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Abstract. The algorithm proposed by Shigeno et al. (2000) is a scaling method to
solve the minimum cost-
ow problem. In each phase, they applied the most positive cut
canceling idea. In this paper, we present a new approach to solve the problem, which
uses the scaling method of Shigeno et al. (2000); but, in each phase, we apply the out-
of-kilter idea instead of the most positive cut canceling idea. Our algorithm is inspired
by Ghiyasvand (2012). The algorithm gives a geometrical explanation for the optimality
concept. For a network with n nodes and m arcs, the algorithm performs O(log(nU))
phases and runs in time O(m(m + n log n) log(nU)) (where U is the largest absolute arc
bound), which is O(m(m+n log n) log n) under the similarity assumption. This time is the
current best strongly polynomial time to solve the minimum cost-
ow problem presented
by Orlin (1993) and Vygen (2002).
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The minimum cost-
ow problem is one of the most fun-
damental network 
ow problems. Di�erent algorithms
have been proposed to solve the problem. Some known
algorithms for this problem are Edmond et al. [1],
Goldberg and Tarjan [2], Orlin [3], Ahuja et al. [4],
Hassin [5], Shigeno et al. [6], and Vygen [7]. Extensive
discussion of this problem and its applications can be
found in the books of Ahuja et al. [8] and Ford and
Fulkerson [9]. Recently, a new algorithm was presented
by Paparrizos et al. [10].

Classical algorithms for the minimum cost-
ow
problem are the out-of-kilter algorithm [11,12] and the
cheapest path augmentation [13,14]. The out-of-kilter
algorithm is the sort of algorithm that computers can
do easily, but people must be careful in using it. This
algorithm uses the complementary slackness optimality
condition, selects arcs that do not satisfy this condition,
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and changes 
ow and potential to enforce the condi-
tion.

Algorithms for the minimum cost-
ow problem
can be classi�ed into primal and dual algorithms.
Primal algorithms always have a feasible solution
and work towards eliminating negative-cost circuits
in the residual graph. Dual algorithms maintain
a feasible potential in the residual graph and work
towards primal feasibility. We denote the number
of nodes, number of arcs, maximum arc capacity,
and maximum absolute value of an arc cost by
n, m, U , and  , respectively. The best running
times for the minimum cost-
ow problem are the
O((m logU)(m+n log n)) time method of Edmonds et
al. [1], the O(nm log(n2=m) log(n )) time method of
Goldberg and Tarjan [2], the O((m log n)(m+n log n))
time method of Orlin [3] and Vygen [7], and the
O(nm(log logU) log(n )) time of Ahuja et al. [4]. Each
of these algorithms is the best for a di�erent ranges
of parameters n, m, U , and  . Computational and
experimental implementations of minimum cost-
ow
algorithms have been presented in [15-20].
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Shigeno et al. [6] relax some arc bounds by �,
which starts with � = U and in each repetition,
decreases � to �=2, and tries to �nd a �=2-optimal
circulation using the most positive cut cancelling idea.
In this paper, we use the scaling method of [6]; but, in
each phase, a �=2-optimal circulation is computed using
the out-of-kilter idea. Thus, the framework of our al-
gorithm is similar to the algorithm of Shigeno et al. [6];
but, in each phase, two di�erent methods are applied,
which are the most positive cut cancelling and out-of-
kilter. Our algorithm is inspired by Ghiyasvand [21].

Our algorithm gives a geometrical explanation for
the optimality concept and describes a polynomial-
time implementation of the out-of-kilter idea. It is
a scaling algorithm, which in each phase transforms
all out-of-kilter arcs into in-kilter arcs. The case that
the network is infeasible is diagnosed by the algorithm.
Our algorithm is called Geometric-DMCF algorithm
(Geometric-Dual Minimum Cost Flow algorithm) and
runs in time O(m(m + n log n) log(nU)). Similarity,
assumption [22] says that the bounds are at most a
�xed power of n, namely log(U) = O(log n). This
assumption usually makes sense in practice and leads
to lower asymptotic running times. Thus, under the
similarity assumption, our algorithm runs in O(m(m+
n logn) log n), which is the current best strongly poly-
nomial time to solve the minimum cost-
ow problem
presented by Orlin (1993) and Vygen (2002).

