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Abstract. Given the initial layout of a container terminal with a bay, the container
retrieval problem aims at obtaining a movement sequence for the crane to retrieve all the
containers arranged in a pre-de�ned order. In this study, we develop a computationally
e�cient heuristic, called constant summation (CSUM), to minimize the total working
time of crane, required to retrieve all the containers from a given bay. Numerical results
show that CSUM is very promising in dealing with the container retrieval problems and
outperforms the best known approaches recently presented in the literature in terms of the
crane's working time.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In an attempt to utilize the available spaces, many
yards/bays stack up containers and retrieve them using
either one [1] or more [2] cranes. In any container ter-
minal, such as a yard/bay, items have to be retrieved in
a sequence, which is inuenced by various constraints,
e.g. space, movement, or safety limitations. Thus, the
Container Retrieval Problem (CRP) arises in yards
where the containers are usually stacked up and some
of them are buried under the others, which makes their
retrieval time-consuming and costly due to the need
for transferring of the blocking containers before being
able to access them.

Usually, the yard/bay includes several blocks.
Those blocks adjacent to the sea are usually assigned
to the containers that are to be exported in the
near future, which are called the export containers.
Regarding the high costs associated with loading up the
ships with containers as well as the constraints resulted
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from the limited berthing locations, it is reasonable
to optimize the retrieval of the export containers by
loading them onto the ship as short as possible. To do
so, a common approach is to pre-marshal the export
containers within the blocks nearby the sea according
to the stowage plan so that no additional relocation of
containers will be required while loading them onto the
ships. However, there are many uncertain phenomena,
which may lead to undesirable changes in the stowage
plan. In addition, there might be limited time available
to perform the pre-marshaling operations. Therefore,
it is necessary to develop a fast heuristic to optimize
the loading of a block of prioritized containers onto
a ship in terms of time. A similar problem occurs at
the landside where the corresponding import containers
have to be unloaded onto the trucks.

To decrease the time required to load the contain-
ers onto a ship, most of the studies in the literature
have attempted to decrease the number of necessary
relocations [3-5]. Experimental results indicate that
there is a high correlation between working time of the
crane, denoted by TCW , and the number of relocations,
denoted by NMOV [6]. TCW is more bene�cial than
NMOV, because TCW is indeed the main objective
function of the CRP; thus, we attempt to minimize ob-
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jective NMOV with the hope of obtaining the minimum
possible TCW . Therefore, in this study, we attempt to
develop a heuristic approach that minimizes TCW .

When NMOV is considered to be minimized, the
problem is called the Containers/Blocks Relocation
Problem (CRP or BRP) [4,5,7]. Kim and Hong [3]
developed a Branch and Bound (B&B) algorithm that
made use of the number of blocking containers in
the initial layout as a lower bound for the number
of required relocations. Since their proposed B&B
algorithm was only applicable to small-sized prob-
lem instances, they also developed a greedy heuristic
based on the expected values of the future relocations.
Caserta et al. [8] developed an alternative stacking
area representation based on a binary matrix. Since
in their approach immediate access to the information
about stacked items was allowed, it provided a superior
computational time.

Later Caserta et al. [9] applied the corridor
method, which was proposed in [10], to solve the BRP
by shortening the search tree dimensions. Their com-
putational results on medium and large-sized problem
instances veri�ed the e�ectiveness of their proposed
method. Recently, Forster and Bortfeldt [5] de�ned six
categories of movements based on the natural classi�ca-
tion of possible moves and then developed a tree search
heuristic, accordingly. Their computational results
proved that this heuristic was highly competitive in
comparison with the best known approaches in the
literature. Subsequently, Zhu et al. [4] employed the
iterative deepening A* algorithm, which was based on
novel lower-bound measures as well as new heuristics.
Their IDA* heuristic was able to �nd the optimal or
near-optimal solutions for the considered problems in
a time-e�cient computational e�ort.

