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Abstract. Facility/supplier location-allocation and supplier selection-order allocation
are two of the most important decisions for both designing and operation supply chains.
Conventionally, these two issues will be discussed separately. Due to similarity and
relationship between these issues, in this paper, we investigate an integrated model for
supplier location-selection and order allocation problems in Supply Chain Management
(SCM). The objective function is set in such a way that the establishment costs, inventory-
related costs, and transportation costs as quantitative criteria have been minimized. As
regards, the costs are uncertainty; therefore, we have considered them stochastic. This
paper develops a bi-objective model for optimization of the mean and variance of costs.
Also, the capacities of supplier are limited. This mixed-integer nonlinear program is solved
with two meta-heuristic methods: genetic algorithm and simulated annealing. Finally,
these two methods are compared in terms of both solution quality and computational
time. To obtain a high degree of validity and reliability, the results of GAMS software and
meta-heuristic results are compared in small sizes.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The purpose of Facility Location-Allocation (FLA)
problem is identifying the locations of some facilities
to serve a set of distributed customers and allocation
of each customer to the facilities such that the total
transportation costs are minimized or other objectives
are satis�ed. Decision making about facility alloca-
tion plays a critical role in the strategic design of
supply chain networks. The strategic level in SCM
includes decisions related to the number, location, and
capacities of the manufacturing plants, warehouses,
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and other facilities or the ow of materials in the
logistics network. This statement establishes a clear
relationship between allocation models and strategic
SCM.

Many types of FLA models have been developed
to �nd the optimal design with respect to di�erent
location objectives such as: time, costs, coverage,
and access of others. The classical transportation
problem satis�es demands of customers at minimum
transportation cost. The incapacitated FLA problem
model develops this by choosing among a number of
potential sites for locating supply facilities so that the
sum of transportation costs and the �xed costs of open-
ing facilities are minimized. The incapacitated model
assumes unlimited capacity for each facility, and as a
result, if a facility supplies a customer, it will satisfy
all the demands. Therefore, to serve a speci�c demand,
only one facility is necessary. The capacitated facility



3010 F. Ranjbar Tezenji et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 3009{3025

allocation problem operates under the given supply
capacity constraints. There are many extensions to this
basic modeling framework that include multi-objective
formulations, dynamic situations, etc.

Inventory management and determined inventory
policy are other important issues in the SCM. E�ec-
tive inventory management can play a vital role in
decreasing inventory holding costs and boosting pro�t
across di�erent layers of the supply chain. Economic
Order Quantity (EOQ) is one of the classical inventory
models. EOQ determines the order quantity that
minimizes total inventory holding and ordering costs.
Given di�erent conditions such as shortage allowed,
discount, etc., EOQ model can be developed.

The two crucial decisions, namely facility alloca-
tion and inventory policy, are mutually dependent. For
example, the transportation cost is one of the key cost
components for the facility allocation problem, which
depends on the frequency of inventory replenishment
at facilities. This replenishment frequency is depen-
dent on the inventory policy. The relevance between
the facility allocation and inventory policy problems
develops an integrated model with the FLA for which
inventory problem is needed to solve network design
problems.

Suppliers are a core component of supply chain
because of the substantial role of their performance in
quality, cost, delivery, service, etc. In achieving the
objectives of a supply chain, supplier selection is one of
the most critical activities of purchasing management
in an SCM. The cost of raw materials and components
in manufacturing industries involves a signi�cant part
of the cost of �nal product, sometimes up to 70% of
product cost.

Supplier selection decisions are complicated by
the fact that various criteria must be considered in
decision making process. Some of the most important
criteria include price, quality, delivery, performance
history, warranties and claim policy, production facility
and capacity, geographical location, and so on. These
criteria are divided into qualitative and quantitative,
generally. There are various methods to choose supplier
based on the speci�ed criteria such as MCDM tech-
niques, Mathematical Programming (MP) techniques
(LP, GP), Arti�cial Intelligence (AI) techniques, and
integrated approaches (AHP, ANP, DEA).

In this study, we consider supplier as facility and
develop a located-allocated model along with selected-
order allocated supplier(s) with capacity constraint,
simultaneously. Speci�cally, we consider a �rm which
operates several geographically dispersed plants/stores
that face speci�c deterministic, stationary demand and
stochastic costs. The supplier location-selection-order
allocation decisions for each plant are conducted at the
�rm level, considering a collection of sites and suppliers
that meet initial criteria. We analyze the case where

each plant/store operates under the assumptions of
EOQ model with backordering allowed.

We consider stochastic transportation (distance-
based transportation cost), establishment �x, purchas-
ing, inventory replenishment, holding, and shortage
costs as quantitative criteria for the located and se-
lected supplier(s); allocate customers to supplier(s);
and determine order quantity for each customer.
Transportation, establishment �x costs, and capacity
of supplier(s) are dependent on the location of supplier
establish but purchasing costs are independent.

We use MODM and Goal Attainment methods to
solve this model along with Lp-metric for integrated
objective functions. In small size, we use GAMS
software; but in medium and large sizes, we used
Genetic Algorithm and Simulated Annealing to solve
this mixed-integer nonlinear model. The remainder of
this paper is organized as follows: section 2 reviews the
literature on the topics used in this research. Section
3 presents all the details about the model we have
discussed. In Section 4, we have described MODM
techniques and meta-heuristic algorithms used to solve
the model. In the next section, numerical examples
and results are presented. Finally, section 6 gives
conclusions and suggestions for future works.

