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Abstract. This paper addresses the problem of designing a supply chain network con-
sisting of suppliers, manufacturers, warehouses, and customers in which all manufacturers
belong to a single owner. All players in this chain are performing under uncertainty. The
single product of this supply chain needs one strategic and one non-strategic part for its
�nal assembly. To hedge against uncertainty in supply and demand, the manufacturers tend
to take part in a set of suppliers through a portfolio of contracts, and unmet demand will
be satis�ed by purchasing from spot market with stochastic prices. In addition, demands,
supply capacities, and warehouse capacities are stochastic as well, and the problem has been
modeled as a two-stage stochastic program with recourse. Then, a hybrid solution strategy
based on sample average approximation and accelerated Benders decomposition is proposed
to tackle the problem. The proposed strategy is able to obtain good quality solutions for
a large number of scenarios and within an acceptable time interval. Computational results
show the e�ectiveness of the stochastic model as compared to its deterministic counterpart.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

A supply chain is a system of suppliers, manufactur-
ers, distributors, retailers, and customers. In this
system, materials move from suppliers to customers
and information ows in both directions [1]. A crucial
component in the tactical phase of decisions in a
supply chain is the way in which the manufacturer sets
its raw material routes for stable supply of products
to customers. These connection routes are usually
constructed by contracts between manufacturer and
suppliers. Contracts become more and more impor-
tant to manufacturers considering the fact that many
parameters in a decision-making are not certainly
known prior to their realization in the real world.
Many contracts have been designed so far to be used
by industry in di�erent situations such as long-term,
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option, etc. In a long-term contract, the supplier
guarantees the manufacturer to send a pre-speci�ed
amount of raw material at an agreed-upon price in
a pre-determined period of time. A big disadvantage
of this contract relates to the inventory holding costs.
In option contracts, however, supplier agrees to send
the raw material by a pre-determined time just at an
agreed-upon level. In this contract, manufacturer pays
a fraction of the price for all parts at the time contract
is signed (premium fee) and will be charged for each
unit it buys (execution fee). Although option contract
may seem to be able to hedge manufacturer against
risks, the total price is more in option than long-term
contract. Thus, a company like HP used a portfolio of
these contracts successfully to avoid the disadvantages
of each contract [1].

Contracts named so far are usually used for non-
strategic items [1]. Kraljic argued that di�erent supply
strategies should be used for di�erent items [2]. He
named parts with few number of suppliers and great
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impact on pro�t as strategic items and parts with
many suppliers and little pro�t imapct as non-critical
items. Several types of contracts have been suggested
for strategic items: buyback, payback, revenue sharing,
etc. Since the supplier should prepare capacity to
ensure its supply power before the real demand for
strategic items, it is prevalent in many industries
that manufacturers pass inated demand predictions
to suppliers. This phenomenon has side e�ects on
both sides; sometimes suppliers are left with unused
capacities and sometimes manufacturers cannot reply
to their demand as for Boeing orders in 1997 [3]. To
resolve this problem, some researchers have proposed
special kinds of contracts, namely capacity reservation
contract and advanced purchase contract. In the
latter, a supplier charges a manufacturer an agreed
price before demand is realized and charges a di�erent
price afterwards. In the former, supplier presents a
list of capacities with corresponding prices. These
kinds of contracts will enable suppliers to prevent
manufacturers from inating their orders [4].

In this paper, a supply chain network design
problem in which a sole manufacturer sells a single
product to a set of customers is considered. The
product is assumed to need a strategic part along with
a non-strategic part for completion. The manufacturer
is faced with a stochastic demand and stochastic spot
prices for its non-strategic part. To hedge against un-
certainty, the manufacturer tends to select a portfolio
of suppliers with di�erent contracts. To avoid inated
orders, the supplier of strategic item has presented a
capacity reservation contract. The question is: What is
the right supply chain design for this manufacturer and
how the portfolio of contracts should be constructed?
The remainder of this paper is as follows. In the
next section, a review of the literature is conducted.
In Section 3, problem description is presented. In
Section 4, the solution strategy is described. Section 5
presents the results of computational studies. Finally,
this paper is concluded in Section 6.

2. Literature review

Supply Chain Network Design (SCND) has attracted
many researchers. Thanh et al. [5] addressed the
problem of designing and planning a multi-period,
multi-echelon, multi-commodity supply chain whereby
each product has a bill of materials and all parameters
are deterministic. Each plant and warehouse has
limited capacity and lower and upper bounds on the
utilization level. The comprehensive model developed
there captures many modeling issues including opening,
closing or expanding facilities, supplier selection and
planning the distribution ow, etc. Nagurney [6]
considered the problem of designing and redesigning
a supply chain from a di�erent modeling approach,

i.e., variational inequalities. Badri et al. [7] developed
a new mathematical model for multi-echelon, multi-
commodity dynamic SCND considering expansions of
the supply chain according to cumulative net pro�ts
and fund supplied by external sources in contrast with
common approach that expansion is restricted to a
predetermined fund or to a �xed number of facilities.
Correia et al. [8] presented two new models for a two-
echelon dynamic system. Main decisions are location
of new facilities, installation of warehouses, and distri-
bution centers. Decisions are bound to a given budget
and di�erent product families are considered, while the
�rst model is a cost minimization and the second one
is a pro�t maximization one.