This paper consists of three sections in addition
to the Introduction Section. Section 2 presents net-
work notation and reviews some results used in the
subsequent sections. We show the framework of our
algorithm in Section 3.1. In Section 3.2, our procedure
for the improvement approximation is described, which
runs in time O(m(m + n logn)) using a shortest-path
computation. Finally, Section 4 concludes the paper.

1.1. Contribution of this paper
Section 5.3 of Shigeno et al. [6] is a scaling algorithm
that, in each phase, computes a �-optimal potential
using at most m shortest path computations. In this
section, our algorithm is compared with the algorithm
of Shigeno et al.. We show that our algorithm is a mod-
i�ed version of the scaling method of Shigeno et al.'s
algorithm; but, in each phase, our algorithm applies
the out-of-kilter idea instead of the most positive cut
canceling idea.

In the algorithm presented in Section 5.3 of [6],
the most positive cut canceling method is used to
compute a �-optimal. In this algorithm, by adding
two nodes s and t, a maximum 
ow problem (called
MFN(l�;�; u�;�)) is de�ned. The sets Ns, Nt (as
nodes reachable from s and t), and strongly connected
components of the residual graph by N � (Ns[Nt) are
computed. Each component Ns; N1; N2; � � � ; Nk; Nt
is contracted to a single node, obtaining a network

H. By de�ning the length of each arc on H, let �v
denote shortest-path distance from Nt to Nv. Then,
the algorithm updates node potentials by �0i := �i+�v
for each i 2 Nv. By the result of Lemma 5.10 in [6],
this method decreases the most positive cut value by
at least �. Lemma 5.6 of [6] says the most positive
cut value in a scaling phase is at most m�; thus, after
at most m iterations, the most positive cut value is
zero and the scaling phase is �nished. Thus, in each
phase, the algorithm of Shigeno et al. is a most positive
canceling method to compute a �-optimal potential.

In each phase of our algorithm, an out-of-kilter
idea is extended to compute a �-optimal potential. In
this algorithm, using the 2�-optimal potential com-
puted in the last scaling phase, sets B+, B�, R,
G+, and G� are de�ned. Each arc in sets B+ [ G+

and B� [ G� [ R is called out-of-kilter and in-kilter,
respectively. In each iteration of a scaling phase, at
least one out-of-kilter arc is transformed into an in-
kilter arc; therefore, the number of iterations in each
scaling phase is at most m. For each w ! v 2 B+[G+,
the algorithm �nds a cycle (which is called Cw!v)
containing the arc w ! v, using one shortest-path
computation. Then, � units of 
ow are pushed in the
cycle Cw!v such that the arc w ! v leaves set B+[G+

and enters into set B�[G�[R. Hence, in each phase,
our algorithm transforms all out-of-kilter arcs into in-
kilter arcs to compute a �-optimal potential.

2. Preliminaries

2.1. Notations and de�nitions
A directed graph, D, is a pair D = (N;A), where N is
a set of nodes and A is a set of ordered pairs of nodes,
called arcs. We denote an arc from node i to node j by
i! j and de�ne the cost on arc i! j by cij . A simple
cycle C in a directed graph is a sequence, i1; i2; � � � ; ik,
of distinct nodes of N such that either ir ! ir+1 2 A
(a forward arc in C) or ir+1 ! ir 2 A (a backward arc
in C) for r = 1; 2; � � � ; k (where we interpret ik+1 as i1).
A directed cycle is a simple cycle with all forward arcs.
Simple path and directed path are same as simple cycle
and directed cycle, respectively, without arc ik ! i1.
If W is a non-trivial subset of N (i.e. W 6= ;;W 6= N)
and W = N �W , then we de�ne (W;W ) = fi! jji 2
W; j 62 Wg and (W;W ) = fi ! jji 62 W; j 2 Wg. The
arc subset (W;W ) (and (W;W )) is called a cut.