2. Literature review

Location theory has been considered in di�erent stud-
ies. Here, some previous studies are briey presented.
Fontan (1826) was the �rst researcher who raised
location theory in agricultural activities [1]. But,
formulation of it took place by Alfred Weber in 1909 [2].
Weber located a single warehouse by minimizing the
total travel distance between the warehouse and a set
of distributed customers. This problem was extended
from single warehouse (facility) to multiple supply
points (facility) by another research in 1963 which was
a p-median location allocation problem [3]. Then,
according to distribution network and the objective
function (maximum/minimum), the optimal number
and location of facilities were determined. In some
of the past studies, facilities and demands were used
through nodes or continuous space through synthetic
data. In facility location problem, a network of discrete
nodes was used for facilities and demands, which were
solved by Hosage and Goodchild [4]. Discrete nodes for
facility or demand are also used by Medaglia et al. [5],
Uno et al. [6], and Yang et al. [7]. In 1982, Murtagh and
Niwattisyawong [8] proposed the capacitated Facility
Location-Allocation (FLA). Their model is considered
to be one of the most important FLA studies focusing
on capacity of facility. Another important extension
regards the inclusion of stochastic components such as
future customer demands and costs in facility location
models [9-12]. Owen and Daskin [13] provided an



F. Ranjbar Tezenji et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 3009{3025 3011

overview of research on facility location through the
consideration of time and uncertainty.

Nowadays, FLA problems in combination with
supply chain approach have been considered by re-
searchers. Among the studies done based on solution
approach, Ho et al. (2008) optimized the FLA problem
in a customer-driven supply chain [14]. They consid-
ered both quantitative and qualitative criteria and used
the Goal Programming (GP) and Analytic Hierarchy
Process (AHP) in order to maximize. Then, Melo
et al. presented a comprehensive review of Facility
Location and SCM [15]. In 2011, Wang et al. [16]
presented Location-Allocation (LA) decisions in the
two-echelon supply chain with both pro�t and cost
objectives. Ahmadi Javid and Nader Azad proposed
a novel model to simultaneously optimize location, al-
location, capacity, inventory, and routing decisions in a
stochastic supply chain system [17]. Yu-Chung Tsao et
al. applied an integrated facility location and inventory
allocation problem for designing a distribution network
with multiple distribution centers and retailers [18].
Amin and Zhang [19] used a multi-objective facility
location model for closed-loop supply chain network
under uncertain demand and return.

Weber and Current [20] represented the relation-
ship between the facility location and supplier selection
decisions. Research on supplier evaluation and selec-
tion in the context of purchasing strategy can go back
to the early 1960s. There is a lot of research in this area,
including conceptual and empirical studies. Weber
et al. [21] provided a review of 74 articles related to
supplier selection since 1966. This research categorized
the models with respect to the solution methodologies
used/developed. Degraeve et al. [22] examined some
existing supplier selection models with respect to their
e�ciency. Minner [23] reviewed multi-supplier inven-
tory models, which focused on the speci�cation of the
inventory policy of each store under the assumption
of multi-sourcing. Aissaoui et al. [24] provided an
extensive review focusing on supplier selection and
order lot size modeling. Burcu et al. [25] Proposed an
integration of strategic and tactical decisions for vendor
selection under capacity constraints, (They developed
an integrated location-inventory model with distance-
based transportation costs and capacity constraints.)
In their research, they noted that relatively little
research had been devoted to developing mathematical
programming models to address the supplier selec-
tion problem [26-28]. The research on the theory
of integrated location-inventory problems is relatively
new. The theory aims at investigating the interaction
between the strategic facility location and tactical
inventory decisions. Some research emphasizes the
inclusion of inventory costs in network design problems,
e.g. [29,30].

For solving FLA in SCM, numerous algorithms

have been designed, involving branch-and-bound algo-
rithms [31], branch-and-cut [32,33], Lagrangian relax-
ation [34,35], decomposition techniques [36,37], tabu
search [38,39], genetic algorithms [40,41], simulated
annealing [42,43], and scatter search [44,45]. In
some cases, the development of a heuristic procedure
combines di�erent techniques. This is the case, for
example, for Jang et al. [46] who use Lagrangian
relaxation and a genetic algorithm.

The structure of the paper is as follows. Problem
assumptions are discussed in the `Problem description'
section. In the `Methods' section, the mathematical
model is described; it is tested in a real case in the
`Results and discussion' section. Concluding remarks
are in the `Conclusions' section.

3. Problem description and the proposed
model

In this paper, a two-echelon supply chain consisting
of supplier as facility and plants/stores of a �rm is
represented. Capacity of supplier is limited. Also, in
the context of capacitated supplier location-allocation,
we consider transportation cost (�xed and variable)
and establishment cost and in the context of supplier
selection and order allocation, we consider the over-
all logistical costs including not only the purchasing
costs considered in traditional models, but also the
transportation (�xed and variable), inventory replen-
ishment, holding, and [25] shortage costs.

This paper develops a bi-objective supplier loca-
tion-selection-order allocation that determines inven-
tory policy of each plant/store (when and how much
to order at each plant/store) to minimize total variance
and mean of the mentioned costs.

This proposed mixed-integer nonlinear program-
ming model is solved by the following important deci-
sions:

1. How many and which suppliers should be selected
to meet the demand?

2. Which site(s) should be allocated to this (these)
supplier(s)?

3. Which plants/stores should be allocated to this
(these) supplier(s)?

4. How much should each plant/store order from this
(these) supplier(s)?

3.1. Assumptions
To develop a mathematical model, we �rst present the
assumptions and notations, respectively. The main
assumptions considered in the problem formulation are
as follows:

� All demands of plants/stores are satis�ed by the
supplier(s);
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� All candidate suppliers and sites meet initial criteria;
� Each plant/store operates under the assumptions of

the EOQ Model with backordering allowed;
� Repletion of each plant/store is done by a single sup-

plier and holds inventory to meet the deterministic
stationary demand;

� Capacity of supplier is limited and dependent on
establishment site and ability of supplier;

� Fixed and variable transportation costs are depen-
dent on establishment site and supplier;

� Except for �xed dispatch (transportation) cost, all
costs are stochastic.