In another stream of research in the �eld of SCND,
researchers have tried to incorporate uncertainty in
their models. Santoso et al. [9] addressed a single-
period, single-commodity network design problem in
which the two-stage model determines which facilities
should be opened, in addition to the technology of
each facility and who the suppliers for each facility
should be. They also proposed a hybrid of Benders
decomposition and SAA as the solution approach [10].
Their paper does not consider any strategic component
into account. Tiwari et al. [11] proposed a novel
model for SCND with cost minimization objective
satisfying uncertain demands at a speci�ed service
level. Pan and Nagi [12] considered a SCND with the
new feature of considering emerging new markets while
demand is uncertain in an agile manufacturing setting.
Main decisions are: selection of facilities, alliance
among di�erent facilities, production and distribution.
Georgiadis et al. [13] proposed a new mathematical
model for SCND with multiple products owing in the
network in multiple time periods. The model considers
time-dependent uncertainties in demand. Rajgopal et
al. [14] proposed a new two-stage stochastic model
for the design and operation of remnant industry,
motivated by metal industry. The authors proposed
a modi�ed version of the L-shaped method to solve
it. Sawik [15] looked for a portfolio of suppliers in
a make-to-order supply chain. Selection criteria in
his work are price, quality, and due date reliability.
In addition, the mere uncertain parameter is the
production rate of suppliers. Li and Zabinsky [16]
proposed a two-stage and a chance constraint model
for a supplier selection problem with uncertainties in
demand and supply. The aim of the paper is to
�nd the minimum number of suppliers, in addition
to the order sizes from suppliers. Lin and Wang [17]
studied the supply chain network design under sup-
ply and demand disruptions, while most of the past
researchers only studied the demand-side disruption.
They studied the supply chain network design under
supply and demand uncertainty with embedded supply
chain disruption mitigation strategy and manufactur-
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ing postponement with downward substitution. Pish-
vaee and Razmi [18] proposed a multi-objective fuzzy
mathematical programming model for designing an
environmental supply chain under inherent uncertainty
of input data. Goetschalcks et al. [19] considered a
multi-SCND problem with uncertainties in demand,
capacities of suppliers, manufacturers, warehouses, and
�xed location costs. Uncertainty is modeled as a set
of scenarios. The risk of the system is modeled as
the two-sided standard deviation of the pro�ts of the
various scenarios. Tabrizi and Razmi [20] considered
a SCND problem in a multi-commodity, multi-stage,
multi-capacity, and multi-source mode with sources
of uncertainty in supply, demand, and processing
sides.

Pishvaee et al. [21] studied the impact of social
and environmental issues on supply chain network
design. They used a multi-objective possibilistic pro-
gramming approach to model a real case in the med-
ical supply chain. Multiple conicting objectives are
converted to a single objective by means of a posteriori
fuzzy approach, and an accelerated version of Benders
is applied to solve the model.

Yolmeh and Salehi [22] proposed a new model
for integrated supply chain network design and assem-
bly line balancing under demand uncertainty. Their
model determines the location of manufacturers and
assemblers, balances assembly lines, and presents the
required ow of products in the network. In the study
of Wang and Lee [23], the authors addressed a capac-
itated location{allocation problem for a multi-echelon
supply chain with stochastic demand variability. The
authors proposed a revised version of the well-known
ant algorithm.

Melo et al. [24], in their review paper, concluded
that there is a gap in the literature related to consid-
eration of decisions in a supply chain such as trans-
portation modes, routing, and purchasing (contracts).
Paksoy et al. [25] proposed a novel model consisting
of multiple suppliers, manufacturers, distribution. To
hedge against these uncertainties, the manufacturers
use option contracts. The model answers the question
of with which suppliers these contracts are signed and
for which quality level. Xu and Nozick [26] considered
a multi-period single-commodity supply chain with de-
mand as the only uncertain parameter. Manufacturers
belong to a single owner. Their model tries to �nd
the right amount of raw material to purchase from
each supplier using long-term and option contracts.
In addition, an L-shape algorithm has been used to
address the problem. Feng et al. [27] proposed a two-
stage stochastic programming model for coordinated
contract design in a supply chain. The article considers
a multi-site manufacturer which signs contracts with
both suppliers and customers. Table 1 summarizes
the main features of our research in contrast with

abovementioned literature with respect to design and
modeling features.

3. Problem description

Consider a supply chain network with four echelons
consisting of suppliers, manufacturers, warehouses, and
customers. In the supply chain under consideration,
all manufacturers belong to a single owner. These
manufacturers produce a single product and supply
customers in di�erent market segments through ex-
ternal distribution warehouses. The mere product of
the supply chain is itself comprised of two di�erent
parts. The �rst part is a non-strategic component and
could be supplied from a set of suppliers. The second
part is a strategic component in the sense that it has
only an exclusive supplier, and this supplier needs to
build capacity before the production season, and thus,
it requires its customers to reveal their production
plan. However, the sole supplier of strategic compo-
nent has designed a capacity reservation contract to
ensure uninated submit of orders from manufacturers.
The supplier of strategic component presents a list
of capacities linked with prices and the manufacturer
signals its real demand by ordering a speci�c level.
In real world, many of the parameters for decision-
making are not known with certainty, therefore, to
hedge against uncertainties from supply and demand,
these manufacturers want to construct a portfolio of
contracts with suppliers comprised of long-term and
option contracts. In this study, capacity of non-
strategic suppliers, storage capacity of warehouses,
as well as demand for di�erent markets have been
considered uncertain. Also, the manufacturers would
react to unmet demand from customers with spot
purchasing. The objective of the model is to minimize
the total costs of engaging with suppliers, contracting
with suppliers, and operating the supply chain. Main
decisions in this model include: whether to engage
with a non-strategic supplier or not; the amount of
strategic component to order from its sole supplier; the
amount of long-term contract with each supplier; and
the appropriate option level with each supplier. The
architecture of the supply chain studied in this paper
is illustrated in Figure 1.