Theorem 2.1. (Shortest-path optimality condi-
tions [8]). For every node r 2 N , let dr denote the
length of some directed path from a special node (as
source node) to node r. Then, the numbers dr represent
distances of the shortest paths (from the source node
to node r) with respect to distances cij if and only if
they satisfy the following conditions:
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dj � di + cij for all (i; j) 2 A:
Consider a shortest path from the source to some node
r; then, for each arc i ! j that belongs to this path,
we have dj = di + cij .�
2.2. Minimum cost-
ow problem
Let D = (N;A) be a directed graph with jN j = n and
jAj = m. Let c 2 RA be a cost function on A and l, u
be lower and upper bounds on A, with lij � uij for each
arc i ! j 2 A. The primal problem has 
ow xij on
arc i! j. The primal linear programming formulation
(the primal problem) of the minimum cost-
ow problem
is as follows:

min
X

i!j2A
cijxij ; (1)

s.t.
X
j2N

xij �X
j2N

xji = 0; i 2 N;

lij � xij � uij ; i! j 2 A: (2)

We call x 2 RA a circulation if only (1) is required and
a bounded circulation if both Relations (1) and (2) are
required. The primal problem is feasible if and only
if there exists 
ow x satisfying Relations (1) and (2).
The following theorem is a well-known result for the
feasibility of the primal problem.

Theorem 2.2. (Ho�man's theorem [23]) The primal
problem is feasible if and only if for every cut (S; S),P
i!j2(S;S) lij �Pi!j2(S;S) uij � 0.�

We associate a node potential �i on each node i
and de�ne the reduced cost of an arc i! j as:

c�ij = cij � �i + �j : (3)

The dual linear program of the minimum cost-
ow
problem (the dual problem) is:

max
X

i!j2A
(c�ij)

+lij � X
i!j2A

(c�ij)
�uij ;

s.t. �j + cij � �i = c�ij i! j 2 A;
�i free i 2 N;

where (c�)+ = max(0; c�) and (c�)� = max(0;�c�).
Potential � is feasible for the dual problem if it satis�es
the constrains of the dual problem.

The complementary slackness conditions for gen-
eral linear programming (when specialized in minimum
cost-
ow problem) result in the following characteriza-
tion of optimal primal and dual solutions for the primal
and dual problems.

Theorem 2.3. The pair x and � are jointly optimal

for the primal and dual problems if and only if:

(i) x is feasible for the primal problem;
(ii) � is feasible for the dual problem; and
(iii) For every i! j 2 A

if c�ij < 0; then xij = uij ; (4a)

and:

if c�ij > 0; then xij = lij :� (4b)

Given the node potentials �, for each arc i! j, de�ne
lower bound l�ij and upper bound u�ij by:

if c�ij > 0; then l�ij = u�ij = lij ; (5a)

if c�ij = 0; then l�ij = lij ; u�ij = uij ; (5b)

and:

if c�ij < 0; then l�ij = u�ij = uij : (5c)

The following theorem is a result of Relations (4).

Theorem 2.4 [5]. Feasible node potentials � are
optimal to the dual problem if and only if the primal
network with nodes N , arcs A, lower bounds l�, and
upper bounds u� has a bounded circulation 
ow.�

Like [6] (Page 93), for � � 0, potential � is called
�-optimal if there exists a circulation x such that for all
arcs i! j:

if c�ij > 0; then lij � � � xij � lij + �; (6a)

if c�ij = 0; then lij � � � xij � uij + �; (6b)

and:

if c�ij < 0; then uij � � � xij � uij + �: (6c)

By Theorem 2.4, potential � is optimal if and only if
it is 0-optimal. In our algorithm, we start with a large
� and drive � toward zero. The following lemma says
that � does not need to start out too big, and does not
need to end up too small. We de�ne U as the largest
absolute arc bound.

Lemma 2.5 [6]. Any node potentials � are U -
optimal. Moreover, when � < 1

m , all �-optimal node
potentials are optimal to the dual problem.�

Consider node potential �; we call a network with
nodes N , arcs A, and Constraints (1) and (6) the �-
network corresponding to �. We say x is a feasible

ow for the �-network corresponding to � if it satis�es
Relations (1) and (6). Thus, potential � is a �-optimal
set of node potentials if and only if there exists a
feasible 
ow for �-network corresponding to �.
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Figure 1. The method of Procedure 1.

