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Abstract. The majority of the studies on the integrated vendor-buyer inventory problem
assume that the shipments are equal. In this paper, shipments are considered to be non-
equal. Both demand and delivery times are also assumed to be stochastic. Moreover,
unsatis�ed demand can be backordered and lost, and a service level constraint is considered.
The objective is to minimize both buyer and vendor costs at the same time. The problem
is solved by an exact heuristic algorithm. To validate performance of the algorithm, the
results are compared with those of the LINGO solver. Finally, a set of numerical problems
are applied to compare the results in the integrated and independent forms.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In traditional supply chain, one of the factors that
cause increase in the costs is non-cooperation be-
tween vendor and buyer. In other words, according
to Sajadieh et al. [1], in traditional supply chain,
the inventory condition and order policies, as well
as the production policies, are discussed separately.
Therefore, the optimum solution in each level is quite
di�erent. To solve this problem, Goyal [2] presented
the integrated vendor-buyer problem, namely JELS.
The purpose of JELS is to increase the cooperation
between di�erent levels of supply chain in order to
minimize costs in each level. One of the hypotheses
in JELS is that after determining the amount of order,
it can be divided into n unique production batches and
each batch should be sent to the buyer, separately.
Banerjee [3] developed the model. He assumed that
order of the buyer and product of the vendor were
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the same. Hill [4] added an important assumption
to JELS, in which the shipments were non-equal.
Then, he proved that the cost, in comparison to the
former model, was minimized. Other research can be
categorized in four di�erent types.

The �rst type includes the research that has
considered the quality of products. Huang [5] pre-
sented the model in which equal shipments and failure
shipments were considered. He also presumed that
vendor should pay penalty to buyer for every failure
in products. Wu et al. [6] studied a single vendor
which was delivering one product to a single buyer with
equal shipments. They considered that demand of the
buyer was stochastic and each shipment contained a
certain fraction of defective items. They also assumed
that the buyer used sample inspection to �nd defective
items. The second type of research has focused on
minimizing both preparation and order costs. A�sco
et al. [7] presented the problem with a vendor and
several buyers and their objective was to minimize
both preparation and order costs. They proved that
by investing more, the objective became much more
achievable. In the third group, however, authors have
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tried to minimize the delivery time. In this group, we
can mention Chang et al. [8]. They illustrated that
minimizing costs would cause decrease in the delivery
time.

Finally, the last research type has added uncer-
tainty to the model. In some papers, demands and
in others, delivery times have been considered to be
stochastic. Delivery time with exponential distribution
function was considered by Bahri and Tarokh [9] and
Sajadieh et al. [1]. Moreover, Sajadieh and Joker [10]
considered delivery time to be stochastic with uniform
distribution function. Hoque [11] assumed normal
distribution function for delivery times. He also
assumed equal and non-equal shipments. To solve
the problem, he presented a new algorithm. Ouyang
et al. [12] presented a model, in which demands
were considered to be stochastic parameters with nor-
mal distribution function, as well as a model with
empirical demand. Furthermore, backorder de�cit
was considered. Ben-Daya and Hariga [13] supposed
that delivery time was a stochastic parameter with
normal distribution function and there was a lin-
ear relation between delivery time and safety stock.
The shipments were presumed to be equal and a
heuristic algorithm was proposed to solve the prob-
lem. Seliaman and Ahmad [14] considered a three-
level supply chain, including suppliers, manufactures,
and retailers, in which demands of the retailers were
assumed to be stochastic. Taleizadeh et al. [15]
solved the integrated inventory model with several
products. Moreover, demands were considered to
be normal and delivery time depended on safety
stock. Furthermore, the service-level constraint was
assumed. Eventually, a meta-heuristic algorithm was
applied to the problem. Glock [16] presumed demand
as a stochastic parameter with normal distribution
function. He proved that by decreasing setup time,
shipment, safety stock, and delivery time would be
reduced. Kim and Glock [17] supposed a three-level
supply chain with Equal and non-equal shipments.
They also assigned a penalty for long delivery time.
Shahpouri et al. [18] considered JELS with normal
demand and service level constraint. They entered
the policy into their model to reduce both order cost
and delivery time. Abdelsalam and Elassal [19] also
assumed a three-level supply chain with a supplier, a
manufacturer, and several retailers. Demands were
considered to be stochastic. In addition, they re-
laxed the assumptions of constant order and holdings
costs.