3.2. The notations of the model
Sets:
I : Set of plants/stores i 2 I = f1; :::;mg
J : Set of candidate suppliers j 2 J =

f1; :::; ng
K : Set of candidate sites k 2 K = f1; :::; lg
Parameters:
Di : Annual demand of plant/store i
bi : Amount of backordering allowed for

each plant/store i
diik : Distance between plant/store i and

site k
Pjk : Capacity of supplier j at site k
hi : Inventory holding cost rate for each

unit of inventory at plant/store i
ki : Fixed ordering (inventory

replenishment) cost of plant/store i
si : Shortage cost rate for each unit of

commodity at plant/store i
cj : Per-unit (purchasing, handling, etc.)

cost o�ered by supplier j
fjk : Fixed cost of establishment supplier j

at site k
rijk : Per-mile (distance-based

transportation) cost to plant/store i
from supplier j is established at site k.

tijk : Fixed dispatch (transportation) cost to
plant/store i from supplier j establish
at site k.

�� : The pre�x indicates the mean of costs.
�hi : Mean of inventory holding cost rate for

each unit of inventory at plant/store i.
�� : The pre�x indicates the standard

deviation of costs, such as
�hi : standard deviation of inventory holding

cost rate for each unit of inventory at
plant/store i.

Decision variables:

xjk =

(
1 if supplier j is established at site k
0 otherwise

yjk =

8><>:1 if supplier j is established at site k
is allocated to plant/store i;

0 otherwise

Qi = order quantity of plant/store i
Ti = Di=Qi, Order interval.

3.3. Model

Min Z1 =
mX
i=1

nX
j=1

lX
k=1

�
�cj :Di

+
�
tijk + �ijk:diik

Qi
Di

��
yijk

+
mX
i=1

�
�ki:Di

Qi
+�si

bi
2Qi

+�hi
�

(Qi�bi)2

2Qi

��
+

nX
j=1

lX
k=1

�fjk:xjk; (1)

Min Z2 =
mX
i=1

nX
j=1

lX
k=1

�
(�cj :Di:yijk)2

+
��

�rijk:diik
Qi

�
Di:yijk

�2�
+

mX
i=1

��
�ki:Di

Qi

�2

+ (�si
bi

2Qi
)2

+
�
�hi

�
(Qi � bi)2

2Qi

��2�
+

nX
j=1

lX
k=1

(�fjk:xjk)2; (2)

s.t. :

nX
j=1

xjk � 1 8k 2 K; (3)

lX
k=1

xjk � 1 8j 2 J; (4)

lX
k=1

nX
j=1

yijk = 1 8i 2 I; (5)
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yijk � xjk 8i 2 I; 8j 2 J; 8k 2 K; (6)

mX
i=1

Diyijk � pjkxjk 8j 2 J; k 2 K; (7)

xjk 2 f0; 1g 8j 2 J; k 2 K; (8)

yijk 2 f0:1g 8i 2 I; 8j 2 J; 8k 2 K; (9)

Qi 2 R+ 8i 2 I: (10)

The �rst objective function is aimed at minimizing the
mean of annual total cost, which includes (i) purchasing
costs, (ii) �xed dispatch and distance-based transporta-
tion costs from the selected site to the plant/store, (iii)
inventory replenishment, shortage, and holding costs of
the plants/stores, and (iv) �xed cost of establishment
supplier j at site k. The second objective function is
aimed at minimizing the variance of annual mention
costs (except �xed dispatch transportation cost).

Constraint (3) ensures that each site is assigned
to, at maximum, one supplier. Constraint (4) ensures
that each supplier is assigned to, at maximum, one
site. Constraint (5) dictates that the demand of each
plant/store must be satis�ed. In other words, this
constraint ensures that each plant/store is assigned
to a supplier (repletion of each plant/store by a
single supplier). Constraint (6) ensures that each
plant/store is assigned to the located-selected supplier.
Constraint (7) represents the throughput capacities of
the suppliers. In other words, Constraint (7) relates
to inow and outow with respect to the production
capacities of the suppliers. Finally, Constraints (8)
and (9) ensure integrality, whereas Constraint (10)
ensures non-negativity.

4. The proposed solution method

The model developed in Section 3.3 is a constrained
multiple-objective problem. Multiple-objective prob-
lems are concerned with the optimization of multi-
ple (vector of objectives F (x)), conicting, and non-
commensurable objective functions subject to con-
straints representing the availability of multiple objec-
tive problems.

A multi-objective optimization problem can be
formulated as:

Min fF1(x); F2(x); :::; Fq(x)g
X 2 Rn
s.t.

X 2 x;
where the integer p � 2 is the number of objectives and

the set x is the feasible set of decision vectors. In multi-
objective optimization, there does not usually exist a
feasible solution that minimizes all objective functions
simultaneously. Therefore, attention is paid to the
Pareto-optimal solutions that cannot be improved in
any of the objectives without degrading at least one
of the other objectives. There are di�erent ways for
solving MOPS such as MODM techniques, NSGA-II,
MOPSO, SPEA-2, etc.

In this research, MODM techniques are used to
convert the original problem with multiple objectives
into a single-objective optimization problem.

4.1. MODM techniques
Various methods that are available to solve multi-
objective programming models are classi�ed in four
categories. The methods in the �rst category do
not have to get primitive information from decision
makers and consist of individual optimization, the Lp-
metrics/global criteria, the Maxi-Min, and the �lter-
ing/displaced ideal solution (DIS). The methods in
the second category consist of the goal programming,
the lexicography/preemptive optimization, converting
of objectives into constraints, the goal attainment, and
the utility function that require primitive information
from the decision maker. The methods of the third
category include Geo�rion method, satisfactory goals
method, and the STEM method and require reection
on the act with decision makers. The methods of
the fourth category need information from the decision
maker at the end of solution. The multi-criteria sim-
plex method, the minimum deviation method, and the
De Novo programming are placed in this category [25].
The selected MODM methods to solve the model
include the Goal Attainment and Lp-metric.