Algorithm 1. The framework of the geometric-DMCF
algorithm.

3. The Geometric-DMCF algorithm

3.1. The framework of the Geometric-DMCF
algorithm

Our algorithm treats � as a parameter and iteratively
obtains �-optimal potential for successively smaller
values of �. Initially, � = U , x = 0, and � = 0. The
algorithm executes scaling phases, where each scaling
phase cuts � in half and applies Procedure 1 (Figure 1)
that transforms a 2�-optimal set of node potentials
into a �-optimal set of node potentials. This continues
until � < 1

m , the point at which Lemma 2.5 says
that we are �nished, having done O(log(nU)) phases.
Algorithm 1 describes the framework of our algorithm
(the geometric-DMCF algorithm).

The algorithm of Shigeno et al. [6] has the same
framework. In each phase of their algorithm, the most
positive cut canceling method is used to compute a �-
optimal potential. In this paper, a �-optimal potential
is computed using the out-of-kilter method.

3.2. The method of Procedure 1
The essential part of each phase of our algorithm is
Procedure 1. The input to the Procedure 1 (�, �, x)
is a 2�-optimal set of node potentials � and a feasible

ow x for the 2�-network corresponding to � and its
output is a �-optimal set of node potentials �0 and a
feasible 
ow x0 for the �-network corresponding to �0.

Supposing that x is a feasible 
ow for 2�-network
corresponding to �, we color in G green,in B black, and
in R red, where G, B, and R are de�ned as follows.

Let G = G� [G+ such that:

G+ =

8>>>>>><>>>>>>:
fi! j 2 Ajuij + � < xij � uij + 2�g;

if c�ij � 0;

fi! j 2 Ajlij + � < xij � lij + 2�g;
if c�ij > 0;

(7)

and:

G� =

8>>>>>><>>>>>>:
fi! j 2 Ajuij < xij � uij + �g;

if c�ij � 0;

fi! j 2 Ajlij < xij � lij + �g;
if c�ij > 0:

(8)

Also, let B = B+ [B� such that:

B+ =

8>>>>>><>>>>>>:
fi! j 2 Ajuij � 2� � xij < uij � �g;

if c�ij < 0;

fi! j 2 Ajlij � 2� � xij < lij � �g;
if c�ij � 0;

(9)

and:

B� =

8>>>>>><>>>>>>:
fi! j 2 Ajuij � � � xij < uijg;

if c�ij < 0;

fi! j 2 Ajlij � � � xij < lijg;
if c�ij � 0:

(10)

De�ne:
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R =

8>>>>>><>>>>>>:
fi! j 2 Ajxij = uijg; if c�ij < 0;

fi! j 2 Ajxij = lijg; if c�ij > 0;

fi! j 2 Ajlij � xij � uijg; if c�ij = 0.

(11)

We call each arc in set B+[G+ as an out-of-kilter arc,
and each arc in set B� [ G� [ R as an in-kilter arc.
Procedure 1 successively transforms all the out-of-kilter
arcs into in-kilter arcs, maintaining all in-kilter arcs
as in-kilter arcs. The procedure terminates when all
arcs are in-kilter. The following conclusion is obvious
according to the de�nitions.

Conclusion 3.1.

(a) In case i ! j 2 B�, if we increase xij by �, then
i! j 62 B+ [G+;

(b) In case i ! j 2 G�, if we decrease xij by �, then
i! j 62 B+ [G+;

(c) In case i ! j 2 R, if we increase or decrease xij
by �, then i! j 62 B+ [G+;

(d) In case i ! j 2 B+, if we increase xij by �, then
i! j 62 B+ [G+;

(e) In case i ! j 2 G+, if we decrease xij by �, then
i! j 62 B+ [G+.

