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Abstract. A�ordable motion sensors that are recently developed for video gaming have
formed a budding line of research in the �eld of physical rehabilitation. These sensors have
been used in many task-based applications to analyze the patients' status based on their
completion of assigned tasks. However, as the accuracy of such sensors is lower than that
of the clinical ones, their measured data has had very limited use in quantitative motion
analysis to this date. The aim of this article is to determine Kinect's ability and accuracy in
calculating higher-order kinematic parameters, such as velocity and acceleration, in hand
movements. Four methods, i.e. moving average, Butterworth �lter, B-spline, and Kalman
�lter, were proposed to calculate velocity and acceleration from Kinect's raw position data.
The results were experimentally compared with two established motion capture systems,
i.e. Vicon and Xsens, to analyze the strengths and weaknesses of each method. The results
show that B-spline is the best method for calculating velocity and acceleration from Kinect's
position data. Using this method, these parameters can be measured with an acceptable
accuracy.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Using economical motion-sensing game controllers like
Nintendo Wii Mote, Wii Balance Board (Nintendo Inc.,
Redmond, Washington, USA) [1], and Microsoft Kinect
(Microsoft Inc., Redmond, Washington, USA) [2] in
physical and neurological rehabilitation has brought
new possibilities to the �eld of home rehabilitation.
Microsoft Kinect is in fact one of the newest tech-
nologies used for rehabilitation purposes as an input
device. Early commercial rehabilitation software de-
veloped based on this sensor includes SeeMe [3], Vir-
tualRehab [4], and JINTRONIX [5], which in general
guide patients through various types of exercise in
form of games and then analyze their performance
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based upon their task completion ratio and range of
motions.

Kinect consists of an optical depth sensor, which
uses a knowledge-based inference engine software that
estimates the human joints' positions in 3D. The
optical unit uses a speckle pattern of infrared dots to
create a 3D point cloud of the object's surface [6-8].
Using this 3D map and a software using a randomized
decision forest of three trees, each trained by 300,000
images, Kinect is capable of specifying body joints'
positions in 30 frames per second [9].

The accuracy of Kinect's 3D map [10-12] and the
ability of its software tool in estimating the position of
joints have been evaluated by di�erent researchers [13-
16]. As shown in these works, Kinect's accuracy in
estimating static joint positions is about 4-7 cm [16].
This accuracy is su�cient for many rehabilitation
purposes as long as joint's position is the only required
parameter [3-5,17].
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A complete home rehabilitation system should
analyze the patient's movements and assess his/her
status and progress. Position derivatives such as
velocity, acceleration, and jerk, also known as kine-
matic parameters, are of critical importance for a
comprehensive analysis of human movements [18-21].
However, motion sensors usually measure only one
of them, which is position in case of optical sensors
and acceleration in inertial ones. Calculation of other
kinematic parameters is left to the post-processing
units. Since Kinect's output is relatively noisy and of
low accuracy, extraction of kinematic parameters, such
as velocity and acceleration, becomes cumbersome.

Clinical sensors, which are traditionally used in
human motion analysis, can be divided into two groups:
optical and inertial sensors. These sensors are used
widely in this �eld by di�erent researchers. For
instance, in [20,22], an optical measurement system,
Optitrack, was used to analyze hand movements of
stroke patients and assess recovery process of patients.
Patel et al. [19] used accelerometer data to measure
hand movements of stroke patients and monitor their
rehabilitation process. The main challenge in using
such systems is their high cost, which makes them only
feasible in research clinics.

A number of comparisons have been made on ac-
celeration calculations by clinical optical systems such
as OptiTrack (NaturalPoint, Inc., Corvallis, Oregon
State, USA) and Vicon (Vicon Motion Systems, Los
Angles, USA), and inertial measurement units such as
Xsens (XSENS, Xsens Technologies B.V., Enschede,
The Netherlands) and Konix (Konix Inc., Ithaca, New
York, USA) [23-26]. In these studies, the second
derivative of the position data measured by the optical
motion capture system has been compared with the
acceleration directly measured by the inertial sensor.
As the accuracy of such motion capture systems is
approximately 1 mm (about 40 times better than
Kinect) and sampling frequency is more than 100 Hz
(3 times higher than Kinect), a 4th order Butter-
worth �lter provides smooth and reliable acceleration
data.