The majority of studies in JELS have considered
equal shipments; meanwhile, in this paper, these as-
sumptions are preliminaries:

1. Non-equal shipments in a two-level supply chain
with one vendor and one buyer are considered;

2. Demands are assumed to be stochastic parameters
with normal distribution function;

3. Delivery times are assumed to be stochastic with
empirical distribution function;

4. Both backorder and lost-sale are permitted;
5. The service level is also applied to buyers;
6. An exact algorithm is presented to solve the prob-

lem.

The rest of the paper is organized as follows. Section 2
presents de�nition of the problem. In Section 3, the
model is described in detail. The proposed heuristic
algorithm is developed in Section 4. Section 5 includes
a problem solved by the presented heuristic algorithm.
In addition, the sensitivity analysis regarding the
problem parameters is performed. Finally, the paper
is concluded in Section 6.

2. Problem de�nition

Imagine a supply chain with a buyer and a vendor. The
demand is considered stochastic with normal distribu-
tion function. Also, delivery time is assumed as a non-
deterministic parameter with empirical distribution
function. The relation between members of the chain
is as follows.

Once the inventory level reaches the reorder point,
the buyer orders the products in size Q. Consequently,
the buyer is in charge of costs and the vendor starts
to produce the products at the rate of p. The buyer
follows the non-delayed non-equal shipment policy to
send the shipment. According to this policy, the
vendor is able to send the product to the buyer during
the production phase. As a result, the amount of
shipment Q is divided into n separate shipments. This
policy is called non-equal sized, because the amounts
of the shipments increase by a constant rate. Hill [4]
proved that the optimal proportion was between 1 and
the ratio of production to demand. Moreover, the
holding cost per each product is considered for both
buyer and vendor. Regarding stochastic demands, the
buyer may face de�cit. Thereby, the buyer should
consider the de�cit cost. Hence, in this model, both
types of de�cit, namely backorder and lost-sale, are
presumed.

In order to reduce the risk of de�ciency, the
vendor should consider the safety stock, in which the
amount of the safety stock is considered as one of the
decision variables. Finally, the target of the problem
is to determine the reorder point, safety stock, the
number of shipments, the incremental index of the size
of shipments, and the amount of the �rst shipment sent
to the buyer, regarding both demand and delivery time,
are stochastic. Furthermore, both types of de�cits as
well as service level limitation are permitted.
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3. Modeling

In this section, we de�ne parameters, decision vari-
ables, costs to the seller and the buyer, the problem
constraint, and the supply chain cost.

3.1. Buyer's and vendor's parameters
The parameters of the buyer and vendor are as follows:

D : The annual mean demand
�D : The demand mean
�D : The demand variance
A : The order cost for each shipment sent

to the buyer
At : The �xed transportation cost for each

shipment sent to the buyer
Ap : Preparation cost to the vendor
P : The vendor's production rate
hv : The holding cost for unit of product at

vendor's site
hb : The holding cost for unit of product at

buyer's site
I : The buyer's maximum inventory level
�b(r) : The buyer's mean product de�cit
� : The percentage of the buyer's

backordered demand
B : The buyer's backordered demand mean
S : The buyer's lost demand mean
L : The delivery time for each shipment

from vendor to buyer
� : The demand unit for backordered cost
�̂ : The demand unit for lost cost
sl : The buyer's service level
CAb : Annual mean ordering cost to the

buyer
CBb : Annual mean backordered cost the

buyer
CSb : Annual mean lost demand cost to the

buyer
CTb : The annual transportation cost
CHb : Annual mean holding cost to the buyer
CAv : Annual mean preparation cost to the

vender
CHv : Annual mean holding cost to the

vender
3.2. Buyer's and vender's decision variables
The decision variables of the buyer and the vendor are
de�ned as follows:
r : The buyer's reorder point
q : The size of the �rst transfer shipment

from the vendor to the buyer in a
batch

Figure 1. Sizes of the four non-equal shipments.