If B+ [G+ = ;, then x is a feasible 
ow for �-network
corresponding to � (also, potential � is a �-optimal set
of node potentials). But if B+ [ G+ 6= ;, we select
an out-of-kilter arc w ! v (i.e., w ! v 2 B+ [ G+)
and transform it into an in-kilter arc (i.e., arc w !
v is entered into set B� [ G� [ R) maintaining all
the in-kilter arcs as in-kilter arcs (i.e., no arc in set
B� [G� [R enters into set B+ [G+).

Given a 2�-optimal set of node potentials � and
a feasible 
ow x for the 2�-network corresponding to
�. We de�ne a network D0 on the same node set as
D. We assume that for any pair of nodes i and j,
either i ! j 2 A or j ! i 2 A, but not both (we can
easily satisfy this assumption by performing a simple
transformation, but the assumption is not needed in
any case). Every arc p ! q 2 D becomes a pair of
arcs, p ! q and q ! p, in D0 with distances �pq and
�qp. We denote all arcs in D0 by A0; thus, D0 = (N;A0).
If X;Y � N form a nontrivial partition of N , then, we
de�ne a cut in D by:

(X;Y )A0 = fi! j 2 A0ji 2 X; j 2 Y g:
Distances �pq and �qp are computed as follows:

If p! q 2 G, then:

�pq = 0; (12a)

and:

�qp =

(
c�pq; c�pq > 0; xpq � upq;
1; otherwise:

(12b)

If p! q 2 B, then:

�qp = 0; (13a)

and:

�pq =

(�c�pq; c�pq < 0; xpq � lpq;
1; otherwise:

(13b)

If p! q 2 R, then:

�pq = �qp = 0: (14)

Supposing that w ! v 2 B+ [ G+. If w ! v 2 B+

(with respect to w ! v 2 G+), then, in D0, we
determine a shortest path from node w (with respect to
node v) to all other nodes with respect to �. Consider
a node r, we denote a shortest path to node r by pr,
i.e. if w ! v 2 B+ (with respect to w ! v 2 G+),
then pr is a shortest path from node w (with respect to
node v)). Note that pr is found in D0 and is a directed
path. Let dr be the shortest-path distance to node r,
i.e.:

dr =
X

i!j2pr
�ij :

By de�nitions, if dr =1, then there exists at least one
i ! j 2 pr with �ij = 1. The following lemma shows
that if there exists one node r with dr = 1, then the
primal problem is infeasible.

Theorem 3.1. If there exists one node r in D0 with
dr =1, then the primal problem is infeasible.

Proof. We use the idea of Dijkstra's shortest-path
algorithm [24]. Without loss of generality, suppose
that d1 � d2 � � � � � dk � dl � � � � � dn such
that 1; 2; � � � ; n are all nodes; also, let node l be the
�rst node with dl = 1 (i.e. dl = � � � = dn = 1 and
d1 � d2 � � � � � dk < 1). Thus, Dijkstra's algorithm
computes d1; d2; � � � ; dk before dl. We denote nodes
1; 2; � � � ; k by S and S = N � S. By de�nitions of S
and S, we get:

�ij =1 for ever i! j 2 �S; S�A0 : (15)

Thus, by Eq. (14), we have:��
S; S

� [ (S; S)
� \R = ;: (16)

Using Eqs. (13a) and (15), we get:�
S; S

� \B =1:
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Hence, Eq. (16) says i ! j 2 G for every i ! j 2
(S; S). By Eqs. (12b) and (15), there does not exist an
arc i ! j 2 (S; S) such that i ! j 2 G, c�ij > 0 and
xij � uij . Thus:X
i!j2(S;S)

xij >
X

i!j2(S;S)
uij : (17)

Also, according to Eqs. (12a) and (15), we have (S; S)\
G = ;. Hence, by Eqs. (15), (13b), and (16), we get:X
i!j2(S;S)

xij <
X

i!j2(S;S)
lij : (18)

Since x is a circulation, we have:X
i!j2(S;S)

xij � X
i!j2(S;S)

xij = 0:

Thus, by Relations (17) and (18), we get:X
i!j2(S;S)

lij � X
i!j2(S;S)

uij > 0:

Therefore, by Theorem 2.2, the primal problem is
infeasible.�

If w ! v 2 B+ (with respect to w ! v 2 G+,
then we denote a shortest path from node w (with
respect to node v) to node v (with respect to node
w) in D0 by P (i.e., if w ! v 2 B+, then P = pv
and if w ! v 2 G+, then P = pw). Note that P is a
directed path in D0. By the de�nition of D0, each arc
i ! j 2 D0 has a corresponding arc i ! j or j ! i in
D; thus, the directed path P in D0 has a corresponding
simple path P in D.

