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Abstract. This paper addresses the problem of plane elasticity theory for a doubly
connected body whose external boundary is a rhombus with its diagonals lying at the
coordinate axes OX and OY . The internal boundary is the required full-strength hole
and the symmetric axes are the rhombus diagonals. Smooth stamps with rectilinear bases
are applied to the linear parts of the boundary and the middle points of these stamps
are under the action of concentrated forces; thus, there are no friction forces between
the stamps and the elastic body. The hole boundary is free from external load and the
tangential stresses are zero along the entire boundary of the rhombus. Using the methods
of complex analysis, the analytical image of Kolosov-Muskhelishvili's complex potentials
(characterizing an elastic equilibrium of the body) and the equation of an unknown part of
the boundary are determined under the condition that the tangential normal stress arising
at it takes a constant value. Such holes are called full-strength holes. Numerical analyses
are performed and the corresponding graphs are constructed.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Mixed and contact problems belong to the category of
problems of mechanics of deformed rigid bodies, which
are highly important for application and are the most
di�cult ones from the mathematical stand-point. It is
through the mixed contact that loads are transferred
to deformed bodies and it is in the contact zone that
stress concentrations occur, which cause body failure,
and emergence and spread of cracks. These phenomena
cannot be prevented in the conditions of modern
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technological processes of production of mechanisms
and machine parts.

Boundary-value problems of the plane theory of
elasticity and plate bending for in�nite plates weakened
by unknown full-strength holes with normal stresses
acting on their boundaries and forces applied at in�nity
were analyzed in [1-3].

Boundary-value problems for a �nite doubly con-
nected domain, with a part of its boundary being
unknown full-strength and the other part being a
polygonal line, are solved in [4].

The axis-symmetric and cycle-symmetric prob-
lems of the plane theory of elasticity and plate bending
with partially unknown boundaries are studied in [5-
11]. The most e�ective methods for studying these
problems are the methods of the theory of analytical
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functions of a complex variable.
In this article, the axially symmetric problem

of plane elasticity theory for a rhombus weakened
with a full-strength hole is considered. The formulae
of Kolosov-Muskhelishvili are used for investigating
this problem. The solution is written in quadratures
and the unknown full-strength hole of the plate is
constructed

2. Problem formulation and solution technique

Let an isotropic elastic body on the plane z = x + iy
occupy a doubly connected domain S, whose external
boundary is a rhombus with its diagonals lying at the
coordinate axes OX and OY . The internal boundary is
the required full-strength hole and the symmetric axes
are the rhombus diagonals (Figure 1).

Let every link of the broken line (outer boundary
of the given body) be applied to absolutely smooth,
rigid stamps with rectilinear bases, which displace the
normal under the action of concentrated, normally
compressive forces, P , applied to the stamp midpoints
of polygon's sides. There is no friction between the
given elastic body and stamps and the unknown full-
strength contour is free from outer actions.

Under the above assumptions, the tangential
stresses are zero �ns = 0, along the entire boundary of
the domain, S, and the normal displacements of every
link of the external boundary, �n = �.

Consider the following problem: Find the shape
of the unknown hole and the stress state of the given
body such that the tangential normal stress, �s, arising
at it would take the constant value, �s = K = const.

Since the problem is axially symmetric, to in-
vestigate it, it is su�cient to consider the curvilinear
quadrangle, A1A2A3A4, denoted by D. The normal
displacements and the tangential stresses are equal to

Figure 1. Graph of the posed problem.

zero, �n = �ns = 0, at each segment [A1; A2], [A3; A4].
Let us introduce the following notations:

�1 = A1A2; �2 = A2A3; �3 = A3A4;


 = A4A1; � = [3
j=1�j ; P1 =

Z
�1

�nds;

P2 =
Z

�2

�nds; P3 =
Z

�3

�nds;

�n is the normal stress:

P2 =
Z

�2

�nds = �P:
Since D is in the equilibrium state, we have:

