore, if (i; j) is backward, then fij � rij . �

By the proof of Lemma 7, in cases of (� � 2),
(�� 3), (�� 4), (� � 3), (� � 5), and (� � 6), we have
fij > rij .

Lemma 8. The number of pushes in the algorithm
of Section 4.2 is less than or equal to the number of
pushes in the algorithm of Section 4.1.

Proof. First, we prove the claim for the cost scaling
algorithm without the dynamic tree structure. The
residual capacities rij and fij are used only in push
operations. The value of each push on each arc
(i; j) in Section 4.1 is A = minfe(i); rijg and it is
B = minfe(i); fijg in Section 4.2. By Lemma 7, we
yield B � A. Thus, for transforming active nodes
to nonactive nodes, the algorithm with values fijs is
faster than the algorithm with values rijs. Therefore,
the number of pushes using fijs is less than or equal to
the number of pushes using rijs. �

Theorem 2. The implementation of the cost scaling
algorithm presented in Section 4.2 performs fewer
operations than the implementation presented in Sec-
tion 4.1.

Proof. The two implementations presented in Sec-
tions 4.1 and 4.2 di�er only on fijs and rijs. The
values fij and rij are used only in push operations.
Also, active nodes are transformed into nonactive



M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329 327

nodes using push operations. Thus, by Lemma 8, the
implementation presented in Section 4.2 transforms
active nodes into nonactive nodes faster than the im-
plementation presented in Section 4.1. Therefore, the
implementation presented in Section 4.2 performs fewer
push operations than the implementation presented in
Section 4.1. Other operations of the two implementa-
tions are the same, thus the claim is concluded.

6. Conclusion

This paper presents the general case of the minsum
objective de�ned by McCormick [16]. We call the
problem as the adjusting problem and transform it to a
minimum cost 
ow problem in a parallel network. The
cost scaling algorithm has one of the best running times
to solve the minimum cost 
ow problem for a range
of parameters n, m, U , and C. Solving a minimum
cost 
ow problem with parallel arcs, in practice, is
complicated and needs more time in comparison with
a minimum cost 
ow problem without parallel arcs. If
parallel arcs are eliminated, then we achieve substantial
saving in the storage requirements, which translates
into enhanced speed of algorithms. We �rst modi�ed
the cost scaling algorithm to the parallel network
by de�ning the condensed residual network, which
concludes an enhanced speed of the algorithm. Then,
the adjusting problem is transformed to a convex cost

ow problem and modi�ed the cost scaling algorithm
to solve this convex cost 
ow problem using Lemmas 4
and 5. We proved that our implementation on the
convex cost 
ow problem, in practice, performs fewer
operations than our implementation on the parallel
network.

Acknowledgments

The author is thankful to the editor and two anony-
mous reviewers for their constructive comments, which
helped to improve the manuscript.

References

1. Li, B., Springer, J., Bebis, G. and Gunes, M.H.
\A survey of network 
ow applications", Journal of
Network and Computer Applications, 36, pp. 567-581
(2013).

2. Barlet, P. and Cabellos, A. \Analysis of the impact of
sampling on NetFlow tra�c classi�cation", Methodol-
ogy, 55, pp. 1083-99 (2010).

3. Hoque, N., Bhuyan, M.H., Baishya, R.C., Bhat-
tacharyya, D.K. and Kalita, J.K. \Network attacks:
Taxonomy, tools and systems", Journal of Network
and Computer Applications, 40, pp. 307-324 (2014).

4. Lee, M., Hajjat, M., Kompella, R.R. and Rao, S.
\Preserving application structure in sampled 
ow mea-

surements", In INFOCOM, 2011 Proceedings IEEE,
pp. 2354-62 (April, 2011).

5. Lee, Y., Kang, W. and Lee, Y. \A hadoop-based
packet trace processing tool", In Proceedings of the
Third International Conference on Tra�c Monitoring
and Analysis, TMA11. Berlin, Heidelberg: Springer-
Verlag, pp. 51-63 (2011).

6. Li, Y. \Study of the monitoring model for secu-
rities trading network Quality of service", In 2nd
International Conference on Information Science and
Engineering (ICISE), pp. 1-4 (2010).

7. Liang, C. and Jian, G. \Fast application-level tra�c
classi�cation using net 
ow records", Journal on Com-
munications, 33, pp. 145-52 (2012).