We de�ne Cw!v = P [ fw ! vg (note that
Cw!v is a simple cycle in D). Our implementation
lets �0r = �r + dr for each node r and augments � units
of 
ow along Cw!v according to the augmentation (�,
x, C) method (see Figure 2). Thus, by Conclusion 3.1
(d; e), arc w ! v leaves B+ [ G+. We prove that the
implementation in Procedure 1 maintains all in-kilter
arcs B� [G� [R.

Supposing that w ! v 2 B+ (with respect to
w ! v 2 G+), the path P is a shortest path froms node

w (with respect to node v) to node v (with respect to
node w) in D0. According to Figure 1, we send � units
of 
ow in the direction of node w (with respect to node
v) to node v (with respect to node w) in simple cycle
Cw!v. Hence, the direction of sending � units 
ow in
Cw!v is opposite to the direction of path P . Note that
P is a directed path in D0, and P is a simple path in
D. Thus, we get the following conclusion.

Conclusion 3.2. Augmentation (�, x, C) procedure
sends � units 
ow, in the simple cycle Cw!v, in the
opposite direction of directed path P .

Consider a node r and path pr, for each arc i! j
in D; we allocate a Boolean variable Use(pr, i ! j).
We say Use(pr; i ! j)=True if (in D0) i ! j 2 pr or
j ! i 2 pr. Otherwise, Use(pr; i! j) =False.

Lemma 3.2. Suppose that the primal problem is
feasible. Consider a node r and a path pr; the following
operations do not send any arc i ! j 2 B� [ G� [ R
into set B+ [G+:

(a) �0i = �i + di;, for each i 2 N ;

(b) After Operation (a), for each arc m ! n 2 pr,
sending � units of 
ows is sent in D from node n
to node m.

Proof. Consider an arc i ! j 2 B� [ G� [ R; we
prove that after Operations (a) and (b), we get i! j 62
B+ [G+.

(i) Use(pr; i! j)=True.

By the de�nition of Use(pr; i ! j)=True, we
consider two cases i! j 2 pr and j ! i 2 pr:
(i.1) i! j 2 B�.

(i.1.1) i! j 2 pr.
The primal problem is feasi-
ble; thus, by Theorem 3.1 and
Eq. (13b), we have �ij = �c�ij and
c�ij < 0.

Thus, by Theorem 2.1, we
get dj = di � c�ij , which means

Figure 2. Augmentation (�; x; C) procedure.
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c�
0
ij = 0. Therefore, after Operation

(a), we have i ! j 2 R. By
Conclusion 3.1(c), after sending �
units 
ow from node j to node i,
the arc i ! j does not enter into
set B+ [G+;

(i.1.2) j ! i 2 pr.
By Theorem 2.1 and Eq. (13a), we
get:

di = dj + �ji = dj + 0 = dj :

Hence, c�
0
ij = c�ij , which means arc

i! j remains in set B�. Thus, by
Conclusion 3.1(a), Operation (b)
does not send the arc i ! j into
set B+ [G+.

(i.2) i! j 2 G�.

This case is proved in a similar way to Case
(i-1);

(i.3) i! j 2 R.
(i.3.1) i! j 2 pr.

The following is obtained by The-
orem 2.1 and Eq. (14):

dj = di + �ij = di + 0 = di:

Thus, c�
0
ij = c�ij , which means i !

j does not leave set R. Thus, by
Conclusion 3.1(c), we have i !
j 62 B+ [G+;

(i.3.2) j ! i 2 pr.
This case is proved in a similar way
to Case (i-3-1).

(ii) Use(pr; i! j)=False.