4. Modeling assumptions

Main assumptions used in the model of this research
are as follows:

1. The location and number of suppliers, manufactur-
ing plants, warehouses, and customers are known;

2. The suppliers of non-strategic parts propose a price
for long-term contracts and an option list for price-
volume pairs;
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Table 1. Comparison of literature with the current study from design and modeling aspects.
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2005 Santoso et al. X X X X X X X X X X X X X
2009 Xu & Nozick X X X X X X X X

2010

Tiwari et al. X X X X X X X X X X X
Thanh et al. X X X X X X X X
Nagurney X X X X X X X
Pan & Nagi X X X X X X X X

2011

Rajgopal et al. X X X X X X X X X
Georgiadis et al. X X X X X
Sawik X X X X X
Li & Zabinsky X X X X X X
Lin & Wang X X X X X X

2012 Pishvaee & Razmi X X X X X X X X

2013

Feng et al. X X X X X X X X X X X X X X
Correia et al. X X X X
Badri et al. X X X X X
Tabrizi & Razmi X X X X X X X X X X X
Paksoy et al. X X X X X X
Goetschalckx et al. X X X X X X X X X X X X X X

2014 Pishvaee et al. X X X X X X
2015 Wang & Lee X X X X X X

Yolmeh & Salehi X X X X X
This paper X X X X X X X X X X X X X X

Figure 1. The supply chain con�guration for this paper.
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3. It is assumed that unmet demand will be out-
sourced from spot market;

4. A scenario based approach is used to model uncer-
tainty.

The modeling approach utilized in this paper is two-
stage stochastic programming with recourse. The
reason for using this approach is that contractual
decisions are integrated into the decisions regarding
the distribution of components and goods, and deci-
sions regarding contracts are usually made before real
situations are realized. Suppose that the vector y is the
set of the �rst stage variables with cost vector d, while
x is the vector of the second stage variables with cost q.
Also, assume that � denotes the uncertain parameter
vector:

min
y2Y E(F(y; �)) = dT y + E(Q(y; �)); (1)

where:

Q(y; �n) = min
xn

qTn xn;

s.t: Wnxn = hn � Tny; xn � 0 (2)

Problem in Eq. (1) is called the \�rst stage" and prob-
lem in Eq. (2) is called the \second stage" problem in
the literature. The notations used in the mathematical
model are as follows:

Sets & indices
C Set of customers indexed by c
P Set of plants indexed by p
S Set of the non-strategic suppliers

indexed by s
W Set of warehouses indexed by w
I Set of options for the non-strategic

parts indexed by i
K Set of purchasing intervals for the

non-strategic parts in long-term
contract indexed by k

J Set of capacity reservation possibilities
for the strategic parts indexed by j

T Set of time periods indexed by t
N Set of scenarios indexed by n

Parameter
Fstj Fixed cost of reserving capacity j for

the strategic item
Fois Premium cost of buying option i for

the non-strategic items from supplier s
F lks Fixed cost of purchasing long-term

contract level k from supplier s
Fcs Fixed cost to engage with non-strategic

supplier s

Tstp Transportation cost from the strategic
supplier to plant p

Tspsp Transportation cost from the
non-strategic supplier s to plant p

Tpwpw Transportation cost from plant p to
warehouse w

Twcwc Transportation cost from warehouse w
to customer c

Csstn Total capacity of non-strategic supplier
s in period t for scenario n

Cwwtn Capacity of warehouse w in period t
for scenario n

estj Variable cost for each strategic part
purchased

eos Exercise cost of using option contract
from supplier s

gstj Available strategic items in each week
under capacity reservation j

goi Available items in each week under
option i from each supplier

gok Available items in each week under
long-term level k from each supplier

Pctn Spot price of �nal product to supply
customer c in period t for scenario n

dctn Demand from customer c in period t
for scenario n

hw Holding cost of each unit of inventory
in unit time in warehouse w

� Total number of available suppliers for
the non-strategic items

Variables
ystj Equal to 1 if level j for capacity of

strategic is reserved, 0 otherwise
yois Equal to 1 if option level i for

non-strategic item from supplier s is
bought, 0 otherwise

ylks Equal to 1 if long-term level k for
non-strategic item from supplier s is
bought, 0 otherwise

ycs Equal to 1 if the manufacturers decide
to engage with supplier s, 0 otherwise

xstptn Amount of strategic part sent to plant
p in period t for scenario n

xosptn Amount sent from supplier s to plant
p in period t for scenario n { option
contract

xlsptn Amount sent from supplier s to plant
p in period t for scenario n { long-term
contract

xpwpwtn Amount sent from plant p to warehouse
w in period t for scenario n

xwcwctn Amount sent from warehouse w to
customer c in period t for scenario n
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zctn Unmet demand of customer c in period
t for scenario n

Invwtn Inventory level at warehouse w in
period t for scenario n

The two-stage model for our problem is then as follows:

First stage problem:

min
y

:X
s

Fcsycs +
X
j

Fstjystj +
X
i;s

Foisyois

+
X
k;s

Flksylks + E(Q(y; �)); (1-0)

s.t.:X
j

ystj � 1; (1-1)

X
i

yois � ycs 8 s 2 S; (1-2)

X
s

ycs � �; (1-3)

X
k

ylks � ycs 8 s 2 S; (1-4)

ystj ; yois; ycs; ylks 2 f0; 1g; (1-5)

where Q(y; �) is as follows:

min
x;z

qTn xn=
X
p;t;n

(est+Tstp)xstptn

+
X
s;p;t;n

Tspspxlsptn+
X
s;p;t;n

(eos + Tspsp)xosptn

+
X

p;w;t;n

Tpwpwxpwpwtn +
X
w;c;t;n

Twcwcxwcwctn

+
X
c;t;n

Pctnzctn+
1
T

X
w;t;n

hwInvwtn; (2-0)

X
p

(xlsptn + xosptn) � Csstnycs

8 s 2 S; t 2 T; n 2 N; (2-1)X
p

xosptn�X
i

goiyois 8 s2S; t2T; n2N; (2-2)

X
p

xstptn �X
j

gstjystj 8 t 2 T; n 2 N; (2-3)

X
p

xlsptn �X
k

glkylks 8 s2S; t2T; n2N; (2-4)