8. Nie, L., Jiang, D. and Guo, L. \A convex optimization-
based tra�c matrix estimation approach in IP-over-
WDM backbone networks", Journal of Network and
Computer Applications, 50, pp. 32-38 (2015).

9. Shelley, D.S. and Gunes, M.H. \Gerbilsphere: inner
sphere network visualization", Computer Networks,
56, pp. 1016-28 (2012).

10. Zhang, X. and Ding, W. \Flow-aggregation accelerat-
ing strategy for TCP tra�c", Journal of Networking,
9, pp. 1416-1425 (2014).

11. Ahuja, R.K., Magnanti, T.L. and Orlin, J.B., Net-
work Flows: Theory, Algorithms, and Applications,
Prentice-Hall, Englewood Cli�s, NJ (1993).

12. Orlin, J.B. \Max 
ows in O(mn) time, or better",
STOC, pp. 765-774 (2013).

13. Furkerson, D.R. \A network 
ow feasibility theorem
and combinatorial applications", Canadian Journal of
Mathematics, 11, pp. 440-451 (1959).

14. Hassin, R. \The minimum cost 
ow problem: A
unifying approach to dual algorithms and a new tree-
search algorithm", Mathematical Programming, 25,
pp. 228-239 (1983).

15. Ho�man, A.J. \Some recent applications of the theory
of linear inequalities to extremal combinatorial anal-
ysis", In American Mathematical Society, R. Bellman
and M. Hall, Eds., pp. 113-127 (1960).

16. McCormick, S.T. \How to compute least infeasible

ows", Mathematical Programming, 78, pp. 179-194
(1997).

17. Ervolina, T.R. and McCormick, S.T. \Two strongly
polynomial cut canceling algorithms for minimum cost
network 
ow", Discrete Applied Mathematics, 46, pp.
133-165 (1993).

18. Radzik, T. and Goldberg, A.V. \Tight bounds on
the number of minimum-mean cycle cancelation and
related results", Algoritmica, 11, pp. 226-242 (1994).



328 M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329

19. Ghiyasvand, M. \An O(mn log(nU)) time algorithm
to solve the feasibility problem", Applied Mathematical
Modelling, 35, pp. 5276-5285 (2011).

20. Main, R.A. \Infeasibility analysis using Claudia-I",
Technical Report, BP Oil International (1993).

21. Main, R.A. \Infeasibility analysis using Claudia-II",
Technical Report, BP Oil International (1993).

22. Salehi Fathabadi, H. and Ghiyasvand, M. \A new
algorithm for solving the feasibility problem of a
network 
ow", Applied Mathematics and Computation,
192(2), pp. 429-438 (2007).

23. Greenberg, H.J. \Diagnosing infeasibility for min-cost
network 
ow models, Part I: Dual infeasibility", IMA
Journal of Mathematics in Management, 1, pp. 99-109
(1987).

24. Greenberg, H.J. \Diagnosing infeasibility for min-cost
network 
ow models, Part II: primal infeasibility",
IMA Journal of Mathematics Applied in Business and
Industry, 2, pp. 1-12 (1988).

25. Greenberg, H.J., A Computer-Assisted Analysis Sys-
tem for Mathematical Programing Models and Solu-
tions: A User's Guide for Analyze, Kluwer Academic
Publications, Boston (1993).

26. Aggarwal, C., Ahuja, R.K., Hao, J. and Orlin, J.B.
\Diagnosing infeasibilities in network 
ow problems",
Mathematical Programing, 81, pp. 263-280 (1992).

27. Ghiyasvand, M. \A new approach for computing a
most positive cut using the minimum 
ow algorithms",
Applied Mathematics and Computation, 176(1), pp.
27-36 (2006).

28. Chinneck, J.W. \Finding the most useful subset of con-
straints for analysis in an infeasible linear program",
Technical Report SCE-93-07, Systems and Computer
Engineering, Carleton University, Ottawa, Canada
(1993).

29. Chinneck, J.W. \MINOS(IIS): Infeasibility analysis
using minos", Computers and Operations Research, 21,
pp. 1-9 (1994).

30. Chinneck, J.W. \Localizing and diagnosing infeasibil-
ities in networks", INFORMS Journal on Computing
(1996).

31. Chinneck, J.W. and Dravnieks, F.W. \Locating min-
imal infeasible constraint sets in linear programs",
ORSA Journal on Computing, 3, pp. 157-168 (1991).