The goal of this research is to extract velocity and
acceleration from Kinect's position data and evaluate
the accuracy of the results. In this regard, four
di�erent methods are presented for the extraction of
acceleration and velocity data from Kinect's outputs.
These methods are: 1) reduced moving average, 2)
Butterworth �lter, 3) B-spline, and 4) Kalman �lter.
The performance of the above methods is experimen-
tally compared with both a well-known clinical optical
system, Vicon, and a popular inertial measurement
unit, Xsens, as the best available references. The
results of this study are expected to help professionals
in using Kinect for quantitative analysis of patient's
movements.

2. Method

Extraction of higher-order kinematic parameters such
as velocity and acceleration from the position data
provided by Kinect is challenging due to the high level
of noise in Kinect output. This noise is believed to be
due to the skeleton detection algorithm built into this
device [9] as well as the environmental factors a�ecting
its optics such as infrared light in the room and the
object's surface properties [10]. As a result, numerical
derivation cannot be directly applied to extract velocity
and acceleration.

In this paper, four methods are proposed and the
results are compared in order to determine which can
best estimate the higher-order kinematic parameters.
Among these four methods, two are based on the idea of
�ltering the data before applying numerical derivation.
In the other two, the natural dynamics of human
movements are utilized to estimate the characteristics
of the motion and, hence, no numerical derivation is
applied.

In order to evaluate the four methods, an experi-
ment was designed and carried out on a human subject.
This experiment followed the literature [23,25] in using
Vicon, which is a well-established optical measurement
system, as the reference for acceleration and velocity
data. Error analysis of each of the four proposed
methods on acceleration and velocity calculation was
done and the best performance was determined. Even-
tually, Xsens, as a well-known and relatively a�ordable
inertial sensor for acceleration measurement, was com-
pared with the decided best performing acceleration
calculation method using Kinect.

In working with Vicon and Xsens, the standard
preprocessing procedures, according to the literature,
were applied for acceleration calculation [23,25,26].
As all measured data in this paper are discrete, all
�lters are discrete too. In the following, the proposed
methods for acceleration calculation based on Kinect's
output are described followed by the experimental
setup.

2.1. Motion acceleration from Kinect's output
Figure 1(a) shows the Kinect's estimation of hand
position versus that of Vicon as a reference. While
Kinect's data follows the measurements of Vicon with
a relatively good accuracy, Figure 1(b) shows that the
numerical derivation of Kinect's output to �nd the
acceleration of hand would result in signi�cant error
mostly due to noise magni�cation e�ect. In order to
avoid this phenomenon, four methods are proposed and
implemented, as detailed in the following sections.

Each of these methods add some delay to the
calculated results. As the acceleration and velocity
obtained from the Kinect's data are mostly used in
o�ine applications (e.g., assessment of patient's state
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Figure 1. (a) Position and (b) acceleration measurements
by Kinect and Vicon.

and recovery), the delay in measurement is not an
issue. For comparing the results of Kinect with those
of Vicon or Xsense, however, the two signals should
be synchronized. For this purpose, the �rst peaks of
the signals from the two sensors were matched in this
work.

2.1.1. Reduced Moving Average (RMA)
The reduced moving average is a signal processing
method that is quite similar to simple moving average,
except in its amount of subset shifting, which is greater
than one. In this method, the �rst element of the
�ltered data is obtained by taking the average of the
�rst subset of data. Then, this subset is shifted forward
by N (greater than 1) frames in order to �nd the
next element of the �ltered data. The characteristics
of this �lter depend on the two parameters of subset
size and subset shifting (N). In this paper, a subset
size of three has been used for the moving average.
This subset size reduces the noise e�ects without any
considerable lag imposed on the output. It should be
noted that as the subset shifting increases, the output
data become smoother and the related noise decreases,
but sampling frequency decreases as well. For each
system, the optimum amount of subset shifting should
be determined according to the requirements of the
application. In this paper, the best subset shifting was
determined in Section 3 based on comparison with the
reference results from Vicon.

Based on the de�nition of this �lter, the ith ele-
ment of the velocity vector is found from the following

equation:

Vi =
x(i+1)N�1+x(i+1)N+x(i+1)N+1

3 � xiN�1+xiN+xiN+1
3

ti
;
(1)

where Vi stands for the velocity at the ith time step, xi
for the corresponding position value, N for the number
of shifting frames, and ti for the time interval between
x(i+1)N and xiN .

Easy application and low computational e�ort are
among the main advantages of this method. The main
drawback is its lowered sampling frequency, which may
lead to losing some high-speed movements.