In a recent paper, Jovanovic and Vo� [11] pro-
posed a new heuristic approach that considered the
properties of the upcoming movement while relocating
the destination of a block. Their approach outper-
formed several approaches available in the literature.
Caserta et al. [7] proposed two di�erent integer pro-
gramming mathematical models for the BRP. The �rst
model, called BRP-I, mapped the complete feasible
region of the BRP, but generated a large search space.
By adding some realistic assumptions, they limited
the search space and developed a more usable model,
called BRP-II. However, their model was only capable
of solving small to relatively medium-scaled instances.
In a recent paper, Eskandari and Azari [12] showed
that BRP-II model was not correct and it over-satis�ed
the aforementioned simplifying assumptions. They
also indicated that some results reported in [7] were
incorrect. In addition, they proposed the corrected
BRP-II model, called BRP2c. Finally, in order to
speed up solving the BRP2c model, they proposed
BRP2ci model by incorporating some new cutting

constraints into BRP2c so that the resultant model
was able to decrease the computational time by 25
times on average. Recently, Petering and Hussein [13]
also proposed a new mixed integer formulation of BRP,
called BRP-III. This new formulation, in comparison
to the BRP-I [7], had the advantages of fewer decision
variables and lower runtime. In a more recent paper,
Zehendner et al. [14] also found the incorrectness of
BRP-II model proposed by [7]. As in [12], they �rst
corrected the BRP-II model and then improved it by
removing superuous variables, tightening some con-
straints, introducing a new upper bound, and applying
a pre-processing step to �x several variables, which led
to better computational e�ciency.

Lee and Lee [6] applied a neighborhood search
approach to resolve the CRP by considering blocks with
more than one bay. Their proposed approach generated
some tours in each iteration by using a mathematical
model and the shortest one was chosen, subsequently.
To the best of our knowledge, their approach entails
a high computational time and is the �rst paper that
chose TCW as the objective function of the CRP.

In addition to [6], very few related studies have
considered TCW as the objective function [15,16].
Forster and Bortfeldt in [15] used a tree search
procedure, which was previously proposed by them
in [5], to solve the problems with more than one
bay. They showed that their approach was more
promising than the one proposed by Lee and Lee [6].
Also, �Unl�uyurt and Ayd�n [16] considered TCW as the
objective function, which will be discussed in more
detail in Section 5.

Although the retrieval operations and their re-
quired time are dependent on other operations such as
routing and transferring of the containers by trucks,
to keep the problem simple, we assume that there
is always a truck available to transfer the containers
from the bay towards the berthing location. By this
assumption, the problem could be considered indepen-
dent from other operations that may inuence it.

In this paper, we aim to minimize the total
working time of crane required to retrieve all the
containers from a single bay, which is less considered
in the literature. To this purpose, a computationally
e�cient heuristic algorithm, called constant summa-
tion (CSUM), is developed. The main contribution
of this paper is the branching strategy proposed in
CSUM, which aims at reducing the overall distance
that the crane needs to move. The computational
results indicate that CSUM is timely e�cient and
outperforms the best known solution approaches.

The rest of this study is organized as follows.
Section 2 describes the CRP and some related def-
initions and notations are introduced in Section 3.
The proposed heuristic algorithms are presented in
Section 4 and the computational results are discussed
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in Section 5. Finally, the last section includes the
concluding remarks.

2. Container retrieval problem

In general, we can divide a container terminal into
three major areas: the quayside, the landside, and the
container yard [17]. A container yard consists of several
blocks, and each block comprises several bays. Each
bay has the same number of stacks. Each stack has the
same maximum capacity of containers. As in [6], in
order to keep the problem simple, we have assumed
that all the containers are of the same size. Each
container is assigned a number, which represents its
priority over others. Lower numbers indicate higher
priorities for leaving the bay. Exactly one crane is
used to transfer the containers from stacks to the
truck. To this purpose, akin to [6], the Rail Mounted
Gantry Crane (RMGC) is employed as one of the most
widely used types of cranes. This crane transfers the
containers one at a time and can access the ones that
are located on top of the stacks. As shown in Figure 1,
the bay is one-sided. That is, only one side of the bay
is allotted to the retrieval of containers, which is shown
next to the stack.