P1 = P2 cos� = �P cos�;

P3 = P2 sin� = �P sin�;

where � = \A1A2A3.
Following the statement of the problem, the

boundary conditions have the form:

�n =

(
0; t 2 �3 [ �1

�; t 2 �2
(1)

�ns = 0; t 2 � [ 
; (2)

�n = 0; �s = K; t 2 
; (3)

P2 =�P; P1 =�P cos�; P3 =�P sin�: (4)

Let the points A1, A2, A3, and A4 be counted in a
positive direction and its a�xes be denoted by the same
symbols. Also, assume that A1 is the origin of the
broken line �.

On the basis of the well-known Kolosov-
Muskhelishvili's formulae [12], the problem is reduced
to �nding the functions  and ', which are holomor-
phic in the domain D with the following conditions:

Re e�i�(t)
�
�'(t)�t'0(t)� (t)

�
=2��n(t); t2�; (5)

Re e�i�(t)
�
'(t)+t'0(t)+ (t)

�
=C(t); t 2 �; (6)

'(t) + t'0(t) +  (t) = 0; t 2 
; (7)

Re'0(t) =
�n + �s

4
=
K
4
; t 2 
; (8)

where � and � are elasticity constants, C(t) is a
piecewise-constant function, �(t) is the angle formed
between the external normal n to contour, and the
abscissa axis Ox.
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�(t) = �k; t 2 �k; k = 1; 2; 3;

�1 = ��
2
; �2 =

�
2
� �; �3 = �; (9)

C(t) = Re
�
e�i�(t)i

�Z t

A1

�n(s0)ei�(s0)ds0

��
: (10)

Taking Eqs. (4) and (9) into account, Eq. (10) has the
following form:

C(t) =

8><>:0; t 2 �1

�P cos� sin�; t 2 �2

0; t 2 �3

(11)

Let t 2 AkAk+1, k = 1; 2; 3; then, t�Ak = ijt�Akjei�k .
Hence, we obtain:

Re te�i�(t) = Re e�i�(t)A(t); (12)

where A(t) is a piecewise-constant function, A(t) =
Ak, t 2 AkAk+1, and k = 1; 2; 3. Taking Eq. (9) into
account, one obtains:

Re e�i�(t)A(t) =

(
d1 cos�2; t 2 �2

0; t 2 �1 [ �3
(13)

where d1 = j0A2j.
Let functions '0(z) and  (z) be continuously

extendable everywhere on the boundary of domain D,
except, perhaps, the vertices of broken line �; in the
neighborhood of vertices Ak, the following condition
holds:

j'0(z)j < M jz �Akj��k ;
j (z)j < M jz �Akj��k ; (14)

where 0 � �k < 1, k = 2; 3; 0 � �k < 1=2, k = 1; 4.
Combining Eqs. (5) and (6), then, di�erentiating

with respect to the arc abscissa s, and noting that �(t),
C(t), and �n(t) are piecewise constant functions, one
obtains:

Im'0(t) = 0; t 2 �: (15)

Eqs. (8) and (15) are the Keldysh-Sedov problem for
domain D:

Re
�
'0(t)� K

4

�
= 0; t 2 A4A1;

Im
�
'0(t)� K

4

�
= 0; t 2 �: (16)

Problem (16) has a unique solution [13] (see more
details in [14]):

'0(z) =
K
4
: (17)

Hence, one obtains:

'(z) =
K
4
z; (18)

where the constant is neglected.
Substituting the values of '(t) and C(t), de�ned

by Eqs. (18) and (11), into the boundary conditions
(6)-(7) and taking Eq. (13) into account, one gets the
following problem:

Re
�
e�i�(t)

�
K
2
t+  (t)

��
= C(t)

=

8><>:0; t 2 �1

�P cos� sin�; t 2 �2

0; t 2 �3

; (19)

Re te�i�(t) = Re e�i�(t)A(t); t 2 �; (20)

K
2
t+  (t) = 0; t 2 
: (21)

Let the function z = !(�) and � = �+i� map the semi-
circle j�j < 1 and Im� > 0 conformally onto the domain
D. It is assumed that the vertices Ak of rhombus line
correspond to the points ak of the semicircle j�j = 1,
Im� > 0, ak = !�1(Ak), k = 1; 2; 3; 4. It is assumed
that a1 = 1, a4 = �1, and a3 = i.