2.1.2. Butterworth low-pass �lter
The Butterworth low-pass �lter, as known from its
name, is tuned to pass low-frequency signals while
blocking high-frequency ones. The range of frequencies
which pass through this �lter is called pass band or
bandwidth. It extends from ! = 0 to ! = !c rad/sec,
where !c or the cuto� frequency is the highest fre-
quency at which energy 
ow of the signal through the
system begins to reduce. Butterworth �lter is known
by its transfer function as:

G(!) =
G0r

1 +
�
!
!c

�2n
; (2)

where G0 stands for the DC gain, n for the order of the
�lter, and !c for the cuto� frequency.

This �lter has been used in the literature for
smoothing the position data measured by optical mea-
surement systems such as Vicon in order to calculate
the position derivatives [25,26]. For this purpose,
the �lter was applied to the position data before
numerical derivation. The characteristics of this �lter
are determined using two parameters, which are the
order of the �lter and the cuto� frequency. In this
paper, these parameters are determined through trial
and error as presented in Section 3.

2.1.3. B-spline
A B-spline is a piecewise polynomial function of order
k. The places where the polynomials are joined together
are known as knots or breaking-points. A B-spline
is a di�erentiable function up to the derivatives of
degree k � 1 all over its range [27]. It can be used
as a function estimator for experimentally measured
data [28,29]. Therefore, it can be used as an ana-
lytical approximate of the data, which can then be
di�erentiated for �nding the derivatives. As a result, it
can be utilized as a �ltering technique, which provides
smooth and di�erentiable approximation of the actual
data. In the application of this technique to Kinect's
position data, the order of the polynomials (k) and
the number of data frames between two knots (N)
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may a�ect the �lter properties. In order to obtain
acceleration data, k should be greater than 3 so that
the B-spline can be di�erentiated twice. In this article,
optimum values for k and N are determined through
a heuristic optimization and the calculated results are
then compared with those of Vicon.

2.1.4. Kalman �lter
Kalman �lter is used here as a �lter-observer to provide
optimal estimates of a system's states, including veloc-
ity and acceleration. This �lter eliminates numerical
derivation and, hence, noise intensi�cation. A Kalman
�lter consists of two essential components. The �rst
one, which is the process model, is used to estimate
a posteriori states (at step k) according to a priori
states (at step k � 1). This model usually employs
the governing dynamic equations of the system. The
second component, which is the measurement model,
enables the �lter to correct its estimation with respect
to the measured states. The parameters that enable
the �lter decide on how to re�ne its earlier estimations
are the covariance of the process and the covariance
of the measurement noises. These parameters respec-
tively represent the modeling and the measurement
errors. Although the best function of a Kalman �lter
is expected in data fusion [30,31], there are several
applications for extracting velocity and acceleration
from position sensors, such as optical shaft encoders
or GPS [32,33].

In this work, the state variable vector is set to
include position, velocity, and acceleration:

X(k) =
�
x _x �x

�T : (3)

The process equation represents the kinematic relation
between the state vector and its derivatives. As seen in
Eq. (4), an assumption has been made that acceleration
is a constant variable. Since this assumption is not
accurate, the modeling or the process noise (w(k)) is
attributed to this variable.

_X(k) =

240 1 0
0 0 1
0 0 0

35X(k) +

240
0
1

35w(k): (4)

The measurement equation determines which variables
are directly measured. Since position is measured by
Microsoft Kinect and Vicon, the measurement equation
becomes:

Z(k) =
�
1 0 0

�
X(k) + v(k); (5)

where v(k) is the measurement noise. The parameters
to be set are the covariance of the process error
and the covariance of the measurement noise. The
covariance of the measurement noise is calculated from
Kinect's position error with respect to Vicon's data, as
shown later in Results section. The covariance of the

process error is determined from comparing Kinect's
acceleration with that of Vicon. Next, the Kalman op-
timal observer, which minimizes the estimation error,
determines the state vector. The state equation of the
Kalman �lter is given in Eq. (6):

_X0(k) =

240 1 0
0 0 1
0 0 0

35X0(k)

+ L
�
Z(k)� �1 0 0

�
X0(k)

�
: (6)

Here, L is the Kalman gain, which has to be optimized,
and X0 is the state variables vector. By obtaining
the �rst-order derivative of Eq. (6) and rearranging it,
one will have to solve an algebraic Riccati equation to
�nd the Kalman gain [34]. Once the Kalman gain is
available, the system state equations can be solved.

2.2. Test setup and experiment
The experimental setup included three sensors: Kinect,
Vicon, and Xsens. Vicon, which had six infrared
cameras, and Microsoft Kinect measured position data
while Xsens (Xsens MTx-28 A53 G25 sensor) measured
acceleration directly.