SS : The buyer's safety stock
n : The number of sent shipments from

vendor to buyer
� : The increased percentage in the size of

sent shipments

3.3. Costs formulation
To obtain the total cost of the supply chain, we
calculate costs to the buyer and the vendor, separately.
Then, the summation is considered.

3.3.1. The cost to the buyer
The cost to the buyer is equal to the sum of the holding
cost, transportation cost, de�cit cost, and ordering
cost. In Figure 1, an example of 4 non-equal shipments
is shown. As soon as the inventory level of the
buyer reaches the reorder point, the vendor produces
a shipment at the rate of p. Once each shipment
is ready, it will be sent to the buyer. Moreover,
the transportation cost for the buyer is considered.
Q subject to non-equal shipments is de�ned through
Eq. (1):

Q =
nX
i=1

�i�1q =
q(�n � 1)
(�� 1)

: (1)

We can compute the ordering, holding, and transporta-
tion costs via Eqs. (2)-(4):

CAb =
AD(�� 1)
q(�n � 1)

; (2)

CTb =
nAtD(�� 1)
q(�n � 1)

; (3)

CHb = hb
�
q(�n + 1)
2(�+ 1)

+ SS
�
: (4)

The safety stock, considering both backorder and lost-
sale, is de�ned through Eq. (5):

SS = �SSBackorder + (1� �)SSLost-sale: (5)

According to Barzegar and Seifbarghy [20], SSBackorder

and SSLost-sale can be obtained via Eqs. (6) and (7):
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The stock cost consists of backordered and lost demand
costs. The mentioned costs can be calculated through
Eqs. (9) and (10):

CBb =
��D�b(r)(�� 1)

q(�n � 1)
; (9)

CSb =
�̂(1� �)D�b(r)(�� 1)

q(�n � 1)
: (10)

When both demand and delivery times are stochastic,
�b(r) can be obtained via Eq. (11):

�b(r) =
X
8Li

 +1Z
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�DL
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2�2
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�
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According to Relations (1)-(11), total cost of the buyer
can be calculated through Eq. (12):

TCBuyer =
AD(�� 1)
q(�n � 1)

+ hb
�
q(�n + 1)
2(�+ 1)

+ SS
�

+
(�� + �̂(1� �))D�b(r)(�� 1)

q(�n � 1)

+
nAtD(�� 1)
q(�n � 1)

: (12)

3.3.2. The costs to the vendor
The cost to the vender includes holding cost, trans-
portation cost, and de�cit and ordering cost. The total
preparation cost is de�ned via Eq. (13):

CAv =
ApD(�� 1))
q(�n � 1)

: (13)

In addition, holding cost to the vendor, which is proved
by Hill [4], can be obtained through Eq. (14):

CHv = hv
�
Dq
P

+
(P�D)q(�n�1)

2P (��1)
� q(�n+1)

2(�+1)

�
:
(14)

Therefore, total cost to the vendor is obtained by
Eq. (15):

TCVendor =CAv + CHv

=
ApD(�� 1))
q(�n � 1)

+ hv
�Dq
P

+
(P �D)q(�n � 1)

2P (�� 1)
� q(�n + 1)

2(�+ 1)
�
: (15)

3.3.3. The service-level constraint
The service level is equal to the possibility of not facing
any de�cit during delivery time. It is obtained by
Eqs. (16) and (17):

p (the demands during delivery time � r)
� the service level; (16)

p(�DL � r) � sl)

p
�
z � r � �D�L

�DL

�
� sl) r � (�DLzsl) + �D�L:

(17)

Since both demand and delivery time are supposed to
be stochastic, the mean and the variance can be de�ned
through Eqs. (18) and (19), respectively;

�DL =
X
8Li

Li:�D; (18)

�DL =
X
8Li

p
Li�D: (19)

Through computing mean and variance, the service
level can be obtained by Eq. (20):

r �X
8Li

�p
Li�D:zsl + Li:�D

�
:p(L = Li): (20)
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Note that safety stock cannot be negative (SS � 0).
Therefore, another constraint with respect to r is
de�ned through Eq. (21):

r �� 2
X
8Li
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i
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3.3.4. The mathematical model
According to Relations (1)-(21), the mathematical
model is given as follow:

minTC =
AD(�� 1)
q(�n � 1)