Here, we can �x three points and the remaining
ones are to be de�ned. Then, the diameter �1 � � � 1
is mapped onto arc A4A1 and the semi-circumference

0 : j
0j = 1, Im� > 0 is mapped onto the broken
line �. The point a2 = ei�2 , 0 < �2 < �=2, is to be
de�ned. Hence, by virtue of Eqs. (19), (20), and (21)
for functions  0(�) =  (!(�)) and !(�), one obtains:

Re e�i�(�) 0(�) = �K
2

Re e�i�(�)A(�) + C(�);

� 2 
0; (22)

Re e�i�(�)!(�) = Re e�i�(�)A(�); � 2 
0; (23)

K
2
!(�) +  0(�) = 0; � 2 (�1; 1); (24)

 0(�) =  (!(�)): (25)

For simplicity, the piecewise constant functions �
(!(�)), A(!(�)), and C(!(�)) will again be denoted
by �(�), A(�), and C(�).

Consider the new unknown function W (�) de�ned
by:

W (�) =

8><>:
K
2 !(�); j�j < 1; Im� > 0

� 0(��); j�j < 1; Im� < 0
(26)
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By virtue of Eq. (24), it is easy to verify that W (�) is
a holomorphic function in the circle j�j < 1.

From Eq. (26), one obtains:

W+(�)=
K
2
!(�);

W�(�)=� 0(�); �1 < � < 1; (27)

W+(�) =
K
2
!(�); � 2 
0;

W�(�) = � 0 (��); � 2 
�0 : (28)

The signs (+) and (�) refer to the upper and lower
edges, respectively. 
�0 is the re
ection of 
0 with
respect to X-axis. By virtue of Eqs. (18) and (20),
one obtains:

W+(�)�W�(�) = 0; �1 < � < 1;

that means that W (�) is a holomorphic function in the
circle j�j < 1.

By virtue of Eqs. (22) and (23), the function W (�)
de�ned by Eq. (26) satis�es the boundary conditions:

Re e�i�(�)W (�)=
K
2

Re e�i�(�)A(�);

� 2 
0; (29)

Re e�i�(�)W (�)=�C(�)+
K
2

Re e�i�(�)A(�);

�2
�0 : (30)

Conditions (29) and (30) can be rewritten in the
following form:

Re e�i�(�)W (�) = f(�);

� 2 
0; (31)

where:


0=
0 [ 
�0 ; �(�)=�(��);

� 2 
�0 ; �1 =��=2;
�2 = �=2� �; �3 = �;

� = \A1A2A3:

If � 2 
0, then:

f(�)=
K
2

Re e�i�(�)A(�)

=

(
K
2 d1 cos�2; �2(a2; a3)

0; �2(a1; a2)[(a3; a4)
;

d1 = j0A2j: (32)

If � 2 
�0 , then:

f(�) =
K
2

Re e�i�(�)A(�)� C(�)

=

8><>:0; � 2 (�a2; a�1)
P cos� sin� + K

2 d1 cos�2; � 2 (�a3; �a2)
0; � 2 (a4; �a3)

a�1 = e2�i: (33)

Thus, the problem in question has been reduced to
the Riemann-Hilbert problem with piecewise-constant
coe�cients. The solution to this problem was obtained
in [15] (by reducing it to a linear-conjugation problem).
Here, the problem is reduced to the Dirichlet problem
for a circle and its solution is presented by Schwarz
formula, which is computationally convenient.