We suppose that at the beginning of the process,
the RMGC is located along the bay and above the truck
lane, next to the stack. For relocating a container
from a stack such as s1 to another one such as s2,
we use the same procedure applied in [6], which is as
follows. First, the trolley should be moved above the
stack s1; this operation is called the trolley movement.
Then, using the spreader, the container will be picked
up; this operation is called the spreader movement.
After lifting the container up, it should be transferred
to stack s2 using the abovementioned movements. In
this paper, we consider the time associated with these
operations to be deterministic. In other words, working
time of the crane is proportional to the distance it has
moved during its operations. Although there are other
realistic issues, which a�ect crane working time, we
chose above a procedure from the literature [6] to make

Figure 1. The con�guration of a typical bay.

our results comparable with other results available in
the literature.

In Figure 1, the con�guration of a typical bay is
shown. For a given block of containers, a solution to
this CRP is a sequence of movements, which satis�es
the following assumptions that are common in the CRP
literature [5,6]:

� Only those containers that are located on top of the
stacks are directly accessible;

� In each stage, only the container with the highest
priority can be retrieved;

� Containers could only be relocated to the stacks of
the same bay;

� The maximum capacity of the stacks could not be
exceeded;

� During the retrieval process, no container could
enter into the bay;

� The crane transfers containers one at a time.

In this study, we aim at minimizing the working
time of the crane, i.e. TCW , as the main objective
function of the problem. In each stage of the retrieval
process, the container with the highest priority and the
stack that includes it are called the present container
and the present stack, respectively. Possible move-
ments are of two types: the relocation and the remove.
In relocations, a container is transferred from one stack
to another within the same bay. In removes, the present
container is removed from the bay or, equivalently,
it is relocated to the truck lane. In each stage of
the retrieval process, in order to remove the present
container, other containers that have blocked it must
�rst be relocated to the other stacks.

3. De�nitions and notations

In this section, the de�nitions and the notations used
in developing the proposed heuristic algorithms are
presented. The parameters W and H refer to the
number of the bay's stacks and the number of tiers
in each stack, respectively. The third parameter, i.e.
N , refers to the number of the containers present in
the initial con�guration of the bay. The notations used
throughout this paper along with their corresponding
de�nitions are summarized in Table 1.

At any stage of the retrieval process, akin to [5],
we classify each container as either a good container or
a bad container.

De�nition 1. If a container has blocked a container
with a higher priority, then it is called a bad container;
otherwise, it is called a good container.

Furthermore, similar to [5], we propose to classify
the relocations according to the placement status of the
moved item before and after the relocation operation.
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Table 1. The de�nitions of the notations used in this
study.

Notations De�nitions

PS Present Stack
PC Present Container
w The stack number of the PS

q
The container which is located on
top of the PS

S
The set of all un�lled stacks of
the bay except the present stack

Nm The current number of movements

LB
The lower bound for the number of
movements required to empty the
current bay

UB The sum of the Nm and the LB
tcw The current working time of the crane

Tbest
The crane's working time associated
to the best found solution

trem The time required to remove the PC

trel
The time required to relocate q to
the destination stack

De�nition 2. If a bad container is still a bad con-
tainer after the relocation, then this relocation is called
a Bad-Bad (in short BB) relocation. Analogously, if
a bad container becomes a good container after the
relocation, then this relocation is called a Bad-Good
(BG) relocation.

The two aforesaid de�nitions were also applied by
Forster and Bortfeldt [5]. For example, in Figure 1,
the containers 4 and 7 are good containers and the
containers 5 and 8 are bad containers. Relocating
container 5 to stack will be a BG relocation, but
relocating container 5 into stack 4 will be a BB
relocation. In this study, the good containers are
not allowed to be relocated. To distinguish the best
BB relocation or the best BG relocation for a given
container q, the following de�nition is developed.

De�nition 3. The best BB stack, s 2 S, for a given
container, q, is the stack onto which relocating the
container q is a BB relocation and the lowest number
in stack s is larger than the lowest numbers in all other
stacks of the set S. Analogously, the best BG stack,
s 2 S, for a given container, q, is the stack onto
which relocating the container q is a BG relocation and
the lowest number in stack s is lower than the lowest
number in all other stacks of the set S.

According to De�nition 3, some relocations are
called the best because we suppose they will decrease
the possible future relocations. For example, in Fig-
ure 1, after retrieving container 1, the PC and the

PS will be container 2 and stack 3, respectively. For
retrieving container 2, q = 8 and S = f1; 2; 4g. The
best BB stack and the best BG stack for q in S are
stacks 4 and 1, respectively. It is worthy to mention
that in De�nition 3, the relocation is considered to be
the best BG as it can minimize the di�erence between
the relocated container and the lowest number in the
destination stack, which can in turn reduce the chance
of �nding a better relocation to that destination stack
in subsequent relocations. An analogous reasoning
underlies the de�nition of the best BB.