8 p 2 P; t 2 T; n 2 N 8 p2P; t2T; n2N; (2-5)

xstptn =
X
w

xpwpwtn 8 p 2 P; t 2 T; n 2 N; (2-6)

X
p

xpwpwtn�Cwwtn 8 w 2W; t 2 T; n 2 N;(2-7)

Invwt+1n = Invwtn +
X
p

xpwpwtn �X
c

xwcwctn;

8 w 2W; t 2 T; n 2 N; (2-8)X
w

xwcwctn+zctn � dctn 8 c2C; t2T; n2N;(2-9)

Invw0n = 0 8 w 2W; n 2 N; (2-10)

xstptn; xosptn; xlsptn; xpwpwtn; xwcwctn; zctn�0:
(2-11)

In the �rst stage problem, the objective is the min-
imization of the sum of �xed costs to establish the
relationship and also to choose contract levels for all
types of contracts, that is, strategic, option, and long-
term. Constraints for this problem are of logical
type. Constraint (1-1) ensures that just one of the
capacity levels from strategic supplier should be re-
served. Constraints (1-2) and (1-4) do the same job
for option and long-term contracts while they also
state that these contracts with non-strategic suppliers
are chosen if there exists a relationship with them.
Constraint (1-3) enforces the number of suppliers to
be less than a certain number. In the second stage,
the objective is comprised of four cost categories: cost
of transportation of goods from one node to another
in the chain, cost of using reserved capacities for
strategic items and exercising options purchased, cost
of shortage, and inventory holding cost at warehouses.
Constraint (2-1) states that the total items bought from
a supplier under long-term and option contracts should
not exceed its total capacity in di�erent time periods
and scenarios, provided that the supplier is engaged
with the manufacturers. Constraints (2-2) to (2-4) en-
sure that the amount the manufacturers purchase, with
option, strategic, or long-term contracts, respectively,
does not exceed the reserved capacity. Constraints (2-
5), (2-6), and (2-8) are ow reservation constraints.
Constraints (2-5) and (2-6) guarantee that the total
raw materials (non-strategic and strategic) that enter a
plant are equal to the �nished products ow from this
plant to all warehouses. Constraint (2-8) states that
inventory at each warehouse in each time period, and
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scenario equals the inventory level in last period; plus,
the products that enter the warehouse in the period
minus the products that leave it. Constraint (2-7) is the
capacity constraint for warehouses. Constraint (2-9) is
the demand satisfaction constraint. Constraint (2-10)
is based on the assumption that there is no inventory
at any warehouse in the beginning of the planning
horizon. Finally, Constraints (2-11) are non-negativity
Constraints for the decision variables.

5. Solution procedure

In this section, the solution strategy is illustrated.
Since this model is a two-stage model, the �rst idea is
to use the L-shaped algorithm proposed by Van Slyke
and Wets [28] to address the solution. However, since
the number of scenarios is large in real instances, the
problem of size grows astronomically. To illustrate
the magnitude to which this matters, the example by
Santoso et al. [9] is studied. Consider a supply chain
with 50 facilities, which is ordinary for realistic cases,
and that each facility has just one uncertain parameter.
Moreover, suppose that this uncertain parameter has
only three scenarios. In this situation, one may have
to deal with 350 �= 7 � 1023 scenarios, which are far
more than the ability of the current technology to
handle it. Moreover, our problem has a multi-period
structure that will complicate the solving procedure of
the problem with standard techniques such as L-shaped
method. Therefore, we adopted SAA to handle the
large number of scenarios. This procedure has its roots
in Monte Carlo simulation and sampling in statistics.
In each stage of the procedure, a smaller sample of the
real problem has to be dealt with. However, since a
tactical decision should be tackled, it still takes too
much time to solve the problem with good quality
using standard optimization soft wares. Therefore,
Benders decomposition, suitable for the case of this
paper, is proposed to solve the resulting MIPs in a
reasonable time. However, as Benders decomposition
in its standard format has a slow convergence rate, it is
proposed in the following to use a mix of acceleration
techniques to enable satisfactory results. In following
subsections, �rst, the procedure of SAA and then
Benders decomposition are illustrated. Subsequently,
the acceleration techniques that have been used in this
paper will be described.

5.1. Sample average approximation
In a stochastic program like the one stated in Eq. (1),
the main di�culty arises in the calculation of expected
value, since the function Q(y; �) is not explicitly at
hand and in a closed analytical form. Even if it is
accessible, computing such an expectation consists of
multiple integrals or solving too many linear programs.
To avoid these di�culties, a good idea is to use

the sample average statistic instead of the original
expectation. To do this job, Shapiro and Homem-
de-Melo [29] proposed to perform M independent
experiments. In each experiment, one must take N
independent samples from the main problem. In fact,
each sample consists of solving \linear program 3"
called \Sample Average Problem (SAP)".

l̂m = min
1
N

NX
n=1

(dT y +Q(y; �mn )): (3)

In this paper, the optimal solution to this problem is
called ŷm, and SAP looks like the following (Eqs. (3-0)
to (3-15)):

l̂m = min
x;y;z

1
N

 X
s

Fcsycs +
X
j

Fstjystj +
X
i;s

Foisyois

+
X
k;s

Flksylks +
NX

p;t;n=1

(est+ Tstp)xstptn

+
NX

s;p;t;n=1

Tspspxlsptn+
NX

s;p;t;n=1

(eos+Tspsp)xosptn

+
NX

p;w;t;n=1

Tpwpwxpwpwtn+
NX

w;c;t;n=1

Twcwcxwcwctn

+
NX

c;t;n=1

Pctnzctn +
1
T

NX
w;t;n=1

hwInvwtn

!
; (3-0)

X
j

ystj � 1; (3-1)

X
i

yois � ycs 8 s 2 S; (3-2)

X
s

ycs � �; (3-3)

X
k

ylks � ycs 8 s 2 S; (3-4)