Function e2i�(�) is given by:

e2i�(�) =
X(�)
X(�)

;

j�j = 1; (34)

where X(�) is presented by Eq. (35) as shown in Box I.
By virtue of Condition (34), Condition (31) will

have the form:

W (�)
X(�)

+
W (�)
X(�)

=
2fei�(�)

X(�)
: (36)

Condition (36) presents the boundary condition of
Dirichlet problem, whose solution is presented by
Schwartz formula:

W (�)
X(�)

=
1

2�i

Z

0

f(�)ei�(�)(� + �)d�
X(�)�(� � �)

: (37)

X(�) =
(� � a2)

�1��2
� +1(� � a3)

�2��3
� +1(� � �a3)

�3��2
� (� � �a2)

�2��1
�

�
p

�a2�a3: (35)

Box I
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Since function X(�) has a simple pole at the point � =
0, function W (�)=X(�) has the �rst-order zero at point
� = 0 and from Eq. (37), one gets:Z


0

f(�)ei�(�)d�
X(�)�

= 0: (38)

i.e.:

K
2
d1 cos�2e�2i

a3Z
a2

d�
X(�)�

+
�
P cos� sin�+

K
2
d1 cos�2

�
e�2i

�a2Z
�a3

d�
X(�)�

=0:
(39)

Thus, we obtain an equation with respect to two
unknown parameters, a2 and K.

We could choose some value for K and, then,
determine the parameter a2. In this case, the problem
becomes more complicated. For the purpose of doing
the computations, it is more convenient to calculate K
for each �xed point a2 = ei�2 , 0 < �2 < �=2, and for
the given P .

Taking Eq. (38) into account, Eq. (37) will have
the form:

W (�) =
�X(�)
�i

Z

0

f(�)ei�(�)d�
X(�)�(� � �)

; (40)

i.e.:

W (�) =
�X(�)
�i

 
K
2
d1 cos�2e�2i

a3Z
a2

d�
X(�)�(� � �)

+
�
P cos� sin� +

K
2
d1 cos�2

�
e�2i

�a2Z
�a3

d�
X(�)�(� � �)

!
: (41)

By virtue of Eq. (26), equation of the contour z = !(�)
is presented by:

!(�) =
2W (�)
K

; �1 < � < 1: (42)

From Eq. (26), the functions ! and  are de�ned.
Thus, equation of the contour and stress state of body
is de�ned.

Remark 1. Let us introduce the following notations:

A =
Z a3

a2

d�
X(�)�

;

B =
Z �a2

�a3

d�
X(�)�

:

From Eq. (39), one obtains:

K = � 2PBctg�
d1(A+B)

: (43)

The solution of problem exists if:

A+B 6= 0: (44)

3. Construction of the rhombus full-strength
hole

Let us consider some concrete cases. Let the length
j0A2j = 1:5 and the value of angle � = \A1A2A3 be
changed for 0 < � < �=2. The full-strength contours
are de�ned for di�erent rhombuses, which are obtained
by changing the parameter �, 0 < � < �=2.

To construct the required full-strength hole of the
rhombus, at �rst, the arc 
 = A4A1 of the required full-
strength contour is constructed. Having de�ned K by
Eq. (43) for every �xed point a2 = ei�2 , 0 < �2 < �=2,
a1 = 1, a4 = �1, a3 = i and given P :

K = � 2PBctg�
d1(A+B)

:

The equation of the contour z = !(�) is presented by
Eq. (42):

!(�) =
2W (�)
K

; �1 < � < 1;

where W (�) is de�ned as Eq. (41):

W (�) =
�X(�)
�i

 
K
2
d1 cos�2e�2i

a3Z
a2

d�
X(�)�(� � �)

+
�
P cos� sin� +

K
2
d1 cos�2

�
e�2i

�a2Z
�a3

d�
X(�)�(� � �)

!
; �1 < � < 1;

for each pair of parameters (�2;K), (a2 = ei�2) and the
function X(�) are presented by Eq. (35) as shown in
Box I, where �1 = ��=2, �2 = �=2� �, and �3 = �.