4.1.1. Goal attainment method
The method described here is the Goal Attainment
method of Gembicki [47]. It involves expressing a
set of design goals, F� = fF�1;F�2; :::;F�qg, which are
associated with a set of objectives, F (x) = fF1(x),
F2(x); :::; Fq(x)g. The problem formulation allows the
objectives to be under- or over-achieved, enabling
the designer to be relatively imprecise about initial
design goals. A vector of weighting coe�cients w =
fw1; w2; :::; wqg controls the relative degree of under-
or over-achievement of the goals. It is expressed as
a standard optimization problem using the following
formulation:

Minimize Z

s.t.

Fi(x)� wiz � F �i i = 1; 2; :::; q;

where Z is a scalar variable unrestricted in sign, and
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the weights w = fw1; w2; :::; wqg are normalized so thatPq
i=1 wi = 1.

4.1.2. Lp-metrics method
The idea behind this method is to �nd the closest
feasible solution to an ideal point. Some authors, such
as Zeleny 1982 [48], Duckstein & Opricovic 1980 [49],
and Szidarovszky et al. 1986 [50], call this method
compromise programming. The most common metrics
to measure the distance between the reference point
and the feasible region are those derived from the Lp-
metric, which is de�ned by:

Minimize Z =

 qX
i=1

����Fi(x)� F �i
F �i

����p!1=p

s.t.

X 2 x;
for 1 � p � 1. The value of p indicates the type of
metric. For p = 1, we obtain the Manhattan metric,
while for p = 1, we obtain the so called Tchebyche�
metric.

In this research, we used Lp-metric with p = 1.

4.2. Meta-heuristic algorithms
After using MODM techniques, the model is solved
by GAMS software to solve smaller sizes. Since
GAMS software cannot be used in larger sizes, Genetic
algorithm and simulated annealing are used to solve
the obtained model.

4.2.1. Genetic algorithm
Genetic Algorithms (GAs) are adaptive heuristic search
algorithms based on the evolutionary ideas of natural
selection and genetics by Fraser 1957 [51], Bremermann
1958 [52], and Holland 1975 [53]. They are search tech-
niques used in computing to �nd true or approximate
solutions to optimization and search problems. GAs
use techniques inspired by evolutionary biology, such
as inheritance, mutation, selection, and crossover (also
called recombination). The owchart of the proposed
GA is shown in Figure 1.

Chromosomes. One of the major components of the
GA is the selection of chromosomes. In the proposed
GA, we tried to select the best chromosomes that would
give us good results and require low run-times. The
binary yijk and continuous Qi variables were consid-
ered to design two-layer chromosomes. The �rst layer
represents variable yijk and is three-dimensional, in-
cluding dimensions i, j, and k. For each i (plant/store)
at j (supplier), and k (site)surfaces, there is only one
cell with number 1, and the other cells are zero. This
indicates that each plant/store is allocated to only one

located supplier. Di�erent cells, containing (1), have
exactly the same j and k indices or both indices are
di�erent. This guarantees satisfaction Constraints (3)
and (4). Figure 2 shows an example of chromosomes.

xjk is computed from yijk variables. For Con-
straint (7), we consider penalty function for violation
of the constraints.

Initial population. A certain number of chromo-
somes were randomly created.

Genetic operations. The following describes the
main operations of the GA, which are crossover, muta-
tion, and selection.

� Crossover. To perform the crossover, two chromo-
somes (parents) must be merged. First, the parents
to be combined should be identi�ed. For this reason,
we used Roulette Wheel Selection (RWS). After
selection of parents, we used single-point crossover
on the dimension i for the �rst layer, see Figure 3.

For the second layer, we used the following
crossover:

Parent1=(QP1
1 ; QP1

2 ; :::; QP1
m ) _=(_1;_2; :::;_m)��������������!

Child1 = (QC1
1 ; QC1

2 ; :::; QC1
m )

Parent2 = (QP2
1 ; QP2

2 ; :::; QP2
m ) 0 �_� 1

Child2 = (QC2
1 ; QC2

2 ; :::; QC2
m )

QC1
i =/i QP1

i + (1� /i)QP2
i

QC2
i = (1� /i)QP1

i + /i QP2
i

After applying crossover, the �rst layers of children
were repaired. For repair child 1, �rst i layer after
cut point parent 2 if have exactly the same j and k
indices for (1) cell or both indices vary with j and k
indices for (1) cell of i layers before cut point parent
1, this layer replace else don't replace, in order to
end.

� Mutation. The mutation probability refers to the
probability of change in any gene. Chromosomes
were randomly selected for mutation. In this study,
we de�ned two types of mutation for the �rst layer
of chromosomes, which are illustrated in Figure 4.
Mutation type was selected randomly. We used the
following mutation for the second layer:

Parent = (Q1; Q2; :::; Qm) Qnew
i = Qi + �N(0; 1)����������������!

Child = (Q1; Q2; :::; Qnew
i ; :::; Qm):

� Selection. Di�erent strategies can be applied to



F. Ranjbar Tezenji et al./Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 3009{3025 3015

Figure 1. The owchart of the proposed genetic algorithm.

Figure 2. Two layers of chromosomes: i = 4, j = 3, and
k = 2.

Figure 3. Crossover of the �rst layer (crossover was
performed simultaneously in two layers).
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Figure 4. Mutation in the �rst layer (mutation was performed simultaneously in two layers).

perform the selection function, and the elite strategy
was chosen in this study. First, the parents and
the produced children were merged. Then, values
of children's objective functions were calculated.
Finally, these chromosomes were sorted according to
the objective value and the best chromosomes were
selected according to the population size of the next
generation.