+ hb
�
q(�n + 1)
2(�+ 1)

+ SS
�

+
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+
nAtD(�� 1)
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�
Dq
P
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�
:
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S.T.:
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�
; (26)

q; r; SS; � � 0; (27)

n � 0; Integer: (28)

4. The proposed method

For solving most of the JELS problems, researchers
have applied di�erent heuristic approaches; however,
in this paper, after proving that the objective function
and the constraints are convex, an exact heuristic
algorithm is presented. To show that the objective
function and the constraints are convex, we have to
use the concept of Hessian, which is explained in the
Appendix.

To compute the optimal q, we di�erentiate from
the objective function with respect to q. to calculate
q�, we consider the model equal to zero and solve it.
The relative relation is demonstrated in Eq. (29):

@(TC)
@q

= 0;

�AD(�� 1)
(�n � 1)q2 +

hb(�n + 1)
2(�+ 1)

� (�� + �̂(1� �))D�b(r)(�� 1)
(�n � 1)q2

� nAtD(�� 1)
(�n � 1)q2 � ApD(�� 1)

(�n � 1)q2

+
hvD
P

+
hv((P �D)(�n � 1))

2P (�� 1)

� hv(�n + 1)
2(�+ 1)

= 0: (29)

For simpli�cation, the value of q� is de�ned through
Eq. (30), as shown in Box I.

4.1. The solution method
Here, the overall structure of the proposed algorithm
is presented:

1. Compute �b(r) through Eq. (26);

2. Obtain the values of r1 and r2 through Eqs. (23)
and (24), respectively;

3. The value of SS is given by Eq. (25);

4. Put Z = 0 and imagine that TCOPT and ZOPT are
great numbers;

5. For � = [1; P=D], do steps 6 to 21;

6. Put n = 1;
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q� =

vuut D(�� 1)
�
A+ nAt +

�
(�� + �̂(1� �))�b(r)

�
+Ap

�
(�n � 1)

�
hb (�n+1)

2(�+1) + hv
�
D
P + (P�D)(�n�1)

2P (��1) � (�n+1)
2(�+1)

�� : (30)

Box I

7. If � > 1, go to the next step, otherwise go to step
5;

8. Find q via Eq. (30). Then, for q, n, and �, compute
cost by Eq. (22) and put Z equal to the obtained
value;

9. If Z < ZOPT, go to the next step, otherwise go to
Step 15;

10. If n > 1, go to the next step, otherwise go to
Step 12;

11. If Z < ZOPT, then Z = ZOPT and go to the next
step;

12. Find q via Eq. (30). For q, n, and �, cost is de�ned
through Eq. (22); put Z equal to the obtained value
and then put Z = TC;

13. If TC < TCOPT, then put TCOPT = TC, �OPT =
�, qOPT = q and nOPT = n;

14. Put n = n+ 1 and go to Step 9;
15. Put n = 1;
16. For � = [1; P=D], do steps 17 to 22;
17. If � > 1, go to the next step, otherwise go to step

16;
18. Find q via Eq. (30). Then, for q, n, and �, compute

cost by Eq. (22) and put Z equal to the obtained
value;

19. If Z < ZOPT, then Z = ZOPT, �OPT = �, nOPT =
n and qOPT = q;

20. Put n = n+ 1;
21. If n � nOPT, go to step 16, otherwise go to step 5;
22. The obtained value is the optimal solution.

5. Numerical examples

In Tables 1 and 2, the data for a two-level supply chain
are considered. The data for the numerical examples
are taken from Ben-Daya and Hariga [13].

To understand whether the proposed method
is better than former methods regarding the chain
members or not, we compare the outcome with the

Table 1. Computational data of the example.

D �D �D sl � � �̂ A At hb Ap hv P

1000 40 5 0.5 0.5 100 110 50 25 5 400 4 6000

Table 2. Delivery time data.

Li
1 2 3 4 5 6

P (Li) 0.1 0.25 0.35 0.15 0.1 0.05

policies using equal shipments and non-cooperation.
As a result, we face three di�erent problems (a), (b),
and (c) that are categorized as follows:

(a) The independent chain performance;
(b) The integrated chain performance regarding equal

shipments;
(c) The integrated chain performance regarding non-

equal shipments.