X
p

(xlsptn + xosptn) � Csstnycs

8 s 2 S; t 2 T; n 2 N; (3-5)X
p

xosptn �X
i

goiyois

8 s 2 S; t 2 T; n 2 N; (3-6)
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X
p

xstptn �X
j

gstjystj

8 t 2 T; n 2 N; (3-7)X
p

xlsptn �X
k

glkylks

8 s 2 S; t 2 T; n 2 N; (3-8)X
s

(xlsptn + xosptn) =
X
w

xpwpwtn

8 p 2 P; t 2 T; n 2 N; (3-9)

xstptn =
X
w

xpwpwtn

8 p 2 P; t 2 T; n 2 N; (3-10)X
p

xpwpwtn � Cwwtn

8 w 2W; t 2 T; n 2 N; (3-11)

Invwt+1n = Invwtn +
X
p

xpwpwtn �X
c

xwcwctn

8 w 2W; t 2 T; n 2 N; (3-12)X
w

xwcwctn + zctn � dctn;

8 c 2 C; t 2 T; n 2 N; (3-13)

Invw0n = 0 8 w 2W; n 2 N; (3-14)

xstptn;xosptn; xlsptn; xpwpwtn; xwcwctn; zctn

� 0; ystj ; yois; ycs; ylks 2 f0; 1g: (3-15)

Then, taking an average over l̂ms gives a lower bound
on the optimal value, i.e. �l. The variance of this
estimator is calculated as in Eq. (4):

s2
l =

1
M(M � 1)

MX
m=1

�
l̂m � �l

�2
: (4)

Then, to obtain a good quality solution, an upper
bound should also be derived from the problem. To do
so, a feasible �rst-stage solution should be used such
as one of ŷms obtained in the last step (this feasible
�rst-stage solution is named �y from now on). Then, a
new sample will be drawn with size N 0 and compute
Eq. (5) to obtain the sample upper bound, i.e. �u.

�u =
1
N 0

N 0X
n=1

�
dT �y +Q (�y; �n)

�
: (5)

Note that in the above equations, we are solving N

single-scenario LPs Q(�y; �n) as exhibited below (from
Eqs. (5-0) to (5-14)) which are easy to handle. Thus,
since the accuracy of the sample upper bound increases
with the increase in N 0, we may use a much larger
sample size than the one used as N . The suggestion is
about 1000 compared with about 30 or 60 for N .

Q (�y; �n=q) = min
x;z

:X
p;t

(est+ Tstp)xstptq +
X
s;p;t

Tspspxlsptq

+
X
s;p;t

(eos + Tspsp)xosptq +
X
p;w;t

Tpwpwxpwpwtq

+
X
w;c;t

Twcwcxwcwctq +
X
c;t

Pctqzctq

+
1
T

X
w;t

hwInvwtq;
(5-0)X

j

ystj � 1; (5-1)

X
i

yois � ycs 8 s 2 S; (5-2)X
s

ycs � �; (5-3)X
k

ylks � ycs 8 s 2 S; (5-4)

X
p

(xlsptq+xosptq)�Csstqycs; 8 s2S; t2T;
(5-5)X

p

xosptq �X
i

goiyois 8 s 2 S; t 2 T; (5-6)

X
p

xstptq �X
j

gstjystj 8 t 2 T; (5-7)

X
p

xlsptq �X
k

glkylks 8 s 2 S; t 2 T; (5-8)

X
s

(xlsptq+xosptq)=
X
w

xpwpwtq 8 p2P; t2T;
(5-9)

Invwt+1q = Invwtq +
X
p

xpwpwtq �X
c

xwcwctq

8 w 2W; t 2 T; (5-10)X
w

xwcwctq + zctq � dctq

8 c 2 C; t 2 T; q 2 Q; (5-11)
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Invw0q = 0 8 w 2W; (5-12)

xstptq;xosptq; xlsptq; xpwpwtq; xwcwctq; zctq

� 0; ystj ; yois; ycs; ylks 2 f0; 1g: (5-13)

The variance of above estimator has been shown in
Eq. (6):

s2
u =

1
N 0 (N 0 � 1)

N 0X
n=1

�
dT �y +Q (�y; �n)� �u

�2 : (6)

This procedure continues until the gap between upper
and lower bounds reaches an a priori determined level.
This gap and its corresponding variance, as for our
problem, appear in Eqs. (7) and (8):

�gap = �u� �l; (7)

�2
gap = s2

u + s2
l : (8)

To assess the quality of the solutions obtained so far,
Santoso et al. [9] proposed to construct a con�dence
interval based on normal distribution, which is depicted
in Eq. (9):�

0; �gap + z�
2
�gap

�
: (9)

Although applying the SAA gives a good opportunity
to reduce the size problem signi�cantly, there is still
a problem signi�cantly, there is still a problem with
the replications needed to solve this problem, that is,
M . To further reduce the computational time required
to address the size problem, one may need to resort
to exploiting the structure of the problem. Since the
problem under consideration is a two-stage stochastic
program, Benders decomposition technique has been
proposed for them in the literature [28] due to the
complicating �rst-stage variables. In the next section,
a brief description of this technique is illustrated.