In the above de�nition, if stack s is empty, in order
to make the relocation of containers onto it possible,
the smallest container number for it should be set equal
to N + 1. Also, if more than one empty stack satis�es
the condition stated in De�nition 3, the one with the
lowest stack number would be selected.

4. The heuristic approaches

In this section, we �rst introduce the proposed ap-
proach by Kim and Hong [3] for calculating a lower
bound on the number of movements required to remove
the containers of a bay. Then, we present a heuristic,
called the Good-Bad Heuristic (GBH), which attempts
to minimize the NMOV. Finally, we propose our main
heuristic, called constant summation (CSUM), which
is developed based upon the GBH and attempts to
minimize the main objective, i.e. TCW .

4.1. Lower bound
Di�erent approaches for calculating a lower bound on
the number of movements required to remove the con-
tainers of a bay have been proposed in the literature [3-
5]. Since the approach proposed by Kim and Hong [3]
is simple and e�cient, in this study, we have decided
to use it, which is as follows. If x and y refer to the
numbers of bad and good containers existing in the
current bay (according to De�nition 1), respectively,
then a lower bound on the number of movements can
be calculated by 2x+ y.

4.2. The good-bad heuristic
The Good-Bad Heuristic (GBH) is developed to mini-
mize the number of movements, i.e. NMOV. In GBH,
if a remove is possible it is done; otherwise, GBH
follows at most two new branches, which are the best
BG stack and the best BB stack for the uppermost
container of the PS, respectively. If no BG relocation is
available, the �rst and the second best BB relocations
are followed. In addition, the relocations are limited
to originate only from the PS. In this approach, by
allowing for the evaluation of at most two branches,
i.e. the best BB and BG relocations, which limit
the number of branches, as well as by limiting the
relocations only to one source stack, it is tried to speed
up the GBH heuristic.
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Figure 2. The pseudo code of the GBH algorithm.

Figure 2 represents the pseudo code of the GBH
algorithm. Before starting the GBH, we set UB equal
to H �N that is obviously an upper bound on NMOV
as well as Nm = 0 and then the �nal solution found by
GBH will be reported. Regarding the NP-hardness of
the problem [7], the computational time of the GBH
may increase exponentially, so we have imposed a time
limit on the search process. At the �rst step, we
check whether the time limit is reached or not. If it
is reached, the search will be aborted. Otherwise, we
check whether the PC is blocked or not. If it is not
blocked and it is the only remaining container in the
block, we �rst retrieve (remove) it from the block and
then set the UB equal to one unit less than the length
of the current solution. We save the current solution as
the best achieved solution so far and, �nally, in order
to search other branches, we go back to the last upper
level.

If the PC is neither blocked nor the last container
in the bay, after retrieving it, we call for GBH to
continue the search process. However, in order to
carry on a recursive search, after searching the current
branch, we have to return one level back from the
current branch that is equivalent to its removal.

If the PC is blocked, in order to releases it, the
blocking containers should be transferred to the other
stacks. Let q be the uppermost container in PS and
S be the set of all the stacks of the bay except PS. In
making new branches, at most two alternatives will be

examined. If there is a possible BG relocation for q in
S, the First Destination Stack (FDS) is the best BG
relocation in S for q and the Second Destination Stack
(SDS) is the best BB relocation in S for q. If there is
no BG relocation for q in S, the �rst one (FDS) is the
best BB relocation in S for q and the second alternative
(SDS) is the best BB in S�fFDSg for q. Then, for the
stacks FDS and SDS (if available), we do as follows.

If neither FDS nor SDS is available or the time
limit de�ned by the analyst is reached, the search is
ceased. Otherwise, the container q will be moved to the
destination stack, which is either FSD or SDS. Now, if
Nm plus Lower Bound (LB) is less than or equal to UB,
we follow this branch by calling for GBH procedure.
Otherwise, it is aborted and the last movement will be
returned.