During the test, one Xsens inertial measurement
unit was strapped to the hand of the subject with one
Vicon's re
ective marker installed on the back of the
strap. Also, one Kinect camera was placed in front of
the subject in a distance of about 2 m, where it was
able to record hand movements of the subject. Two
re
ective markers were installed on Kinect for frame
registration of Kinect and Vicon. The installed markers
on Kinect and the reference frame of calculations are
shown in Figure 2. For frame registration of Xsens
and Kinect, the Xsens sensor was placed on Kinect,
parallel to Kinect's reference frame, and data was saved
for about 10 seconds. Using this data, the rotation
of Xsens reference frame relative to Kinect could be
determined. Next, all three systems started saving data
while the subject moved his hand with an increasing
velocity. Hand movements were limited to vertical
and diagonal directions (upper left to lower right or
vice versa), as they are more common in rehabilitation
applications [3-5]. Ten hand movement trials were
recorded for the following analysis. In this test, the
data of Vicon and Xsens was sampled at 100 Hz and
Kinect recorded joint positions at 30 Hz. In order to

Figure 2. Kinect and the re
ective markers.
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Figure 3. The test setup including Vicon, Xsense, and
Kinect sensors.

estimate joint positions, Kinect uses Microsoft's Kinect
for Windows SDK, which is the skeleton tracking driver
provided by Microsoft [35]. Also, a program was
developed in C# to record Kinect's data. A picture
of the test setup is shown in Figure 3.

2.3. Acceleration measurements by Vicon and
Xsens

Acceleration of hand movements was found from sensor
measurements through the following steps:

1. Using the positions of the markers installed on
Kinect, the transformation from Vicon's reference
frame and that from Xsens to Kinect's reference
frame were found (registration of Vicon's and
Xsens's reference frames);

2. Vicon's measurements (markers' positions) and
those of Xsens (acceleration of the IMU) were
transformed to Kinect's reference frame;

3. Vicon's measurements were �ltered using a fourth-
order Butterworth low-pass �lter with a cuto�
frequency of 6 Hz. This �lter had successfully
been used in the previous upper limb movement
studies using motion capture systems [23,25,26].
Xsens' data was also smoothed out using the same
procedure [26];

4. To calculate velocity and acceleration from Vicon's
measurements, numerical derivation was used fol-
lowing previous studies in the literature [23,25,26].
Velocity was also found from Xsens' measurements
using numerical integration.

The test subject was asked to perform several hand
movements while all three measurement systems were
recording the movement data. These movements were
devised in four categories with low and high velocity
and acceleration. These categories were:

1. Vertical movement with speed < 3 m/s and accel-
eration < 10 m/s2;

2. Vertical movement with speed > 3 m/s and accel-
eration > 10 m/s2;

3. Diagonal movement with speed < 4 m/s and
acceleration < 20 m/s2;

4. Diagonal movement with speed > 4 m/s and
acceleration > 20 m/s2.

It should be noted that the subject could not be
expected to adapt his motions to match the exact
speeds and acceleration of the above classi�cations. To
solve this problem, he was asked to start a vertical
or diagonal movement from low speed and repeat it
with gradually increasing speed. Later, the velocity
and acceleration of all the recorded movements were
calculated, and motions that belonged to any of the
four categories were determined.

3. Results

Following the procedure given in the previous section,
the calculated values of velocity and acceleration from
Vicon and Xsens are presented here. It is noteworthy
that Vicon is assumed as the reference in all procedures.
Subsequently, the acceleration results from Kinect's
position data are given using the proposed �lters. By
comparing these results with the reference data from
Vicon, the �nal tuning of �lter parameters is done. The
optimized results of all �lters are then compared with
each other based on the reference data from Vicon.

Figure 4 shows hand velocity and acceleration
in z direction calculated from the Vicon's data for
movements in vertical path. As mentioned before, and
shown in this �gure, the velocity increased with each
cycle as instructed.

3.1. Reduced Moving Average (RMA)
In Table 1, the RMS of Kinect acceleration error with
respect to Vicon's results with di�erent values of N ,

Figure 4. Vicon's calculated velocity and acceleration in
z direction.
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Table 1. RMS of acceleration error for reduced moving average method.