By i �! j 62 pr and j ! i 62 pr, we only need
to focus on Operation(b). In D0, there exist two
arcs i! j and j ! i. By Theorem 2.1, we have:

dj � di + �ij ; (19)

di � dj + �ji: (20)

(ii.1) i! j 2 B�.

By Eqs. (13a) and (20), we get di � dj , or:

dj � di � 0: (21)

By c�
0
ij = cij � (�i + di) + (�j + dj) =

c�ij+dj�di and Relation (21), we conclude

c�
0
ij � c�ij . Therefore, Operation (a)

increases the reduced cost of i ! j. We
consider two cases c�ij � 0 and c�ij < 0:
(ii.1.1) c�ij � 0.

We have i ! j 2 B and c�ij > 0;
thus, if c�ij increases, then arc i!
j remains in B�;

(ii.1.2) c�ij < 0.

If xij � lij , then Eq. (13b) says
�ij = �c�ij ; thus, by Relation (19),
dj � di � c�ij or c�

0
ij � 0. Thus,

the reduced cost of i ! j does
not change from case c�ij < 0 to
case c�

0
ij > 0. Therefore, after

Operation (a), i! j 62 B+ [G+.
Also, if xij < lij , then c�ij is
changed from case c�ij < 0 to case
c�ij � 0, which means i! j 2 B�.

(ii.2) i! j 2 G�.

This case is proved in a similar way to Case
(ii-1);

(ii.3) i! j 2 R.

Using Relations (14), (19), and (20), we
get di = dj , which means c�

0
ij = c�ij . Hence,

arc i! j remains in R.

From the above discussions, we get the next
theorem.

Theorem 3.3. In Procedure 1, the following opera-
tions do not send any arc of set B� [G� [R into set
B+ [G+:

(a) �0i = �i + di, for each node i;

(b) After Operation (a), � units of 
ow is sent along
cycle Cw!v.

Proof. By Lemma 3.2, this theorem is true for
Operation (a). Now, we prove the claim for Operation
(b). The procedure sends � units 
ow along Cw!v =
P [ fw ! vg according to Procedure 1; therefore, arc
w ! v leaves set B+ [G+. Thus, we focus on the arcs
of P . Conclusion 3.2 says that the procedure sends �
units 
ow in the direction opposite to the direction of
path P , and, by the de�nition of P , we have P = pv
or P = pw. Therefore, by Lemma 3.2, Operation (b)
does not send any arc i ! j 2 B� [ G� [ R into set
B+ [G+.�

Theorem 3.3 says that Procedure 1 does not send
any arc i! j 2 B� [G� [R into set B+ [G+.
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Also, in each iteration, there exists at least one
arc which leaves set B+ [ G+. Thus, after at most m
iterations, we have B+ [ G+ = ;. The next lemma
gives the running time of the procedure.

Lemma 3.4. Procedure 1 runs in O(m(m+n logn))
time.

Proof. By jB+ [G+j � m, the number of iterations
is at most m. In each iteration, the procedure solves
a shortest path problem, which is solved in time
O(m+n log n) [25]. Other operations in each iteration
are done in O(m). Hence, the running time of the
procedure is O(m(m+ n log n)).�

Putting Lemmas 2.5. and 3.4. together yields our
bound on the running time of the Geometric-DMCF
algorithm.

Theorem 3.5. The Geometric-DMCF algorithm
runs in time O(m(m+ n log n) log(nU)).�

4. Conclusion

Shigeno et al. [6] is a minimum cost-
ow algorithm,
which in each phase computes a �-optimal potential
using at most m shortest-path computations. This
paper is inspired by Ghiyasvand (2012), which uses
the scaling method of Shigeno et al. (2000); but, in
each phase, it applies the out-of-kilter idea instead of
the most positive cut canceling idea. Our algorithm,
in each phase, transforms all out-of-kilter arcs into
in-kilter arcs to compute a �-optimal potential. The
algorithm runs in time O(m(m + n log n) log(nU)),
which is O(m(m + n logn) log n) under the similarity
assumption. This time is the running time of the
algorithms by Orlin [3] and Vygen [7], which are the
current best strongly polynomial-time algorithms to
solve the minimum cost-
ow problem.
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