4.3. Constant summation heuristic
Pseudo-code of the constant summation (CSUM)
heuristic is shown in Figure 3. This heuristic utilizes
the GBH in its structure so that the problem is �rst
solved using the GBH and the obtained solution is used
as an initial solution to CSUM. According to this initial
solution and with respect to the con�guration of the
bay, we divide all the containers into two di�erent sets,
i.e. A and B. If the number of relocations for the
container q in the initial solution is more than one, then
this container belongs to set A; otherwise, it belongs
to set B. Then, according to the initial solution, we
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Figure 3. The pseudo code of the CSUM heuristic.

assign the initial values to the variables Nm, NMOV,
tcw, and Tbest. Afterwards, we call for CSUM, which is
a recursive procedure.

In performing the CSUM, if the PC is not blocked,
we do the same as we did in GBH. If it is blocked
and q belongs to set A, the same branching strategy
as the one used in GBH will be employed. The main
di�erence between GBH and CSUM is when q belongs
to the set B. In this case, if the PS number is w, the

�rst destination stack is the best BG stack for q in the
set f1; � � � ; w � 1g. Otherwise, alternative destination
stacks are selected from the set fw + 1; � � � ;Wg so
that the stack m will be selected if and only if for
each stack n 2 f1; � � � ; w � 1; w + 1; � � � ;m � 1g, the
lowest number in stack m is lower than that of the
stack n where relocating q to stack m is known as a
BG relocation. In this case, if more than one stack
satis�es such conditions, the stack with less number is
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Figure 4. The smallest numbers in the stacks of a typical
bay.

chosen to be searched sooner.
After the list Q is completed, the new children

will be created so that for each stack s 2 Q, the time of
relocating q to the stack s is added to tcw and the Nm is
increased by one unit. If Nm � UB, then the relocation
will be done and we have to return one level back
afterwards; otherwise, tcw and Nm must be updated.

To illustrate the branching strategy in CSUM, an
example of a typical bay is considered next. Let q = 10,
W = 8, and w = 3 and also assume that the smallest
number in each stack of the bay is as given in Figure 4.
According to CSUM, the alternative destination stacks
are 2, 4, and 7. Note that although stacks 1, 6, and
8 provide BG relocations, none of them is selected. In
this example, stack 8 is empty and, therefore, according
to De�nition 3, the lowest number for it will be N + 1.

5. Numerical results

In this section, in order to evaluate the performance
of the proposed algorithm, i.e. CSUM, we have

compared its performance with the best known
approaches presented in the literature through
the numerical experiments. To this purpose, the
CSUM is implemented on a personal computer
with a 2.4 GHz Intel Core i3 CPU with 4 GB
of RAM. In this study, in order to compare
the performance of the proposed heuristic with
the existing approaches, we have performed the
comparison over the test problems presented in
other studies. Thus, two CRP test problems taken
from the literature are considered in this study.
The �rst set of instances is given by �Unl�uyurt and
Ayd�n [16], which can be accessed upon request
and includes 640 instances. The second problem set
is given by Lee and Lee [6] that can be downloaded from
http://sites.google.com/site/smallcontainerworld/,which
includes 14 instances.

�Unl�uyurt and Ayd�n [16] proposed a Branch and
Bound (B&B) algorithm and also three alternative
heuristic algorithms, called Grdy2, Di�2, and EAR2.
In Table 2, the computational results of the CSUM
in comparison to those obtained by the proposed
algorithms in [16] are presented. The �rst column
refers to the Instance Type (IT), which corresponds
to 40 instances with the same parameters. Columns
named PRI (i.e. columns 4, 6, and 8 from the left)
refer to the Percent Relative Improvement (PRI) of the

Table 2. Benchmarking CSUM against the approaches proposed by �Unl�uyurt and Ayd�n [16].