RMS of acceleration error (m/s2)

N Category 1 Category 2 Category 3 Category 4 Mean

3 1.84(18.4%) 8.6(28.6%) 4.13(20.6%) 9.15(22.8%) 22.6%
4 1.49(14.9%) 9.06(30.2%) 3.92(19.6%) 10.2(25.5%) 22.5%
5 1.61(16.1%) 8.94(29.8%) 4.08(20.4%) 12.17(30.4%) 24.1%
6 1.58(15.8%) 10.76(35.8%) 4.63(23.1%) 15.32(38.3%) 28.2%
7 1.72(17.2%) 11.68(38.9%) 5.73(28.6%) 17.05(42.6%) 31.8%
8 2.03(20.3%) 13.53(45.1%) 6.13(30.6%) 19.39(48.4%) 36.1%

Table 2. RMS of the acceleration error for Butterworth �lter.

RMS of acceleration error (m/s2)

Order Cuto� freq.
(Hz)

Category 1 Category 2 Category 3 Category 4 Mean

3 1.5 6.21 (62.1%) 13.09 (43.6%) 8.62 (43.1%) 17.12 (42.8%) 47.9%
3 3 7.04 (70.4%) 13.86 (46.2%) 9.46 (47.3%) 15.98 (39.9%) 50.9%
3 6 8.18 (81.8%) 17.20 (57.3%) 11.47 (57.3%) 29.02 (72.5%) 67.2%
4 1.5 6.34 (63.4%) 14.08 (46.9%) 8.98 (44.9%) 17.31 (43.2%) 49.6%
4 3 7.01 (70.1%) 14.05 (46.9%) 9.82 (49.1%) 16.98 (42.4%) 52.1%
4 6 7.99 (79.9%) 16.80 (56.0%) 10.98 (54.9%) 27.68 (69.2%) 64.8%
5 1.5 6.37 (63.7%) 14.99 (49.9%) 9.23 (46.1%) 17.35 (43.3%) 50.7%
5 3 6.92 (69.2%) 14.50 (48.3%) 10.05 (50.2%) 17.87 (44.8%) 53.1%
5 6 7.91 (79.1%) 16.54 (55.1%) 10.73 (53.6%) 26.86 (67.1%) 63.7%

which is the only parameter of this �lter, are presented.
According to this table, N = 4 gives the best results
for movements with low speed and acceleration while
N = 3 is the best for high values. It is seen that by
increasing N , sensitivity of the �ltered data to fast
movements decreases. As most of the rehabilitation
movements have low speed and acceleration in the
following analysis, N = 4 is used.

Figure 5 compares Vicon's and Kinect's results
for calculating acceleration in z direction using the
RMA method. In lower speeds, the results are very
close. However, after 6 seconds, when the movement
acceleration starts increasing, the deviation between
the two curves becomes apparent. This is believed to be

Figure 5. Vicon's and Kinect's calculated acceleration in
z direction using RMA �lter with N = 4.

due to the lower sampling frequency in Kinect, which
results in missing the peak acceleration values.

3.2. Butterworth low-pass �lter
In Table 2, the RMS of Kinect's acceleration error with
respect to the Vicon's results is presented for di�erent
values of the �lter parameters. It is seen that the �lter
parameters do not have any signi�cant impact on the
accuracy of the outcome. The RMS of error for all
parameters in this table are relatively high, ranging
from 40% to 80%.

In Figure 6, the calculated values of acceleration
for Vicon and Kinect in z direction are compared. A
third-order Butterworth �lter with a cuto� frequency of

Figure 6. Vicon's and Kinect's calculated acceleration in
z direction using 4th order Butterworth �lter with cuto�
frequency of 3 Hz.
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Table 3. RMS of acceleration error for B-spline method.

RMS of acceleration error (m/s2)