The results are demonstrated in Table 3. To validate
performance of the algorithm, the model is also solved
with LINGO solver. The result shows that mode (c)
is 43.1 and 4.7 percent better than modes (a) and (b),
respectively. Consequently, the chain members become
more attracted to use the cooperative policy as well as
non-equal shipment policy, because it can reduce cost
more than equal shipment policy.

Furthermore, the number of shipments in mode
(b) is two, in which the amount of each shipment
is equal to 360.67. Nevertheless, mode (c) has four
shipments with � = 1:69. Thus, the shipment sizes
are 66.7, 112.73, 190.51, and 321.97, respectively. As
mentioned in Table 3, the outcomes of both LINGO
and the proposed algorithm are exactly similar. Hence,
it is proved that the proposed algorithm is an exact
method.

In order to analyze the e�ectiveness of parameters
in the total cost, a sensitivity analysis on P , sl, and �
is applied. In this sensitivity analysis, the parameters
will increase and decrease up to 20%, 30%, and 50%,
respectively. Moreover, the e�ectiveness of L with
increasing delivery time up to 20%, 30%, 50%, 70%,
90%, and 100% is discussed. It should be noted that
the increased value of L is an integer value which
rounds up to [L+ s% � L]. The summery of the result
is demonstrated in Figures 2 and 3, and Table 4.
According to Figures 2 and 3, by increasing the values
of P and L, the total cost will increase. However,
for �, it is vice versa. Increasing � can reduce
the total cost. According to Table 4, by increasing
delivery time, variables including reorder point, safety
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Table 3. Computational results for variables value in various mode.

Buyer Vendor Chain
costq SS r TCBuyer � n Qv TCVendor

Independent 415.81 306.7 122 3612.55 | | 415.81 1793.60 5406.15
Integrated with equal shipment 308.62 306.7 122 3045.84 | 2 617.25 1265.29 4311.13
Integrated with non-equal shipment 66.70 306.7 122 2834.29 1.69 4 691.92 1321.62 4155.91
Lingo solving 66.70 306.7 122 2834.29 1.69 4 691.92 1321.62 4155.91

Table 4. The results of the sensitivity analysis.

Integrated with non-equal shipment Integrated with
equal shipment

Lingo solving

q r SS n � Chain
cost

Chain
cost

PS1 Chain
cost

PS2

P

+20% 74.85 122 306.70 4 1.59 4156.28 4311.13 3.73% 4186.28 0.007%
+30% 78.50 122 306.70 4 1.55 4197.58 4311.13 2.7% 4197.58 0%
+50% 85.51 122 306.70 4 1.48 4215.20 4311.13 2.3% 4215.20 0%
-20% 45.83 122 306.70 5 1.6 4106.78 4311.13 4.98% 4106.78 0%
-30% 41.85 122 306.70 5 1.66 4068.57 4311.13 5.96% 4068.57 0%
-50% 32.95 122 306.70 5 1.83 3938.95 4780.31 21.36% 3938.95 0%

sl

+20% 62.89 124.13 312.62 4 1.69 4035.46 4172.23 3.4% 4035.46 0%
+30% 61.16 125.24 315.74 4 1.69 3982.98 4111.16 3.2% 3982.98 0%
+50% 57.94 127.71 322.78 4 1.69 3891.94 4003.79 2.9% 3891.96 0%
-20% 57.31 119.87 300.89 5 1.5 4297.09 4474.75 4.1% 4297.09 0%
-30% 59.25 118.76 297.91 5 1.5 4376.69 4569.91 4.4% 4376.69 0%
-50% 63.84 116.28 291.35 5 1.5 4567.80 4790.20 4.9% 4567.80 0%

�

+20% 66.58 122 306.36 4 1.69 4149.29 4303.91 3.73% 4149.29 0%
+30% 66.51 122 306.19 4 1.69 4145.97 4300.30 3.72% 4145.97 0%
+50% 66.39 122 306.85 4 1.69 4139.34 4293.06 3.71% 4139.34 0%
-20% 66.83 122 306.04 4 1.69 4162.52 4318.34 3.74% 4162.53 0%
-30% 66.89 122 307.21 4 1.69 4165.83 4321.94 3.75% 4165.83 0%
-50% 67.02 122 307.55 4 1.69 4172.43 4329.13 3.76% 4172.43 0%