NMOV

IT CSUM Grdy2 PRI Di�2 PRI EAR2 PRI B&B Gap

b-5-6-65 28.05 28.50 -1.58 28.2 -0.53 29.53 -5.01 28.03 0.07
b-5-7-60 30.18 30.68 -1.65 30.15 0.08 31.63 -4.60 30.15 0.08
b-6-5-55 24.53 25.35 -3.25 24.75 -0.91 26.08 -5.96 24.48 0.18
b-6-6-60 32.65 33.83 -3.49 33.05 -1.21 35.28 -7.45 32.65 0.00
u-5-6-65 28.83 29.58 -2.54 29.05 -0.76 30.63 -5.88 28.83 0.00
u-5-7-60 30.6 31.03 -1.39 30.78 -0.58 32.65 -6.28 30.6 0.00
u-6-5-55 24.63 25.18 -2.20 24.93 -1.22 26.45 -6.90 24.6 0.10
u-6-6-60 32.35 33.55 -3.58 32.58 -0.71 35.15 -7.97 32.3 0.15
Average -2.46 -0.73 -6.26 0.07

TCW
IT CSUM Grdy2 PRI Di�2 PRI EAR2 PRI B&B Gap

b-5-6-65 298.95 304.9 -1.95 314.8 -5.04 314.6 -4.98 289.93 3.11
b-5-7-60 344.88 353.7 -2.50 365.1 -5.53 360.3 -4.28 337.05 2.32
b-6-5-55 241.93 253.4 -4.53 256.9 -5.83 253.5 -4.58 236.00 2.51
b-6-6-60 345.55 361.8 -4.49 373.4 -7.45 361.1 -4.31 331.40 4.27
u-5-6-65 309.73 318.5 -2.76 319.2 -2.95 330.8 -6.37 299.90 3.28
u-5-7-60 350.75 358.5 -2.16 369.7 -5.13 370.9 -5.42 341.20 2.80
u-6-5-55 243.68 253.7 -3.95 259.7 -6.16 258.9 -5.88 238.90 2.00
u-6-6-60 344.15 361.2 -4.73 367.4 -6.34 369.7 -6.91 335.58 2.55
Average -3.4 -5.6 -5.3 2.86
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CSUM in comparison to the Grdy2, Di�2, and EAR2
methods, respectively, for both objective functions.
The last column indicates the percent of the relative
gap between the CSUM and the B&B algorithm.
As it can be observed from this table, CSUM has
outperformed Grdy2, Di�2, and EAR2, since there
are 3.4%, 5.6%, and 5.3% decreases on average in the
objective TCW for CSUM in comparison to Grdy2,
Di�2, and EAR2, respectively. Similarly, there are
2.46%, 0.73%, and 6.26% decreases on average in the
objective NMOV for CSUM in comparison to Grdy2,
Di�2, and EAR2, respectively. In addition, the average
optimality gap for CSUM over all groups of instances,
which is calculated in comparison to B&B, are 0.07%
and 2.86% for TCW and NMOV, respectively, which
are quite small. The interesting point here is that
although the optimality gap for objective NMOV is
negligible, it is considerable for objective TCW . This
result supports our approach in using objective TCW
rather than objective NMOV, in particular when the
problem size increases, e.g., when considering blocks
with more than one bay. The allotted time to address

each category of the instances was one second. The
computational times reported throughout this paper
are all in seconds.

Furthermore, in this paper, CSUM is also bench-
marked against the approach proposed by Lee and
Lee [6], briey LL, and the comparative results are
provided in Table 3. In these instances, the time
limit allotted to �nd an initial solution using GBH
is considered to be three seconds. After an initial
solution is found, CSUM is allowed at most 5 seconds
to improve the current solution. Therefore, in Tables 3
and 4, the summation of times spent by GBH and
CSUM together is reported, which is at most 3 + 5
seconds. In Table 3, the second columns indicate
the lower-bound values of the test problems for the
initial layouts and the columns named PRI represent
the percent relative improvements in TCW and NMOV,
respectively. In Tables 3 and 4, the CT columns
indicate the computational time. CSUM has resulted
in fewer movements in all 14 instances and the PRI for
NMOV is on average higher than 12%. With respect to
the considered main objective, i.e. TCW , CSUM has on

Table 3. Benchmarking CSUM against the approach proposed by Lee and Lee [6].