4.2.2. Simulated annealing
In the early 1980s, Kirkpatric Ketal (1983) [54] and,
dependently, Cemy (1985) [55] introduced the concept
of annealing in combinatorial optimization. Simulated
Annealing (SA) is a random-search technique, which
exploits an analogy between the annealing process (a
process in which a metal cools and freezes into a mini-
mum energy crystalline structure) and the search for a
minimum in a more general system. The algorithm is
as follows:

1. Generate an initial solution randomly and initialize
the temperature parameter (T0 = 35);

2. Evaluate �tness of the initial solution (z);
3. Move the initial solution randomly to a neighboring

solution;
4. Evaluate �tness of the new solutions (z0);
5. Accept the new solution if (i) z0 � z; (ii)z0 � z with

acceptance probability p = exp(��z
T );

6. Decrease temperature with � = 0:49 rate.

In this algorithm, there are two loops: internal
loop (sub-iteration = 15) for search neighbors of a
solution in the same temperature (form stage 3 to 5),
and external loop (iteration = 1500) for decreasing
temperature. Also, to create neighbor, the mutation
operation in GA is used.

5. Results and discussion

Parameter values were used for solving the model
listed in Table 1. As shown in Table 2, the sample
problems with di�erent dimensions were used to solve
the model with GAMS software (win 32, 24.1.2). For
each size, three examples with di�erent parameters

Table 1. Parameters and values.

Parameters Values
Di Uniform (350-1400)
bi Uniform (50-100)
diik Uniform (1-150)
Pjk Uniform (35000-70000)
�hi Uniform (5-10)
�ki Uniform (75-300)
�si Uniform (15-20)
�cj Uniform (0.05-0.3)
�fjk Uniform (50000-100000)
�rijk Uniform (0.75-3)
tijk Uniform (425-1700)
�2hi Uniform (1-9)
�2ki Uniform (25-225)
�2si Uniform (1-16)
�2cj Uniform (0.0001-0.01)
�2fjk Uniform (100000-400000)
�2rijk Uniform (0.01-025)

Table 2. Sample problems with di�erent dimensions.

Sample problem i j k Sample problem i j k
1 1 2 3 8 2 3 5
2 1 2 4 9 2 4 5
3 1 2 5 10 2 2 5
4 1 3 5 11 3 4 5
5 1 4 5 12 4 2 2
6 2 2 4 13 4 3 2
7 2 3 4 14 4 4 5
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Table 3. Results of sample problems solved with the GAMS.

Sample
problem

Z1 Z2 CPU time
Lp-metric Goal attainment Lp-metric Goal attainment Lp-metric Goal attainment

1
78369.20 78697.18 201432.54 201070.76 12.00 0.56
75381.67 73559.14 212578.88 224323.98 22.54 0.55
77078.28 75448.41 176402.33 187258.95 3.68 0.55

2
62573.05 102072.43 263699.00 222953.83 8.38 0.64
56810.29 84869.33 307955.43 246879.21 14.35 0.50
66110.07 65413.24 211089.47 217681.99 12.25 0.23

3
76223.75 74808.98 248822.61 256845.31 6.07 0.48
93058.09 89989.59 217589.47 238783.99 5.40 0.76
73882.59 72144.21 129470.59 146029.27 8.27 1.00

4
61897.98 81583.77 355635.65 295536.59 5.04 1.40
55727.25 56358.74 229099.54 227986.23 2.67 0.27
84378.08 82747.18 210698.08 234744.31 10.62 1.64

5
65822.17 67678.35 221625.42 218704.99 12.71 2.29
57347.17 76940.28 157334.02 151992.61 8.99 3.29
74451.73 73146.80 227127.30 235993.92 13.81 2.51

6
80884.53 99706.93 464885.53 421627.99 9.88 3.01
88378.05 86944.41 426118.90 438370.60 19.25 2.62
77983.60 77252.66 338361.24 343318.83 7.92 7.27

7
88554.12 88442.90 382064.04 382590.13 14.60 3.34
71868.39 85190.35 321585.63 311754.30 7.21 6.19
67813.34 67276.63 339081.46 342627.05 14.06 3.11

8
74795.94 78480.46 323345.46 311931.54 7.38 2.72
83458.47 97864.26 414081.58 355688.73 8.36 5.20
62580.79 70956.41 339957.21 326584.42 10.78 4.51

9
65279.95 78734.37 402703.93 341300.62 15.40 9.28
64500.04 92920.73 64500.04 271530.03 14.96 7.99
84421.85 83068.17 260279.55 280344.47 14.60 6.15

10
91241.51 88457.49 253907.17 276414.50 17.75 2.92
86501.53 101732.42 386941.23 331216.12 9.44 2.34
80932.70 79857.07 247525.84 262327.25 1.89 0.50

11
81553.46 81948.93 401917.11 399674.35 29.47 18.33
81952.34 112951.85 482179.51 425345.19 32.46 22.54
88288.06 86744.63 402062.76 414572.92 35.12 19.64

12 103905.62 102545.93 467408.13 477137.12 12.78 0.52
75428.12 76452.68 483032.76 476819.06 14.85 6.07

13� 78413.44 119397.58 563847.56 513860.43 29.94 84.07
77655.55 78885.29 552931.62 544183.62 26.57 5.57

14� 86073.84 120078.02 602041.31 539802.79 26.16 6.47
85007.38 84693.62 442757.04 445505.45 9.63 5.51

� GAMS software could not solve the sample problems by changing the parameters; for this reason, only two examples were solved.

were solved. Table 3 shows the results of the �rst and
the second objective functions and CPU times in two
Goal Attainment and Lp-metric techniques. The Goal
Attainment and Lp-metric techniques are compared
with using Z1, Z2, and CPU time criteria to �nd

which technique is better. For this purpose, SAW and
TOPSIS methods are used.