k N Category 1 Category 2 Category 3 Category 4 Mean

4 4 2.29 (22.9%) 8.52 (28.4%) 4.19 (20.9%) 11.48 (28.7%) 25.2%
4 5 1.90 (19.0%) 8.66 (28.8%) 3.78 (18.9%) 9.51 (23.7%) 22.6%
4 6 1.68 (16.8%) 9.40 (31.3%) 3.74 (18.7%) 12.06 (30.1%) 24.2%
4 7 1.46 (14.6%) 10.48 (34.9%) 5.03 (25.1%) 14.16 (35.4%) 27.5%
5 4 2.09 (20.9%) 8.15 (27.1%) 4.22 (21.1%) 8.74 (21.8%) 22.7%
5 5 1.77 (17.7%) 7.52 (25.0%) 3.02 (15.1%) 7.35 (18.3%) 19.0%
5 6 1.45 (14.5%) 8.43 (28.1%) 3.44 (17.2%) 10.48 (26.2%) 21.5%
5 7 1.42 (14.2%) 10.57 (35.2%) 3.61 (18.0%) 11.79 (29.4%) 24.2%
6 4 2.37 (23.7%) 7.98 (26.6%) 3.68 (18.4%) 7.37 (18.4%) 21.7%
6 5 1.54 (15.4%) 7.74 (25.8%) 3.19 (15.9%) 6.56 (16.4%) 18.3%
6 6 1.31 (13.1%) 8.49 (28.3%) 2.97 (14.8%) 9.55 (23.8%) 20%
6 7 1.33 (13.3%) 9.30 (31.0%) 3.14 (15.7%) 11.52 (28.8%) 22.2%
7 4 2.40 (24.0%) 8.13 (27.1%) 3.76 (18.8%) 7.99 (19.9%) 22.4%
7 5 1.59 (15.9%) 7.54 (25.1%) 3.33 (16.65%) 6.58 (16.4%) 18.5%
7 6 1.33 (13.3%) 8.01 (26.7%) 2.88 (14.4%) 8.62 (21.5%) 18.9%
7 7 1.30 (13.0%) 10.83 (36.1%) 3.44 (17.2%) 11.60 (29.0%) 23.8%
8 4 2.24 (22.4%) 7.93 (26.4%) 4.08 (20.4%) 9.40 (23.5%) 23.1%
8 5 1.67 (16.7%) 7.37 (24.5%) 3.29 (16.4%) 7.03 (17.5%) 18.7%
8 6 1.43 (14.3%) 8.28 (27.6%) 3.01 (15.0%) 7.98 (19.9%) 19.2%
8 7 1.30 (13.0%) 9.35 (31.1%) 3.75 (18.7%) 11.65 (29.1%) 22.9%

3 Hz is used here. As this �gure shows, Kinect's results
follow the same trend as those of Vicon. However, in
addition to the high RMS of error reported in Table 2,
the peak values seen in the �lter output are still too
high resulting in instant errors of up to 200%.

3.3. B-spline
In Table 3, the RMS of error between Kinect's results
and those of Vicon are presented with di�erent values of
B-spline's parameters (i.e., the order of polynomial, k,
and the number of data frames between two successive
knots, N). According to this table, a B-spline of order
6 with 5 frames between two successive Knots is used
in this work.

Figure 7 compares the Vicon's and Kinect's re-

Figure 7. Vicon's and Kinect's calculated acceleration in
z direction using B-spline method with k = 6 and N = 5.

sults for acceleration in z direction using the B-spline
method with K = 6 and N = 5. As seen, the noise
e�ects have been removed and Kinect's acceleration
follows Vicon's results reasonably well with an average
RMS error of 4.75 m/s2. The error is particularly lower
for lower speeds, which is quite expected due to the
limited sampling frequency of Kinect.

3.4. Kalman �lter
As discussed earlier, since the modeling assumptions
are not accurate, the process noise covariance should
be of a much greater order than the measurement
noise covariance, which is of higher certainty. The
measurement noise covariance can be easily obtained.
The covariance of a signal is commonly computed by
Eq. (7):

cov(e; eT ) =
1
n

nX
i=1

(ei � �e) (ei � �e)T ; (7)

where e is the noise vector, n represents its size, and
�e is its mean value. This equation indicates that
Kinect's noise covariance is 10�3 m2 taking Vicon as
the reference. As for the process noise, it was seen
by numerical investigation that it should be at least
105 times greater. As a result, the Kalman �lter was
applied with various values for the process noise. The
�nal results are shown in Table 4. According to this
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Table 4. Kalman �lter RMS of acceleration error.

RMS of acceleration error (m/s2)
Process

covariance
Measurement

covariance
Category 1 Category 2 Category 3 Category 4 Mean

10E2 0.001 1.61 (16.1%) 15.58 (51.9%) 7.93 (39.6%) 23.21 (58.0%) 41.4%
10E3 0.001 1.31 (13.0%) 10.86 (36.1%) 4.62 (23.1%) 16.29 (40.7%) 28.2%
10E4 0.001 1.74 (17.4%) 8.34 (28.8%) 4.65 (23.2%) 12.38 (30.9%) 25.0%
10E5 0.001 2.11 (21.1%) 9.34 (31.1%) 5.23 (26.1%) 10.24 (25.6%) 25.9%
10E6 0.001 2.32 (23.2%) 9.99 (33.3%) 5.67 (28.3%) 9.97 (24.9%) 27.4%
10E7 0.001 2.38 (23.7%) 10.34 (34.4%) 5.87 (29.3%) 10.23 (25.5%) 28.2%

Table 5. RMS of acceleration error for Kinect and Xsens.