ID LB NMOV PRI TCW (s) PRI CT (s)
LL [6] CSUM LL [6] CSUM LL [6] CSUM

R011606 0070 001 100 118 107 -9.3 10832 8010 -26.05 6304 2.0
R011606 0070 002 104 117 108 -7.7 10840 8116 -25.13 11081 2.2
R011606 0070 003 104 110 108 -1.8 10326 8243 -20.17 5502 0.2
R011606 0070 004 108 158 115 -27.2 13823 8629 -37.58 9026 0.3
R011606 0070 005 106 124 110 -11.3 11406 8252 -27.65 9108 0.7
U011606 0070 001 125 125 125 0 11341 9090 -19.85 17326 2.4
U011606 0070 002 124 130 128 -1.5 11737 9397 -19.94 11243 5.1
R011608 0090 001 143 190 151 -20.5 16773 11351 -32.33 13269 5.1
R011608 0090 002 139 191 151 -20.9 16883 11250 -33.36 11135 5.4
R011608 0090 003 142 216 155 -28.2 18857 11653 -38.20 21583 8.0
R011608 0090 004 143 178 151 -15.2 15922 11214 -29.57 7042 5.1
R011608 0090 005 143 182 149 -18.1 16281 11202 -31.20 13738 5.1
U011608 0090 001 164 175 166 -5.1 15715 12371 -21.28 21587 5.1
U011608 0090 002 164 180 168 -6.7 16236 12613 -22.31 8021 5.1

Average 157 135 -12.4 14069 10099.4 -27.47 11855 3.7

Table 4. Benchmarking CSUM against the approach proposed by Forster and Bortfeldt [15].

ID NMOV TCW (s) CT (s)
FB [15] CSUM PRI FB [15] CSUM PRI CSUM FB [15]

R011606-0070 108 109.6 1.5 9534.1 8250.0 -13.5 1.08 8.2
R011608-0090 148.4 151.4 2 12501.6 11334 -9.3 5.74 10.1
U011606-0070 125 126.5 1.2 10077.4 9243.6 -8.3 3.75 1.2
U011608-0090 167 167 0 13244.6 12492 -5.7 5.1 10

Average 1.18 -9.2 3.9 7.4
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average 27.5% lower working time of crane. In addition,
as the last two columns of Table 3 demonstrate, the
CSUM algorithm is about 3000 times faster than the
LL algorithm in terms of the running time.

Finally, CSUM is benchmarked against the tree
search algorithm proposed by Forster and Bort-
feldt [15], briey called FB in this paper, and the
comparative results are summarized in Table 4. In
this table, the �rst and the last two rows correspond
to a category of 5 and 2 instances, respectively, and
the results are reported in terms of the average values.
It is worth to mention that in spite of minor increase
in the average of NMOV by 1.18 for CSUM compared
to FB algorithm, there is a signi�cant improvement on
average by %9.2 in the main objective, i.e. TCW , which
in turn shows the superiority of the CSUM.

6. Conclusions and future research directions

The container terminals are very complex systems.
Thus, similar to other studies in the literature, this
study focuses on the well-de�ned problem of such envi-
ronments known as the Container Retrieval Problem
(CRP). In this study, we have proposed a heuristic
algorithm, called CSUM, for the CRP that has proved
e�cient in minimizing the overall working time of
the crane (TCW ) required to complete the retrieval
operations. The proposed approach was benchmarked
against all the former solution approaches presented in
the literature, which proved its superiority in terms of
the time needed to complete the retrieval operations.
In addition, the number of movements in the �nal
solutions obtained by CSUM was close to their existing
lower bounds and the way the containers were moved
around was also e�cient. Another advantage of the
CSUM is that it is a fast heuristic considering its
computational time, even in large instances, which may
be found in the real-world applications. It should be
noted that since we do not have access to the codes
of other heuristics, we have performed the comparisons
only over the datasets available in other related studies,
of which the computational results were accessible.

This research can be extended in the following
future research directions. Considering the fact that
the proposed CSUM was developed for the blocks
within a single bay, developing a solution approach
similar to the CSUM for the block of containers stored
in multiple bays can be the subject of future research.
In addition, considering the e�ect of having more than
one RMGC as well as using di�erent types of cranes
such as straddle carriers in a single bay can also be
considered an interesting research topic. Moreover,
in this study, we supposed that the traveling time of
the crane within the bay was independent from other
operations that might inuence it. However, in the
real-world environments, working time of the crane

can be dependent upon the time needed to transfer
the containers between the bay and the containership.
Finally, the proposed algorithm can be modi�ed to be
applied in similar applications such as stacking boxes,
pallets, and steel plates [3].
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