L

+20% 69.01 168 422.01 4 1.69 4824.66 4990.93 3.45% 4824.66 0%
+30% 55.90 174 437.04 5 1.5 4908.95 5076.54 3.4% 4908.95 0%
+50% 57.13 212 532.26 5 1.5 5445.16 5621.54 3.24% 5445.16 0%
+70% 57.69 232 582.35 5 1.5 5723.20 5903.57 3.15% 5723.20 0%
+90% 57.98 244 612.41 5 1.5 5887.46 6069.85 3.1% 5887.45 0%
+100% 59.14 284 712.61 5 1.5 6444.83 6635.28 2.95% 6444.82 0%

stock, and number of shipments will be increased. In
addition, column PS1 shows that if we use the non-
equal shipment policy instead of equal shipment policy,
the costs will be reduced. However, the column PS2
displays the cost di�erence between LINGO and the
proposed algorithm.

6. Conclusions and future research

In this paper, we discussed an integrated vendor-
buyer problem with respect to non-equal shipment.

We also assumed that there was only one type of
product. Unlike previous research, which considered
only demand or delivery time as a stochastic pa-
rameter, in this paper, we considered both factors
to be stochastic. Moreover, the service level was
considered. Both backorder and lost-sale were also
presumed. We formulated the problem as a mixed non-
linear model. To �nd the optimal amount of order,
reorder point, number of shipments, and safety stock,
an exact heuristic algorithm was applied. In order to
validate performance of the algorithm, a problem was
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Figure 2. E�ectiveness of P , sl, and � in total cost.

Figure 3. E�ectiveness of L in total cost.

solved with LINGO and the results were compared.
Since their results are the same, it is proved that the
proposed algorithm is a precise method. Furthermore,
by solving the example, the superiority of the proposed
model, considering non-equal shipments, in comparison
to equal shipments, is proved. The results obtained
from the solved example illustrate that cooperation
between chain members is more pro�table than non-
cooperative policy. Furthermore, by using the non-
equal shipments policy, the cost will also be decreased.

Finally, the potential for further research can be
determined with attention to stochastic prices. In
addition, we can consider multiple vendors and buyers
in the model. Di�erent kinds of discount can also be
added to the model.
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Appendix

The proof for convex of objective function and
constraint
It is obvious that q, r, and SS are continuous variables
and n is a discrete one. Hence, the problem is a mixed
non-linear programming problem. To prove that the
objective function for a speci�c ratio of n to r and q,
Hessian matrix is applied via Eq. (A.1):

H =
�
g11 g12
g21 g22

�
=

264@2TC
@q2

@2TC
@q@r

@2TC
@r@q

@2TC
@r2

375 : (A.1)

After that Eq. (A.1) is simpli�ed, Eq. (A.2) is obtained:

H =

"
2AD(��1)
(�n�1)q3 + 2(��+�̂(1��))D�b(r)(��1)

(�n�1)q3

0

+ 2nAtD(��1)
(�n�1)q3 + 2ApD(��1)

(�n�1)q3 0
0

#
: (A.2)

Determination of Hessian matrix is given through
Eqs. (A.3) and (A.4):

�1 =
2AD(��1)
(�n�1)q3 +

2(��+�̂(1��))D�b(r)(��1)
(�n�1)q3

+
2nAtD(�� 1)

(�n � 1)q3 +
2ApD(�� 1)
(�n � 1)q3 : (A.3)

Because all the parameters, including q, are positive,
�1 would be positive.

�2 =

�����2AD(��1)
(�n�1)q3 + 2(��+�̂(1��)D�b(r)(��1)

(�n�1)q3

0

+ 2nAtD(��1)
(�n�1)q3 + 2ApD(��1)

(�n�1)q3 0
0

����� = 0: (A.4)

As �1 � 0 and �2 = 0, the objective function is
positive and convex. On the other hand, because all
the constraints are linear and since it was proved that
the linear constraints are convex, the model is proved
to be convex.
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