5.2. Benders decomposition
In his paper, Benders [30] proposed a decomposition
scheme for problems with complicating variables. He
suggested that the problem decomposes into more
tractable sub-problems by �xing these variables. Con-
sider the problem in Relation (10) in which variables y
are complicating:

min
y;x

dT y + cTx;

s.t.: By +Ax � b;
Fy � p: (10)

Benders proved that by solving the problem in Re-
lation (11), called Master problem, not only a �xed

value for decision vector y will be obtained, but also
a lower bound for the main problem will be reached.
In each iteration, this value results in the sub problem
of Relation (12). Solving this sub problem has two
bene�ts: constructing an upper bound along with
new information from the main problem that can be
passed through a set of new constraints (cuts) to the
Master. The procedure continues until a suitable gap
is attained.

min
�;y

�;

s.t.: Fy � p;
dT y + uTi (b�By) � � ! Optimality cut

8 i 2 Constraints set;

vTi (b�By) � 0! Feasibility cut

8 i 2 Constraints set; (11)

min
x
cTx;

s.t.: Ax � b�B�y: (12)

As can be seen in Relations (11), there are two kinds
of cuts. Feasibility cuts that enforce the Master
problem to generate feasible solutions and optimality
cuts that iteratively cut sub-optimal solutions from
Master problem. It may be of interest to mention
that in our model, the second-stage problem is always
feasible for all con�gurations issuing from the �rst-
stage problem, since a term has been added to grasp
unmet demand in Constraint (2-9). In this regard,
the �rst-stage problem with dT y is denoted as in
Eq. (13):

dT y =
X
s

Fcsycs +
X
j

Fstjystj +
X
i;s

Foisyois

+
X
k;s

Flksylks: (13)

The Master problem could be rewritten as problem in
Relation (14):

The Master problem:

min �;

s.t.: (1� 1)� (1� 4);

ystj ; yois; ycs; ylks 2 f0; 1g: (14)

Benders cuts:
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� � dT y +
X
s;t;n

D21
stnCsstnycs

+
X
s;t;n

D22
stn

 X
i

goiyois

!
+
X
t;n

D23
tn

0@X
j

gstjystj

1A
+
X
s;t;n

D24
stn

 X
k

glkylks

!
+
X
w;t;n

D27
wtnCwwtn

+
X
c;t;n

D29
ctndctn;

where the notation Dpq
abc stands for the dual value

related to constraint pq, while abc shows the counter
for this constraint set. In addition, sub problem will
look like the problem in Relation (15):

min
x;z

qTn xn;X
p

(xlsptn + xosptn) � Csstnycs

8 s 2 S; t 2 T; n 2 N;X
p

xosptn �X
i

goiyois

8 s 2 S; t 2 T; n 2 N;X
p

xstptn �X
j

gstjystj 8 t 2 T; n 2 N;

X
p

xlsptn �X
k

glkylks 8 s 2 S; t 2 T; n 2 N;

(2-5) to (2-10)

xstptn; xosptn; xlsptn; xpwpwtn; xwcwctn; zctn�0: (15)

5.3. Acceleration schemes
Many researchers have come to the conclusion that
Benders decomposition in its basic format has poor
convergence behavior [31]. To overcome this obstacle,
in this paper, a bunch of acceleration techniques has
been used. In the following, techniques that have been
used in this paper will be described.

5.3.1. Multi-cut version
Birge and louveaux [32] observed that in each it-
eration of Benders decomposition applied to a two-
stage stochastic program, it is possible to generate a
bunch of cuts up to the number of scenarios. Since
these cuts constrain the Master problem, the time it
takes to solve the Master may increase. However,

since the feasible region becomes tighter, it is rea-
sonable to think of better lower bounds for the main
problem in each iteration. Thus, for problems with
few scenarios, it may be worth a try using such a
scheme. As SAA is used in this paper, which results
in solving problems with fewer scenarios, there is a
chance to implement this approach with the hope of
increasing the convergence rate, as results approved
it. In the classic Benders decomposition, the attempt
is to approximate the objective function of the main
problem, consisting of all scenarios, using variable �, as
in Relations (11). However, in the multi-cut version,
the idea is to approximate the objective function for
each scenario. In this version, �n will approximate the
objective function so that just one scenario is going to
happen. Here, the Master problem takes the form of
Relations (16):

min
�n;y

NX
n=1

�n;

s.t.: Fy � p;
dT y + uTni(b(�n)�By) � �n;
8 n 2 n; 8 i 2 Constraints set: (16)

5.3.2. Valid inequalities
Another important acceleration scheme in many appli-
cations is deriving constraints that do not change the
feasible region of the original problem, but push the
current constraints towards the facets of the problem.
These constraints are called Valid Inequalities (VI).
Adding these VIs to the Master initially results in
better lower bounds, thus accelerates the convergence.
To this end, many VIs have been derived based on the
structure of the problem under consideration.

Proposition: The following inequalities are valid for
the model described above:X

t

X
s

Csstnycs �X
t

X
c

dctn; 8 n 2 N; (17)X
t

X
j

gstjystj �X
t

X
c

dctn; 8 n 2 N; (18)

X
t

X
s

 X
i

goiyoi +
X
k

glkylk

!
�X

t

X
c

dctn

8 n 2 N; (19)

Constraints (1-2), (1-3)!X
s

X
i

yois�X
s

ycs��;
(20)

Constraints (1-4), (1-3)!X
s

X
k

ylks�X
s

ycs��:
(21)
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Table 2. Characteristics of the case supply chain.

Characteristic No. Parameter Cost($)
Customers 2 Warehouses 2
Plants 2 Long-term contract intervals 6
Non-strategic suppliers 9 Unit transportation cost 1
Capacity levels for non-strategic part 5 Inventory holding 0.18
Capacity levels for strategic part 6 Unit strategic part costs 33
Time periods 52 Mean total yearly demand 903750
Option levels for non-strategic parts 5 Mean warehouse capacity 17380

Table 3. Allowable purchasing levels for di�erent contract types along with their �xed costs.

Purchase
interval

ID

Long-term
contract level
(Max./week)

Capacity
reservation

level

Option
contract level
(Max./week)

Fixed cost to
engage with

strategic supplier ($)

Premium
option cost ($)

1 2000 30000 400 40000 1200
2 3000 31500 2000 41500 2500
3 5000 33000 4000 43000 6190
4 7000 34500 6000 44500 15400
5 9000 36000 8000 47000 38300
6 11000 | | | |

5.3.3. Trust region constraints
One problem with Benders decomposition is the os-
cillation of the solutions found in each iteration from
one side of the solution space to others. Authors,
such as Linderoth and Wright [33], proposed to use
the trust region method as a remedy. The idea of
trust region method is to con�ne the amount to which,
each variable can change in the next iteration, but as
Santoso et al. [9] have pointed out, this method for the
problems with binary variables changes as follows. In
each iteration set, a bound on the number of binaries
can take the value of 1.