Thus, the part A4A1 of the required full-strength
contour is constructed by z = !(�). Since the problem
is axially symmetric, the other parts of this graphic are
obtained by symmetric mapping of its axis with respect
to coordinate axes Ox and Oy.

Here, as an illustration, some graphics of full-
strength contours are presented for the following pa-
rameters (Figure 2).
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Figure 2. Graphics of full-strength contours for di�erent parameters.

For illustration, we present some numerical cal-
culations and plot for the concrete case in Figure 3,
where:
x = �1:5;�1:4; � � � ; 1:5;

g0(x) =

8><>:f2(x) if � 1:5 < x � 0
f1(x) if 0 � x < 1:5
0 otherwise

g1(x) =

8><>:f4(x) if � 1:5 < x � 0
f5(x) if 0 � x < 1:5
0 otherwise

!1(�) =
2W1(�)
K

;

�4 = �0:9;�0:8; � � � ; 0:9;
W (�4) = !1(�4);

h(�4) = Re(W (�4))� v:Im(W (�4));

u(�4) = �!1(�4);

g(�4) = �Re(W (�4)) + v:Im(W (�4)):

Numerical results can be found in Table 1.

Figure 3. An example for numerical calculations.

4. Conclusion

The shape of the contour of the required hole and the
stress state of the given body are determined, provided
that the tangential normal stress, �s, arising at contour
of the required hole, takes a constant value. Full-
strength contours are found by means of complex anal-
yses. The considered problem with partially unknown
boundaries is reduced to the known boundary value
problem of the theory of analytic functions by means of
the developed method. The solutions are presented in
quadratures and full-strength contours are constructed.

The plates weakened by a hole with full-strength
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Table 1. An example for numerical calculations.

u(�4) !1(�4) h(�4) g(�4)

�0:011� 0:416i 0:011 + 0:416i 0:011� 0:416i �0:011 + 0:416i
�0:024� 0:416i 0:024 + 0:416i 0:024� 0:416i �0:024 + 0:416i
�0:038� 0:415i 0:038 + 0:415i 0:038� 0:415i �0:038 + 0:415i
�0:054� 0:413i 0:054 + 0:413i 0:054� 0:413i �0:054 + 0:413i
�0:071� 0:41i 0:071 + 0:41i 0:071� 0:41i �0:071 + 0:41i
�0:09� 0:407i 0:09 + 0:407i 0:09� 0:407i �0:09 + 0:407i
�0:111� 0:402i 0:111 + 0:402i 0:111� 0:402i �0:111 + 0:402i
�0:134� 0:395i 0:134 + 0:395i 0:134� 0:395i �0:134 + 0:395i
�0:158� 0:387i 0:158 + 0:387i 0:158� 0:387i �0:158 + 0:387i
�0:185� 0:376i 0:185 + 0:376i 0:185� 0:376i �0:185 + 0:376i
�0:214� 0:362i 0:214 + 0:362i 0:214� 0:362i �0:214 + 0:362i
�0:244� 0:345i 0:244 + 0:345i 0:244� 0:345i �0:244 + 0:345i
�0:276� 0:324i 0:276 + 0:324i 0:276� 0:324i �0:276 + 0:324i
�0:309� 0:298i 0:309 + 0:298i 0:309� 0:298i �0:309 + 0:298i
�0:343� 0:266i 0:343 + 0:266i 0:343� 0:266i �0:343 + 0:266i
�0:377� 0:228i 0:377 + 0:228i 0:377� 0:228i �0:377 + 0:228i

contours have the highest strength and the least weight
(in comparison with the other holes). It is proved in [2]
that the weight of a plate weakened by hole with full-
strength contour is less than 40% of that of a plate
weakened by circular hole with the same strength.

Hence, �nding an optimal shape is of great prac-
tical importance and the investigation of problems of
plane elasticity with a partially unknown boundary is
topical and of great practical and theoretical values.
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