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Abstract. Finding the symmetries of the nonlinear fractional di�erential equations
plays an important role in study of fractional di�erential equations. In this manuscript,
�rstly, we are interested in �nding the Lie point symmetries of the time-fractional Kaup-
Kupershmidt equation. Afterwards, by using the in�nitesimal generators, we determine
their corresponding invariant solutions.
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1. Introduction

The method of group analysis of di�erential equations
was introduced by Sophus Lie about one hundred
years ago [1-3]. Lie group theory is an e�cient
method that we use for analysis of Partial Di�erential
Equations (PDEs). Lie symmetries method is an
e�ective method to solve the problems of mathematical
physics.

The Fractional Di�erential Equations (FDEs)
have been studied by scientists since about thirty
years ago. Many phenomena in nature can be
described using the FDEs. The fractional di�erential
equations arise in many �elds of sciences such as,
electrochemistry, physics, biology, mechanics, signal
processing, and viscoelastic materials [4-12].
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Many articles have been presented to de�ne
fractional derivatives. The most important ones are
the Caputo and the Riemann-Liouville derivatives.
Each fractional derivative has some advantages and
disadvantages. The Caputo derivative of a constant is
zero, but Riemann-Liouville derivative of a constant is
not. Many articles have been exhibited for �nding the
exact solutions of FDEs. There are many techniques
and methods in these papers, which constitute the
numerical and analytical solutions of FDEs. These
methods include the fractional complex transform [13],
the separating variables method [14], the variational
iteration method [15], the �rst integral method [16], the
homotopy analysis method [17], the homotopy pertur-
bation Pade technique [18], the generalized di�erential
transform method [19], the Hermit transform [20],
etc. Many researchers obtained the exact solutions of
many nonlinear PDEs using Lie group theory. But,
the question may be asked here: Can we use this
method for FDEs? Up to now, for FDEs, only a
few works can be found in literature [21-27]. One of
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the di�culties of this type of problems originates in
the non-local type of the fractional operators. Using
the abovementioned research in our manuscript, we
study the time-fractional Kaup-Kupershmidt equation,
namely:

D�
t u� u5x � 10uu3x � 25uxu2x � 20uxu2 = 0;

t > 0; x 2 R; (1)

where 0 < � < 1; u is a function of (x; t) and
u 2 C1(R2). The Kaup-Kupershmidt equation
plays an important role in the nonlinear dispersive
wave. Solitary waves propagate in nonlinear dis-
persive media. These waves preserve a stable form
due to dynamic balance between the dispersive and
nonlinear in
uences. The exact solutions of this
equation have been presented in many articles, such
as [28,29].

The rest of our work is organized as follows. In
Section 2, we present the analysis of the Lie Symmetry
group of FDEs. Afterwards, in Section 3, we obtain
the Lie point symmetries of the time-fractional
Kaup-Kupershmidt equation. Finally, we obtain
invariant solutions and reduced equations of this
equation in Section 4. Discussion and conclusions are
presented in Section 5.

2. Description of the symmetry group analysis
of FDEs

Finding the exact solutions of the fractional di�erential
equations is an important and di�cult task. Therefore,
much e�ort has been made to obtain the exact solutions
of them. We recall that the symmetry is one of the
most important concepts to study of the di�erential
equations. Finding the exact solutions of di�erential
equations using the fundamental method of the Lie
symmetries has been used by many researchers. In-
variance of the equations under transformation groups
is the basic concept of the Lie theory. As it is known,
there is the possibility of simplifying the di�erential
equations if there are symmetries of the di�erential
equations. We recall the works on this topic of Ovsian-
nikov [1], Olver [2], Ibragimov [3], Baumann [30],
Bluman & Anco [31], and You & Zhang [32]. Now,
we express the fractional Lie group method for �nding
in�nitesimal functions of FPDEs. Let us assume an
FPDE of the form:

D�
t u = F (x; t; u(1); � � � ); � > 0; (2)

where u is a function of independent variables; x; t, and
D�
t can be de�ned as follows.

De�nition 1 [4,6]. D�
t is the Riemann-Liouville

fractional derivative operator de�ned by:

D�
t u =

8>>>>>>>><>>>>>>>>:

@mu
@tm ;
� = m 2 N;

1
�(m��)

@m
@tm

tR
0

u(�;x)
(t��)�+1�m d� ;

m� 1 � � < m;m 2 N:

(3)

Similar to the discussion on PDEs [2,33], we can write:

D�
�t �u=D�

t u+"
h
�(�)
t (x; t; u; u(�); u(1); � � � )

i
+O("2);

(4)

here, �(�)
t is given by the prolongation formula [22]:
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where Dt is the total derivative operator de�ned as:

Dt =
@
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+ ut
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@u

+ uxt
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+ uxxt
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Simplifying Eq. (5) using the Leibnitz formula [34]:

D�
t [f(t)g(t)]=
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�
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we can write [35]:
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We have a de�nition as follows.