RMS of acceleration error (m/s2)

Motion Category 1 Category 2 Category 3 Category 4 Mean

Xsens 0.64 (6.4%) 1.83 (7.1%) 0.65 (3.2%) 1.28 (3.2%) 4.9%
Butterworth 6.21 (62.1%) 13.09 (43.6%) 8.62 (43.1%) 17.12 (42.8%) 47.9%
B-spline 1.54 (15.4%) 7.74 (25.8%) 3.19 (15.9%) 6.56 (16.4%) 18.3%
RMA 1.49 (14.9%) 9.06 (30.2%) 3.92 (19.6%) 10.2 (25.5%) 22.5%
Kalman 1.74 (17.4%) 8.34 (28.8%) 4.65 (23.2%) 12.38 (30.9%) 25.0%

Figure 8. Vicon's and Kinect's calculated acceleration in
z direction using Kalman �lter.

table, the best pair is 104 and 10�3 for the process and
measurement covariance, respectively.

Figure 8 compares the Vicon's and Kinect's cal-
culated values of acceleration in z direction using the
parameters found above. As shown in this �gure, noise
e�ects have been removed and the Kinect's results
follow those of Vicon with a good accuracy.

4. Discussion

Thies et al. [25] have compared kinematic measure-
ments obtained by inertial sensors and optical systems.
They calculated the RMS of the di�erence between
Xsens and Vicon measurements for forearm to be about
5%. In our experiments, this error was found to be
in the range of 3 to 7% depending on the category of
movement, showing a good agreement with the results
of Thies et al. Taking this as an overall veri�cation

of our test procedure, the detailed discussion on the
Kinect results is given in the following.

Results of acceleration calculation for di�erent
movement categories using the proposed methods are
presented in Table 5. The performances of all the
four methods are reported in terms of RMS error with
respect to Vicon as the reference. The table shows that
the B-spline method has a better performance for all
ranges of movement with a mean-value RMS error of
about 18%. For low-speed/acceleration movements, B-
spline provides up to 31% better results compared to
the other three methods. For high-speed/acceleration
diagonal movements, however, the di�erence goes up to
47%. It is also noted that the performance of all four
methods is better in low-velocity/acceleration move-
ments (Categories 1 and 3). This indicates that the
limitation of Kinect in sampling frequency is a major
contributor to the error in acceleration estimation.

It is also interesting that the e�ect of veloc-
ity/acceleration level on the accuracy of acceleration
estimation is di�erent in vertical and diagonal motions.
In vertical motion, higher velocity/acceleration results
in 65%-100% higher error, while this value in diagonal
motion is about 30%. This is because hand may
block the Kinect's view of shoulder and elbow at
some moments during the vertical movements. This
leads to higher instantaneous error in tracking these
joints. Another interesting observation is the poor
performance of the Butterworth �lter, which is the
method of interest for velocity/acceleration estimation
in optical systems such as Vicon [26-29]. In the case of
Kinect, this method results in a mean RMS of about
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Table 6. RMS of the velocity error for Kinect.

RMS of velocity error (m/s)

Motion Category 1 Category 2 Category 3 Category 4 Mean

Xsens 0.97 (32.3%) 1.67 (33.4%) 1.49 (37.2%) 2.13 (35.5%) 34.6%
Butterworth 0.55 (18.2%) 1.37 (27.4%) 1.01 (25.2%) 1.9 (31.7%) 25.6%
B-spline 0.11 (3.7%) 0.43 (8.6%) 0.26 (6.5%) 0.48 (8%) 6.45%
RMA 0.13 (4.3%) 0.49 (9.8%) 0.40 (10%) 0.79 (13.1%) 9.27%
Kalman 0.28 (9.3%) 1.13 (22.6%) 0.72 (18.0%) 1.33 (22.1%) 18%

50%, which is the highest among the four proposed
methods most probably due to the higher level of
measurement noise with wider frequency spectrum.
Moreover, the table indicates that the acceleration
error of Kinect, even using the best �ltering method
(B-spline), is about four times larger than that of Xsens
in all four categories of movement.