One of the best models of MADM (Multiple-
Attribute Decision Making) is TOPSIS (Technique
for Order-Preference by Similarity to Ideal Solution)
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Table 4. Decision matrix.

Z1 Z2 CPU time

Lp-metric 76579.08 326514.79 13.82

Goal attainment 84513.88 321572.14 6.80

Table 5. Results of SAW and TOPSIS methods.

Lp-metric Goal attainment

SAW 0.82 � 0.96

TOPSIS 0.13 � 0.24

method. In this method, I alternatives are evaluated by
J criteria. TOPSIS technique is based on the concept
that the selected alternative should have the farthest
distance from ideal negative solution (worst possible
manner) and nearest distance from ideal positive solu-
tion (best possible manner). SAW is a simple scoring
method, which is another method of MADM. The SAW
method is based on the weighted average.

Table 4 shows decision matrix. Weights of the
three criteria were assumed to be equal. After calcu-
lation, the results of the SAW and TOPSIS show that
goal attainment is better than in Lp-metric technique,
see Table 5.

By increasing the size of the problems, GAMS
software is not able to solve them. For this reason, we
used genetic algorithm and simulated annealing (ex-
plained above) and solved them with Matlab software
(R2013a).

For validation of genetic algorithm and simulated
annealing, several sample problems with small sizes
were solved by GAMS software, GA, and SA. Then,
the results were compared, as shown in Tables 6
and 7. The results show that the solution for the
�rst and second objective functions (Z1 and Z2) in
three techniques (individual optimization, Lp-metric,
goal attainment) is very small. Thus, the designed
algorithms are valid.

Table 8 shows 30 problems with di�erent dimen-
sions used to solve the model with meta-heuristics
and Matlab. Each problem was solved three times
and mean of values was considered. Table 9 shows
the results of Z1, Z2, and CPU time for solving the
problems with genetic algorithm and simulated an-
nealing for two Lp-metric and goal attainment MCDM
techniques.

As an illustrative example, the results for the
twenty-�fth sample problem are presented. In this
sample problem, �fteen plants/stores, eight potential
suppliers, and seven potential locations have been
considered. After solving the model with genetic
algorithm and goal attainment approach, these results
were obtained. The third supplier is established in
the seventh location and all of the plants/stores are

Table 6. Results of the �rst objective function (Z1) in
GA and SA validations.

S.P
Individual

GAMS GA SA GA %
gap

SA %
gap

6 65303.6 65303.6 65305.6 0 0
63073.9 63073.8 63074.6 0 0

7 59256.1 59258.6 59258 0 0
63802.6 63802.8 63805.1 0 0

8 58890 58890.5 58890 0 0
60622.6 60622.6 60624.2 0 0

9 57116.5 57116.5 57120 0 0.01
56909.4 56909.4 56910.2 0 0

10 69805.2 69805.2 69806.3 0 0
63802.6 63802.8 59152.9 0 -7.29

S.P.
Lp-metric

GAMS GA SA GA %
gap

SA %
gap

6 72524.9 72479.4 72722.8 -0.06 0.27
90108.6 90113.1 90585.5 0 0.53

7 82903.4 82646.9 76326.4 -0.31 -7.93
65147.3 77360.2 65985.4 18.75 1.29

8 63766.2 64612.7 64476.2 1.33 1.11
64253.1 64261.3 64171.4 0.01 -0.13

9 62323.9 62452.1 62645.3 0.21 0.52
70137.9 70978.9 70781.7 1.2 0.92

10 75131.4 75236.6 75107 0.14 -0.03
64711.8 64727.7 64136.3 0.02 -0.89

S.P.
Goal attainment

GAMS GA SA GA %
gap

SA %
gap

6 72025.1 72090.8 73022.9 0.09 1.39
87224.5 87522.8 87792.9 0.34 0.65

7 80829.8 81056.3 81335.1 0.28 0.63
70719.2 66368.9 74478.3 -6.15 5.32

8 80719.8 80523.2 80073.9 -0.24 -0.8
82604.3 82960.5 83097.7 0.43 0.6

9 61732.8 61982.2 62044.9 0.4 0.51
69860 71672.6 70817.3 2.59 1.37

10 101450.4 101456.3 101830.4 0.01 0.37
77990.4 78001.9 78138.5 0.01 0.19
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Table 7. Results of the second objective function (Z2) in
GA and SA validations.