5.3.4. Knapsack upper bounding technique
Since the time Benders has introduced his work on
decomposition, it was known that the lower bound on
the optimal solution improves iteratively (or at least
does not get worse). However, there is no guarantee on
the upper bound. In this paper, knapsack inequalities
are used, as introduced by Santoso [10], which are
derived in the following way: Let dT y + uTi (b � By)
be the optimality cut of the ith iteration and UB as
the best upper bound found so far. Since it is needed
to have UB � �, to control the upper bound in the
next iteration, one may add (dT � uTi B)y � UB � uTi b
as a new cut to the next Master problem.

6. Computational results

6.1. Test problem generation
As to test the abovementioned hybrid approach, in this
paper, the case data from Xu and Nozick [26] is used.

However, since their model has been modi�ed in this
paper, new features should be added to theirs. In
their case, the authors were looking for provisioning
two plants with a single common part. These plants
should jointly sign contracts with suppliers to ensure
supply over the year. Each year is considered as 52
weeks, and these plants are going to feed two markets
with their product. Other characteristics of this supply
chain are illustrated in Tables 2 and 3. Recall that in
the process of SAA, it is needed to solve M problems
each with size N to obtain a lower bound. Meanwhile,
it is required to solve the problem with much bigger
sample of size N 0 to achieve an upper bound on the
true problem. In this case, 20, 60, and 2000 were used
as these parameters to obtain a good quality solution.
Also, the dimensions of the deterministic equivalent for
this problem, with 60 scenarios, are depicted in Table 4
to show the size of the problems that are going to be
solved M times.

Since the assumption of certainty for several
parameters has been relaxed in this paper, i.e. demand,
outsourcing cost and supplier, and warehouse capaci-

Table 4. Dimensions of the deterministic equivalent.

N = 60 Type First
stage

Second
stage

Total

Constraints Inequality 20 71760 112460
Equality | 40680

Variables Continuous | 156120 156240
Binary 120 |
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Table 5. Comparison of CPU time for AB and Cplex
(M = 20).

N
Benders Cplex

Iterations CPU
(seconds)

CPU
(seconds)

10 147 146.3 149.2
20 139 264.4 382.8
30 131 337.6 777.2
40 136 479.0 1365.4
50 126 546.0 2100.4
60 132 753.4 2965.0

ties, in contrast to Xu and Nozick [26], deterministic
values were used as mean value for the stochastic
parameters. Also, the standard deviations of these
distributions were considered as a percent of their mean
values. The distribution used for these parameters is
log normal except for the outsourcing price (since it is
much unexpected that the price of a �nished product
goes to zero).

6.2. Performance of acceleration schemes
All experiments were run using C# on the Visual
Studio 2010 platform in conjunction with the Cplex®.
In Table 5, solution time in CPU seconds is compared
between the accelerated approach and the Cplex solver.
One point here is that as Xu and Nozick [26] reported,
convergence time for this problem in the pure Benders
type is very slow, even slower than Cplex. This should
be added to the observation that the case considered
here just involves two customers, two warehouses, and
two plants. However, to be more realistic, at least the
number of customers, if not simpli�ed too much, would
be far more. So, the use of the Accelerated Benders
(AB) algorithm is justi�able. Figure 2 exhibits the
behavior of di�erent acceleration mixtures. However,
the best performance is obtained from hybridization of
knapsack cuts with valid inequalities.

Figure 2. Comparison among acceleration techniques (w
= with, wo = without, tr = trust region, k = knapsack).

6.3. Quality of the stochastic solutions
This section is devoted to the comparison between
stochastic and deterministic solutions from the aspect
of solution quality. Here, by quality, it is meant
centrality and diversity of the cost distribution that
is given rise to by solutions from solving the two-
stage model or its deterministic counterpart. The
distribution of costs for M = 20, N = 60, and N 0 =
2000 in both the stochastic problem and MVP (Mean
Value Problem, since mean of stochastic parameters
have been used as their sole value) is depicted in
Figure 3. Also, in Table 6, parametric results regarding
the comparison between the stochastic model and its
deterministic equivalent are shown. These models
have been solved using SAA-Benders algorithm with N
being set to 30, 40, and 60. From all indexes of the SAA
with 60 scenarios, it could be observed that stochastic
solution is in a better situation. To illustrate, mean
values for the total cost is lower than the cost associated
with the MVP. Moreover, the standard deviation of
the attained solution reveals much better performance.
Row 2 of Table 6 shows that the most probable scenario
with the stochastic solution has lower costs than the
deterministic solution. Row 5 of this table shows
a better opportunity for having low costs if using
the stochastic solution. In addition, Row 6 shows
a signal that the worst possible case related to the

Table 6. Cost statistics for stochastic and deterministic solutions.

Measure
Solution

SAA
(N = 30)

SAA
(N = 40)

SAA
(N = 60)

MVP

Mean 3.79E+08 3.54E+08 3.5E+08 3.98E+08
Mode 3.45E+08 3.58E+08 3.4E+08 3.63E+08
Standard deviation 4.2E+07 1.4E+07 1.1E+07 2.8E+07
Range 16.1E+07 7.2E+07 5.4E+07 9.1E+07
Minimum 3.16E+08 3.3E+08 3.3E+08 3.6E+08
Maximum 4.8E+08 4E+08 3.8E+08 4.5E+08
Gap (in million $) 20.34 2.39 0.11 48.27
�Gap (in million $) 7.22 4.21 3.41 3.51
Con�dence level (95.0%) 2613527 855107 683545 1722400
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Figure 3. Total cost histogram for stochastic and deterministic solutions (M = 20, N = 60, and N 0 = 2000).

stochastic solution is also much less. Finally, Row 7
Gap and its standard deviation exhibit lower �gures,
which guarantee the probability that the solution for
the SAA problem being close to the real solution is
higher than with MVP. Comparing these statistics for
SAA with di�erent number of scenarios, one can see
that in almost all of these statistics, especially the worst
case costs, quality of the stochastic solution is getting
better with the increase in sample sizes with regard
to mean and standard deviation of the total costs and
corresponding values for SAA gap. As a �nal point, the
last row of Table 6 gives the second term in Relation 9
to obtain a 95% con�dence interval on the optimality
gap.