De�nition 2. The equations for �nding coe�cients
of the in�nitesimal operator X are given below:
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X(�)�D�
t u�F (x; t; u; u(1); � � � )�D�t u=F (x;t;u(1);��� ) =0;

(10)

where:

X(�) = �x(x; t; u)
@
@x

+ �t(x; t; u)
@
@t

+ �(x; t; u)
@
@u

+ �(1)
i (x; t; u; u(1))

@
@ui

+ � � �

+�(k)
i1;i2��� ;ik

�
x; t; u; u(1); � � � ; u(k)

� @
@ui1;i2��� ;ik

+ �(�)
t (x; t; u; � � � ; u(�); � � � ) @

@u(�)
t

:
(11)

Expanding Eq. (10) using Eq. (11) and preceding
relations, we obtain the determining equations. As a
result, these obtained equations yield Lie symmetries.

3. Application of fractional Lie symmetries to
the time-fractional Kaup-Kupershmidt
equation

Here, we employ this method for the time-fractional
Kaup-Kupershmidt equation:

D�
t u� u5x � 10uu3x � 25uxu2x � 20uxu2 = 0;

t > 0; 0 < � < 1: (12)

We search the in�nitesimal generator of Eq. (12).

Theorem 1. Lie symmetries of the time fractional
Kaup-Kupershmidt equation (Eq. (12)) are:

1. If � 6= 1
2 , 4

5 , then we have:

�x=c1�x+ c2; �t=5c1t; �u=�2c1�u;

where c1 and c2 are two arbitrary constants. There-
fore, the in�nitesimal generators are given by:

X1;1 =
@
@x
; X1;2 = �x

@
@x

+ 5t
@
@t
� 2�u

@
@u
:

2. If � = 1
2 , then we have:

�x=c1x+ c2; �t=10c1t; �u=�2c1u;

where c1 and c2 are two arbitrary constants. There-
fore, the in�nitesimal generators are given by:

X2;1 =
@
@x
; X2;2 = x

@
@x

+ 10t
@
@t
� 2u

@
@u
:

3. If � = 4
5 , then we have:

�x=4c1x+ c2; �t=25c1t; �u=�8c1u;

where c1 and c2 are three arbitrary constants.
Therefore, the in�nitesimal generators are given by:

X3;1 =
@
@x
; X3;2 = 4x

@
@x

+ 25t
@
@t
� 8u

@
@u
:

Proof. Let us assume the one-parameter Lie group
of in�nitesimal transformations in x, t, u given by:

x� = x+ "�x(x; t; u) +O("2);

t� = t+ "�t(x; t; u) +O("2);

u� = u+ "�u(x; t; u) +O("2);

where " is the group parameter, and the Lie algebra
of Kaup-Kupershmidt equation is spanned by vector
�elds:

X = �x(x; t; u)
@
@x

+ �t(x; t; u)
@
@t

+ �u(x; t; u)
@
@u
;
(13)

where:

�x=
dx�
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����
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; �t=
dt�
d"
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"=0
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du�
d"

����
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:
(14)

Applying X(�) to Eq. (12), we have:

X(�)�D�
t u� u5x � 10uu3x � 25uxu2x

� 20uxu2�
D�t u�u5x�10uu3x�25uxu2x�20uxu2=0

= 0; (15)

where X(�) is given by Eq. (11). Expanding Eq. (15),
and solving the obtained system using the Maple, we
obtain the Lie point symmetries for the time-fractional
Kaup-Kupershmidt equation. If � 6= 1

2 ;
4
5 , then we

have:

�x=c1�x+ c2; �t=5c1t; �u=�2c1�u:

Therefore, the in�nitesimal generators are given by:

X1;1 =
@
@x
; X1;2 = �x

@
@x

+ 5t
@
@t
� 2�u

@
@u
:

We now apply this argument again, with � = 1
2 , to

obtain:

�x = c1x+ c2; �t = 10c1t; �u = �2c1u:

Therefore, the in�nitesimal generators are given by:

X2;1 =
@
@x
; X2;2 = x

@
@x

+ 10t
@
@t
� 2u

@
@u
:

In the same manner, for � = 4
5 , we can obtain:

�x = 4c1x+ c2; �t = 25c1t; �u = �8c1u:

Therefore, the in�nitesimal generators are given by:

X3;1 =
@
@x
; X3;2 = 4x

@
@x

+ 25t
@
@t
� 8u

@
@u
:

The proof is completed.



H. Jafari et al./Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 302{307 305

4. Invariant solutions and the reduced
equations of the time-fractional
Kaup-Kupershmidt equation

The time-fractional Kaup-Kupershmidt equation is
expressed by the coordinates (x; t; u); thus, we want
to reduce it using new coordinates. By introducing
invariants (r; z), we obtain the new coordinates corre-
sponding to the in�nitesimal symmetry generator and
we can reduce the mentioned equation [36]. Consider
a Lie point symmetry:

X = �x(x; t; u)
@
@x

+ �t(x; t; u)
@
@t

+ �u(x; t; u)
@
@u
;

of the time-fractional Kaup-Kupershmidt equation:

D�
t u� u5x � 10uu3x � 25uxu2x � 20uxu2 = 0;

t > 0; 0 < � < 1:

Under the one-parameter group generated byX, the in-
variant solutions are obtained as follows. Two linearly
independent invariants r = '(x; t) and z =  (x; t)
can be calculated by solving the �rst-order quasi-linear
PDE:

X(J) =�x(x; t; u)
@(J)
@x

+ �t(x; t; u)
@(J)
@t

+ �u(x; t; u)
@(J)
@u

= 0;

or its characteristic equations:

dx
�x(x; t; u)

=
dt

�t(x; t; u)
=

du
�u(x; t; u)

:

Then, we write one of the invariants as a function of
the other, for example:

z = f(r); (16)

and solve Eq. (16) for u. Finally, the expression of
u is substituted in Eq. (12) and a fractional ODE
is obtained for the unknown function f . With this
procedure, we can reduce the number of independent
variables by one. Now, we obtain the corresponding
invariants and present the reduced nonlinear fractional
ordinary di�erential equations. Finally, we obtain
the corresponding group invariant solutions of the
fractional Kaup-Kupershmidt equation as follows:

Case 1: 0 < � < 1, � 6= 1
2 ;

4
5 , X1;1 = @x.

In this case, the corresponding invariants are
given by:

r = t; z = u: (17)

A solution to our equation becomes:

z = f(r)) u = f(t): (18)

We substitute Eq. (18) into Eq. (12) in order to deter-
mine f(r). Then, f(r) ful�ls the following di�erential
equation:

d�f(t)
dt�

= 0: (19)

The solution of the Eq. (19), by using Laplace trans-
form, is given by [6]:

f(t) =
k

�(�)
t��1; (20)

where k is a constant and �(�) is given by Eq. (8).

Case 2: 0 < � < 1, � 6= 1
2 ;

4
5 , X1;2 = �x @

@x + 5t @@t �
2�u @

@u .
For this case, the corresponding invariants are

given below:

r = tx� 5
� ; z = x2u: (21)

Then, a solution to our equation has the form:

z = f(r)) u = x�2f(tx� 5
� ); (22)

and we substitute it into Eq. (12) to determine f(r).
Thus, f(r) is satis�ed in the following equation:

�5 @�f
@r�

+ k1f(r) + k2f(r)2 + k3f(r)3 + k4rf 0(r)

+ k5rf(r)f 0(r) + k6rf(r)2f 0(r) + k7r2f 0(r)2

+ k8r2f 00(r) + k9r2f(r)f 00(r) + k10r3f 0(r)f 00(r)

+ k11r3f (3)(r) + k12r3f(r)f (3)(r) + k13r4f (4)(r)

+ k14r5f (5)(r) = 0;

where ki = hi(�) (i = 1; 2; : : : ; 14) are constants.

Case 3: � = 1
2 , X22 = x @

@x + 10t @@t � 2u @
@u .

The corresponding invariants for � = 1
2 and X2;2

can be written as:

r = tx�10; z = x2u: (23)

As a result, we obtain:

z = f(r)) u = x�2f(tx�10); (24)
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by substituting Eq. (24) into Eq. (12), we are able to
determine f(r) as solution to the following di�erential
equation:

1
20
@�f
@r�

+ 5000r5f (5)(r) + 60000r4f (4)(r)

+ 1250r3f 0(r)f 00(r) + 500r3f(r)f (3)(r)

+ 192750r3f (3)(r) + 1875r2f 0(r)2

+ 2200r2f(r)f 00(r) + 171150r2f 00(r)

+10rf(r)2f 0(r)+1530rf(r)f 0(r)

+26172rf 0(r)+2f(r)3+27f(r)2+36f(r)

= 0:

Case 4: � = 4
5 , X3;2 = 4x @

@x + 25t @@t � 8u @
@u .

The invariants in this case have the following
forms:

r = tx� 25
4 ; z = x2u: (25)

As a result, we obtain:

z = f(r)) u = x�2f(tx� 25
4 ): (26)

By substituting Eq. (26) into Eq. (12), we conclude that
f(r) has to satisfy the following di�erential equation:

1024
5

@�f
@r�

+ 1953125r5f (5)(r)+25781250r4f (4)(r)

+1250000r3f 0(r)f 00(r)+500000r3f(r)f (3)(r)

+94078125r3f (3)(r)+2250000r2f 0(r)2

+2620000r2f(r)f 00(r)+100936875r2f 00(r)

+25600rf(r)2f 0(r)+2464800rf(r)f 0(r)

+21929445rf 0(r)+8192f(r)3+110592f(r)2

+147456f(r)

= 0:

5. Conclusion

In the present study, we investigated the e�ciency
of the classical Lie symmetry group analysis for the
fractional di�erential equations. The fractional Lie
symmetries method was use for application to the time-
fractional Kaup-Kupershmidt equation with Riemann-
Liouville derivative, and we found the Lie point sym-
metries group of this equation. As an application

of the in�nitesimal symmetries, we have shown that
time-fractional Kaup-Kupershmidt equation can be ob-
tained as a nonlinear ODE of fractional order. Finally,
some group invariant solutions have been obtained in
explicit form as well.
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