S.P
Individual

GAMS GA SA GA %
gap

SA %
gap

6 263996.4 263652.2 263883.5 -0.13 -0.04
224859.7 224775 225201 -0.04 0.15

7 297429.9 297366.6 297652.5 -0.02 0.07
250284.3 250692.8 251099.2 0.16 0.33

8 375924.6 374022 378263.2 -0.51 0.62
244031.5 243705.7 244122.4 -0.13 0.04

9 192738.5 191735.7 192122.5 -0.52 -0.32
294152.2 288300.9 288496.8 -1.99 -1.92

10 265346.8 265662.1 266534.9 0.12 0.45
390185.8 390599 391055.8 0.11 0.22

S.P.
Lp-metric

GAMS GA SA GA %
gap

SA %
gap

6 268208.6 268706.7 266947.4 0.19 -0.47
232161.4 232144.4 230662.9 -0.01 -0.65

7 333543.1 306190.8 336889.7 -8.2 1
252914.4 252505.1 249254.4 -0.16 -1.45

8 396800.8 440861.6 442117.9 11.1 11.42
322545.6 322526.5 324197.7 -0.01 0.51

9 194277.8 193389.3 193100.9 -0.46 -0.61
305486.2 299680.7 301334 -1.9 -1.36

10 344171.4 343998.1 344860.2 -0.05 0.2
487072.6 487307.5 493349.3 0.05 1.29

S.P.
Goal attainment

GAMS GA SA GA %
gap

SA %
gap

6 270717.9 270457.8 270406.1 -0.1 -0.12
249010.3 249298.6 248662.1 0.12 -0.14

7 317176.9 317351.5 315807.4 0.06 -0.43
256162.4 250260 253857.7 -2.3 -0.9

8 406367 395797.6 402874.6 -2.6 -0.86
266013.2 266044.5 263722 0.01 -0.86

9 197354.8 196602.2 195913.7 -0.38 -0.73
307102.8 303035.4 300350.7 -1.32 -2.2

10 296992 297293.6 292078.6 0.1 -1.65
409024.6 409319.6 409411.3 0.07 0.09

Table 8. Sample problems with di�erent dimensions.

Sample
problem

i j k Sample
problem

i j k

1 6 3 2 16 12 6 6

2 6 4 4 17 13 5 4

3 7 4 3 18 13 6 5

4 7 5 5 19 13 7 7

5 8 5 4 20 14 4 3

6 8 6 6 21 14 7 6

7 9 4 3 22 14 8 8

8 9 6 5 23 15 3 2

9 9 7 7 24 15 5 4

10 10 5 4 25 15 8 7

11 10 7 6 26 15 9 9

12 10 8 8 27 16 3 2

13 11 4 3 28 16 4 3

14 11 5 5 29 17 4 3

15 12 5 4 30 18 5 4

allocated to this supplier. Capacity of supplier 3 at
site 7 (P3,7) is equal to 48259 and order quantity for
each supplier is, respectively, Q1 = 132, Q2 = 207, Q3
= 81, Q4 = 284, Q5 = 142, Q6 = 165, Q7 = 52, Q8 =
229, Q9 = 344, Q10 = 303, Q11 = 44, Q12 = 154, Q13
= 254, Q14 = 252, Q15 = 154. Mean of costs (the �rst
objective function) is Z1 = 221739:5, variance of costs
(the second objective function) is Z2 = 1605303, and
CPU time is 1133 sec.

To compare the performance of two algorithms,
we used Z1, Z2, and CPU time criteria (Lp-metric and
goal attainment techniques were compared separately).
We used TOPSIS and SAW methods and statistical
comparison in this section.

Tables 10 and 11 show decision matrices for the
two techniques. Weights of the three criteria were
assumed to be equal. The results show that in both
techniques, simulated annealing is better than genetic
algorithm, see Tables 12 and 13. We used T-test
with P-value = 0.05 for statistical comparisons and the
calculations were performed with the SPSS20 software.
The results showed that the means of Z1 and Z2 at two
meta-heuristics did not have signi�cant di�erence (sing
= 0.503, 0.783 for Lp-metric and sing = 0.834, 0.983
for goal attainment), but the means of CPU time had a
signi�cant di�erence (sing = 0 for both Lp-metric and
Goal attainment), see Tables 14 and 15.

The amount of CPU time in simulated annealing
is less than that in genetic algorithm and this criterion
plays a very important role in excellence of simulated
annealing in the genetic algorithm. The comparisons
between Z1, Z2, and CPU time for SA and GA in each
technique are presented in Figure 5.
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Table 9. Results of sample problems solved with the meta-heuristic and Matlab software.

LP- Metric Goal attainment

Genetic algorithm Simulated annealing Genetic algorithm Simulated annealing

S.P. Z1 Z2 CPU
time

Z1 Z2 CPU
time

Z1 Z2 CPU
time

Z1 Z2 CPU
time

1 111316 666199.8 352 111601.8 686948.6 43 116802.8 658919.4 296 120452.3 659677.7 47
2 85350.56 815663.2 357 85241.09 831163.7 44 116988.3 667219.8 412 123321.7 672362.9 41
3 120121.6 1004373 258 120173.4 1031606 41 151668.2 841390.2 380 156832.3 829730.9 44
4 92161.37 1089152 296 99823.35 1075225 49 147713.6 950962.6 300 149192 951025.2 48
5 107088.2 1103056 310 107348.7 1143167 52 121556.3 1017019 323 126216.9 1011673 49
6 106881.2 981270.3 345 108471.7 980949.9 56 148380.6 871596.6 365 146533.9 868391.6 58
7 114236.5 1148340 533 113707.3 1190270 97 120401.9 1147627 522 122358.1 1146639 98
8 106972.3 1086426 438 112783.6 1110021 57 149785.3 973248.6 365 158741.8 980148.3 60
9 105602.1 952799.2 450 105997.5 979744.5 75 165677.7 898789.3 437 159552.6 899634 62
10 120436.4 1591069 640 125246 1539498 111 157882.1 1324413 669 158641.8 1321445 115
11 120959.8 1555807 465 123646.3 1568916 64 151849.7 1342203 519 163703 1395016 65
12 106176 990601 507 106720.9 1009228 76 172929.5 977184 501 134594.9 948246.5 71
13 128468 1034148 342 129079 1062740 52 139982 997897.7 337 144747.6 998636.1 53
14 132887.4 1479758 630 143940.5 1414000 63 158692.3 1337603 787 179592.6 1375389 116
15 131788 1409446 695 133146.8 1446710 127 144858.2 1401054 803 140849.5 1404656 93
16 128415.1 1678481 850 136381.9 1611856 66 231897.9 1414346 727 182154.1 1361938 67
17 144393.1 1218640 697 148052.4 1238450 71 161078.4 1116197 773 172749 1131822 79
18 140820.8 1391234 439 156850.2 1300088 68 175483.8 1122810 439 184015.9 1106218 68
19 128462.3 1739833 965 124071.1 1879146 147 227399.8 1601900 834 205244.4 1559139 118
20 122735.6 1437541 800 126707.7 1432979 126 138735.1 1265117 811 154096.3 1296829 127
21 136942 1832377 935 155138.6 1761580 160 160503 1634610 1059 169965.7 1626426 152
22 133153.8 1569222 1165 128853.1 1755144 188 210568.5 1503785 1189 181660.6 1466525 188
23 154889.6 1897515 680 159258.7 1892494 64 221593.9 1612890 676 235486.3 1623305 60
24 149931.6 1967127 572 157951.2 1942434 87 209214.1 1583165 570 205501.8 1589100 73
25 155216.7 1854720 1105 154433.1 2083120 181 221739.5 1605303 1133 217777.6 1632670 140
26 143791.5 1735830 1138 151822.5 1711112 113 207597.3 1432004 1192 212644.5 1467300 168
27 156875.5 1845484 509 161153.3 1928905 101 181292.2 1667965 441 191627.5 1691505 106
28 146780.6 1975734 744 162321.9 1873334 98 261372.9 1794488 860 188109.8 1722377 74
29 163226.5 2075764 650 163767 2322417 71 206382.2 1817243 700 217816 1848579 79
30 172097.1 2120824 1089 170051.9 2365483 143 199939.1 1941822 767 217709.9 1998395 152