As for the last step, the results were examined by
changing variability of the stochastic parameters. Up
to now, results have been based on the same amount
of variability in uncertain parameters. However, in
this section, these values are changed according to
the categories in Table 7. In this table, each row
shows the percentage of standard deviation (sd) of the
uncertain parameter with respect to its mean value.
Figure 4 exhibits that change of variability enhances
the Value of Stochastic Solutions (VSS, which shows
the di�erence between the cost of the system with
deterministic parameters and the cost of the system

Table 7. Di�erent variability categories for stochastic
parameters.

Category Low Medium High

Demand sd% 20 30 40
Others sd% 5 10 15

with uncertain parameters) over their deterministic
counterparts in an obvious manner. In other words,
our solutions are more robust considering that the
environment is changing. Although the results for
the worst case cost show a better performance for
stochastic solution, but they do not show the same
robustness as VSS. However, since the mean and the
worst case costs do not show a good measure of risk as
argued by many researchers (mean ignores too many
of the possible events and the worst case cost is a
rare event), it is preferred to use Value at Risk (VaR)
and Conditional Value at Risk (CVaR), which is the
rather recently introduced risk measure, to compare
solutions in di�erent categories of variability. VaR
metric considers risky events up to 95% of the cost
distributions, and CVaR even measures the mean of
events passing VaR too. As illustrated in Figure 5,
it could be seen that even for these two measures,
the stochastic solution shows a better performance in
di�erent variability categories.

7. Conclusions and future research directions

In this paper, for the �rst time, di�erent contracts
for strategic and non-strategic items are incorporated
into supply chain network design problem. Also,
as mentioned before, this paper is one of the few
papers considering stochastic uncertainty in most of
the parameters related to the �eld of supply chain
network design. This could be conceived as a new
research area, and other strategic contracts, such as
buyback, revenue sharing, etc. could be incorporated
in the model according to the situation. Results of the

Figure 4. Comparison of average total cost/VSS and the worst total cost for di�erent variability categories.
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Figure 5. Comparison of VaR and CVaR measures between stochastic and deterministic solutions.

proposed model show that, in many ways, stochastic
solution has priority over the mean value solution, and
the usage of stochastic model will result in supply
chain designs with high cost savings as compared to
traditional deterministic models. The robustness and
value of the stochastic model are also shown to increase
with uncertainty levels. To address the solution of the
proposed model, a hybrid strategy based on sample
average approximation and an accelerated version of
the Benders decomposition is used. This algorithm is
able to handle large sets of scenarios or even continuous
distributions. Thus, the proposed hybrid solution
strategy is eligible to be used for real life problem sizes.
This algorithm could be tuned such that the lowest
sample size needed to obtain a good quality solution
is attained. In addition, in this paper, a modi�ed
version of the multi-cut Benders decomposition is
used according to the structure of the problem at
hand, including introducing new valid inequalities, such
that the proposed algorithm outperforms traditional
Benders. Another advantage of our model and the
proposed solution strategy is that it can easily grasp
uncertainties in other parameters such as transporta-
tion fees, manufacturer's capacity, and inventory hold-
ing cost. Also, a possible extension is to minimize a risk
measure such as CVaR instead of minimizing expected
value cost to achieve more robust solutions.
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Appendix

Before proving the proposition, a lemma that helps
with the proof of valid inequalities will be addressed:

Lemma: The following relations are correct based on
the feasible region of the second stage problem:X

w

xwcwctn � dctn; (A.1)

InvwTn =
T�1X
t=0

 X
p

xpwpwtn �X
c

xwcwctn

!
; (A.2)

X
t

X
p

X
w

xpwpwtn �X
t

X
c

dctn: (A.3)

Proof of the Lemma: The �rst inequality (Rela-
tion (A.1)) is easily derived from Constraint (2-10). For
the case of equality, (Eq. (A.2)) note that:

(2-8)! Invwt+1n =Invwtn +
X
p

xpwpwtn

�X
c

xwcwctn;

Invwtn=Invwt�1n+
X
p

xpwpwt�1n�X
c

xwcwct�1n;

...

Invw2n = Invw1n +
X
p

xpwpw1n �X
c

xwcwc1n;



M. Mohajer Tabrizi et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 3046{3062 3061

Invw1n = Invw0n +
X
p

xpwpw0n �X
c

xwcwc0n;

(2-10) : Invw0n = 0)Invw1n =
X
p

xpwpw0n

�X
c

xwcwc0n;

) Invw2n =
X
p
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c

xwcwc0n

+
X
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c
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...

Invwtn=
X
p

xpwpw0n�X
c

xwcwc0n+
X
p

xpwpw1n

�X
c
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p

xpwpwt�1n

�X
c

xwcwct�1n;

) InvwTn =
T�1X
t=0

 X
p

xpwpwtn �X
c

xwcwctn

!
:

Finally, for Relation (A.3) we have the following:
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(A.4)
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t

X
c

dctn:

Proof. For the case of the �rst valid equality set
(Eq. (17)), consider the following:
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8 n 2 N:
The second valid inequality (Eq. (18)) proves as follows:
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8 n 2 N:
And, the third valid inequality is proved in this way:
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