According to Figures 5-8, the performance of
each method at the peak values of acceleration has
a major contribution to the RMS error that is re-
ported in Tables 5 and 6. Therefore, it is critical
to understand the performance of each method at
high acceleration points, which mostly corresponds
to where the direction of hand movement is changed
(end of trajectory). In RMA method, peak values for
acceleration are always underestimations of the actual
ones. In lower acceleration, they are relatively close
(up to 20% lower); but as the acceleration increases,
the error becomes more considerable (up to 50%). In
the Butterworth, peak values are too noisy, at some
points even 3 times higher than the real values. In B-
spline, peak values in lower acceleration are relatively
accurate (less than 20% of error). In high-acceleration
movements (Categories 1 and 3), this method also
underestimates the peak values by an average of 25%,
which is still lower than those in the other methods.
Unlike RMA and B-spline, Kalman �lter tends to
give an overestimation at peaks of acceleration. In
both low- and high-velocity/acceleration movement
categories, there is an average of 50% overestimation
of acceleration. The superior performance of the B-
spline method is believed to be due to its ability in
capturing the motion at high-acceleration moments. In
this method, a di�erentiable curve is �tted to the noisy
data (position data) and, therefore, the noise e�ects
are removed from the early stages of the process.

In Table 6, the RMS errors of velocity estimation
using Kinect and Xsens are presented with respect to
Vicon as the reference. Since calculating velocity from
Xsens' acceleration data needs a numerical integration
and, hence, su�ers from drifting e�ect, the calculated
velocity from Xsens shows much higher error than
Kinect. Among the four proposed methods for Kinect,
the B-spline �lter has the best performance with a
mean RMS error of 6.5% over all four categories of

Figure 9. Vicon's and Kinect's calculated velocity in z
direction using B-spline �lter.

movements. This error is almost three times lower
than acceleration estimation. Figure 9 compares the
Vicon's and Kinect's results for velocity in z direction
using the B-spline method. As shown in this �gure,
calculated velocities from the two systems are close. It
is noted that the performance of all methods in esti-
mating velocity is a�ected by the velocity/acceleration
level of the motion almost in an identical trend to
acceleration estimation as discussed above. Also, a
similar di�erence is seen between vertical and diagonal
motions (i.e., the diagonal motion is less sensitive to
speed/acceleration). It can be explained similarly that
in vertical motion, the Kinect's view of certain parts
of shoulder may be blocked and the position error may
increase accordingly.

To summarize, the B-spline method proved to be
the best among the four proposed methods for estimat-
ing acceleration and velocity of hand from Kinect posi-
tion readings. It is believed to be mostly due to its bet-
ter tracking of motions at high-speed/acceleration mo-
ments. Using this �lter, acceleration can be estimated
with an RMS error of 16% in lower-speed/acceleration
motions and 26% in higher ones and an overall RMS
error of 18%. Furthermore, movement velocities can
be estimated with an overall RMS error of 6.5% in
all, compared to Vicon. Also, there is always a
higher chance of error in hand movements that block
the shoulder joint (such as in vertical motions). It
should also be noted that if computational cost is of
great concern and low-speed/acceleration movements
are intended, even the RMA method, which has lower
computational costs, is almost as accurate as B-spline.
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5. Conclusions

In this paper, Kinect's ability in the measurement
of velocity and acceleration was investigated. Four
methods, i.e. moving average, Butterworth �lter, B-
spline, and Kalman �lter, were proposed to calculate
velocity and acceleration from Kinect's raw position
data. Kinect's calculated acceleration and velocity
were compared with those of Vicon and Xsens as
conventional clinical measurement systems.

Conclusive remarks are as follows:

� Using Kinect and proper �ltering method, accel-
eration and velocity of hand movements can be
measured with an acceptable accuracy;

� The results show that the B-spline �lter is the best
method for calculating acceleration and velocity
from Kinect's data;

� In lower speeds and acceleration, Kinect can follow
the movement more accurately because of its low
frame rate;

� Taking Vicon as the reference, Kinect is capable
of estimating acceleration and velocity of hand
movement with 18.5% and 6.5% errors, respectively;

� Blocking camera view of shoulder by the hand can
lower the accuracy of measurement.

Nomenclature

e Noise vector
G System equation
G0 DC gain
IMU Inertial Measurement Unit
k Step
L Kalman gain
n Order of the �lter
N Number of shifting frames
RMA Reduced Moving Average
ti Time interval between x(i+1)N and

xiN (s)
v Measurement noise
Vi Velocity at the ith time step (m/s)
w Process noise
xi Position value at the ith time step (m)
X State variable
X0 State variable
Z Measurement value
!c Cuto� frequency (Hz)
! Frequency (Hz)
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