Table 10. Lp-metric decision matrix.

Z1 Z2 CPU
time

Genetic algorithm 128939.24 1441614.55 631.82
Simulated annealing 132791.41 1472291.00 89.76

Table 11. Goal attainment decision matrix.

Z1 Z2 CPU
time

Genetic algorithm 172665.54 1284025.74 639.52
Simulated annealing 170729.67 1286159.96 89.08

Table 12. Results of SAW and TOPSIS methods for
Lp-metric technique.

Genetic algorithm Simulated annealing

SAW 0.71 � 0.97

TOPSIS 0.03 � 0.97

Table 13. Results of SAW and TOPSIS methods for Goal
attainment technique.

Genetic algorithm Simulated annealing
SAW 0.70 � 0.99

TOPSIS 0.001 � 0.998
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Figure 5. Comparison between the values of Z1, Z2, and CPU time for genetic algorithm and simulated annealing.

Table 14. Results of T-test for comparison genetic algorithm and simulated annealing (Lp-metric technique).

Levene's test
for equality
of variances

T-test for equality of means

F Sig. t df Sig.
(2-tailed)

Mean
di�erence

Std. error
di�erence

95% con�dence
interval of

the di�erence
Lower Upper

Z1

Equal
variances
assumed

0.682 0.412 -0.673 58 0.503 -3852.16727 5720.10198 -15302.1954 7597.86088

Equal
variances

not assumed
-0.673 57.69 0.503 -3852.16727 5720.10198 -15303.5065 7599.17198

Z2

Equal
variances
assumed

0.155 0.696 -0.277 58 0.783 -30676.45294 110629.6652 -252125.788 190772.882

Equal
variances

not assumed
-0.277 57.656 0.783 -30676.45294 110629.6652 -252153.904 190800.998

CPU time

Equal
variances
assumed

43.69 0 10.83 58 0 542.05471 50.06625 441.83621 642.2732

Equal
variances

not assumed
10.83 30.369 0 542.05471 50.06625 439.85781 644.2516
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Table 15. Results of T-test for comparison genetic algorithm and simulated annealing (goal attainment technique).

Levene's test
for equality
of variances

T-test for
equality of means

F Sig. t df Sig.
(2-tailed)

Mean
di�erence

Std. error
di�erence

95% con�dence
interval of

the di�erence
Lower Upper

Z1

Equal
variances
assumed

1.226 0.273 0.211 58 0.834 1935.86234 9174.76957 -16429.4343 20301.159

Equal
variances

not assumed
0.211 56.267 0.834 1935.86234 9174.76957 -16441.4861 20313.2108

Z2

Equal
variances
assumed

0.004 0.948 -0.023 58 0.981 -2134.22001 91146.88006 -184584.523 180316.083

Equal
variances

not assumed
-0.023 57.992 0.981 -2134.22001 91146.88006 -184585.041 180316.601

CPU time

Equal
variances
assumed

54.37 0 11.06 58 0 550.43964 49.75211 450.84997 650.02932

Equal
variances

not assumed
11.06 30.298 0 550.43964 49.75211 448.87421 652.00508

6. Conclusions and suggestions

In this paper, a novel model for integrating the fa-
cility (supplier) location-allocation problem and sup-
plier selection-order allocation for a two-echelon supply
chain (supplier(s) and plant(s)/store(s)) was proposed.
This model also determined the inventory policy for
each plant/store (when and how much to order at
each plant/store). Therefore, the proposed bi-objective
mixed-integer nonlinear programming was solved using
two MODM methods by GAMS software for small-size
and meta-heuristic algorithms (genetic algorithm and
simulated annealing) by Matlab software for medium
and large sizes. Numerical examples with di�erent
sizes were provided to demonstrate the application
and to compare the performances of the investigated
solution methods in terms of mean and variance of
the overall supply chain costs and required CPU time.
The results showed that goal attainment had better
performance than Lp-metric technique for small sizes.
For large sizes, the comparisons showed that the means
of objective functions (Z1 and Z2) obtained from GA
and SA did not have signi�cant di�erences, but the
mean of SA-CPU time was signi�cantly less than that

of the GA-CPU time. Thus, the simulated annealing
had better performance than the genetic algorithm.

Design of a Model with fuzzy or stochastic de-
mand or use of De Novo programming to determine
the capacity of the supplier are suggested for future
research. Moreover, NSGA-II, NRGA, and MOPSO
algorithms can be used to solve the model.
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