32. Jiang, D., Xu, Z. and Xu, H. \A novel hybrid
prediction algorithm to network tra�c", Annals of
Telecommunications, 70(9), pp. 427-439 (2015).

33. Jiang, D., Xu, Z. and Xu, H. \Multi-scale anomaly
detection for high-speed network tra�c", Transactions
on Emerging Telecommunications Technologies, 26(3),
pp. 308-317 (2015).

34. Jiang, D., Xu, Z., Liu, J. and Zhao, W. \An opti-
mization-based robust routing algorithm to energy-
e�cient networks for cloud computing", Accepted by
Telecommunication Systems, 63, pp. 89-98 (2016).

35. Jiang, D., Zhao, Z., Xu, Z., Yao, C. and Xu,
H. \How to reconstruct end-to-end tra�c based on
time-frequency analysis and arti�cial neural network",
AEU-International Journal of Electronics and Com-
munications, 68(10), pp. 915-925 (2014).

36. Edmonds, I. and Karp, R.M. \Theoretical improve-
ments in algorithmic e�ciency for network 
ow prob-
lems", Journal of the Association on Computing Ma-
chinery, 19, pp. 248-264 (1972).

37. Goldberg, A.V. and Tarjan, R.E. \Finding minimum-
cost circulations by successive approximation", Math.
Oper. Res, 16, pp. 430-466 (1990).

38. Orlin, J.B. \A faster strongly polynomial minimum
cost 
ow algorithm", Oper. Res, 41, pp. 338-350 (1993)

39. Vygen, J. \On dual minimum cost 
ow algorithms",
Mathematical Methods of Operations Research, 56, pp.
101-126 (2002).

40. Ahuja, R.K., Goldberg, A.V., Orlin, J.B. and Tarjan,
R.E. \Finding minimum-cost 
ows by double scaling",
Mathematical Programming, 53, pp. 243-266 (1992).

41. Frangioni, A. and Manca, A. \A computational study
of cost reoptimization for min-cost 
ow problems",
INFORMS J. Comput, 18, pp. 61-70 (2006).

42. Ervolina, T.R. and McCormick, S.T. \Two strongly
polynomial cut canceling algorithms for minimum cost
network 
ow", Dicreate Applied Mathematics, 46, pp.
133-165 (1993).

43. Georgiadis, L., Goldberg, A.V., Tarjan, R.E. and Wer-
neck, R.F. \An experimental study of minimum mean
cycle algorithms", Proc. 6th International Workshop
on Algorithm Engineering and Experiments, SIAM,
pp. 1-13 (2009).

44. Ghiyasvand, M. \A Geometrical explanation to the
optimality concept of minimum cost 
ows", Scientia
Iranica, 23, pp. 3063-3071 (2016).

45. Geranis, G., Paparrizos, K. and Sifaleras, A. \On a
dual network exterior point simplex type algorithm
and its computational behavior", RAIRO-Operations
Research, 46(3), pp. 211-234 (2012).

46. Ghiyasvand, M. \A polynomial-time implementation
of Pla's method to solve the MCT problem", Advances
in Computational Mathematics and Its Applications,
1(2), pp. 104-109 (2012).

47. Kiraly, Z. and Kovacs, P. \E�cient implementations
of minimum-cost 
ow algorithms", Acta Universitatis
Sapientiae, 4, pp. 67-118 (2012).

48. Ghiyasvand, M. \A new polynomial-time implemen-
tation of the out-of-kilter algorithm using Minty�s
lemma", Control and Cybernetics, 43(1), pp. 79-94
(2014).

49. Kovacs, P. \Minimum-cost 
ow algorithms: An exper-
imental evaluation", Optimization Methods and Soft-
ware, 30(1), pp. 94-127 (2015).



M. Ghiyasvand/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 319{329 329

50. Ghiyasvand, M. \An O(m(m + n logn) log(nC))-time
algorithm to solve the minimum cost tension problem",
Theoretical Computer Science, 448, pp. 47-55 (2012).

51. Sifaleras, A. \Minimum cost network 
ows: Problems,
algorithms, and software", Yugoslav Journal of Oper-
ations Research, 23(1), pp. 3-17 (2013).

Biography

Mehdi Ghiyasvand was born in Hamedan, Iran in
1975. He obtained MS and PhD degrees in Operations
Research from Tehran University and spent a Post-
Doctoral term at MIT, USA. He is now an Associate
Professor in Bu-Ali Sina University.




