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Abstract. In most researches in area of pro�le monitoring, it is assumed that observations
are independent of each other, whereas this assumption is usually violated in practice;
observations are autocorrelated. The control charts are the most important tools of the
statistical process control which are used to monitor the processes over time. The control
charts usually signal the out-of-control status of the process with a time delay. While
knowing real-time of the change (change point), one can achieve great savings on time and
expenses. In this paper, the estimation of the change point in simple linear pro�les with
AR(1) autocorrelation structure within each pro�le is considered. In the proposed method,
by acquiring the joint probability density function of the autocorrelated observations, the
maximum likelihood estimation method is applied to estimate the step change point. Here,
we speci�cally focus on Phase II and compare the performance of the proposed estimator
with the existing estimators in the literature through simulation studies. In addition, the
application of the proposed estimator in comparison with the two estimators is illustrated
through a real case. The results show the better performance of the proposed estimator.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Sometimes, quality of a process or product is described
by a functional relationship between two or more
quality characteristics referred to as pro�le [1]. The
simple linear pro�le is one of the various types of
pro�les which is expressed as relationship between a
response variable and an explanatory variable. This
type of pro�le is more attractive to researchers due
to their simplicity and applicability, especially in cal-
ibration applications. One of the assumptions which
is considered in most of the researches in this area is
the independency of observations within each pro�le.
However, this assumption is violated in many real
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situations, especially when samples are taken in short
intervals of time [2]. Numerous studies are done to
monitor the autocorrelated pro�les in both Phases
I and II. Jensen et al. [3] applied the linear mixed
models to monitor the autocorrelated linear pro�les
in Phase I control chart applications. Noorossana
et al. [4] proposed three methods to monitor simple
linear pro�les with autocorrelation between successive
pro�les in Phase II. Soleimani et al. [1] considered
the autocorrelated simple linear pro�les and proposed
a remedial measure to eliminate the e�ect of AR(1)
autocorrelation between observations in each pro�le.
Other researches on monitoring autocorrelated pro�les
include Kazemzadeh et al. [5], Noorossana et al. [6],
Soleimani et al. [7], Narvand et al. [8], Koosha and
Amiri [2], and Zhang et al. [9]. On the other hand,
once the control chart signals the presence of a change
in the process, the search for detecting the assignable
causes is started. Usually, the alarm time does not
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coincide with the real time of change in the process.
Finding the real time of change in the process simpli�es
the process of �nding the root cause of control chart
signal and decreases the risk of misdiagnosing the alarm
by the control chart [10]. The real time of changes
in the process is referred to as change point. The
topic of the change point estimation has been discussed
by many researchers such as Nedumaran et al. [11],
Sullivan [12], Perry and Pignatiello [13,14], Ghazanfari
et al. [15], Noorossana and Shadman [16], Torkamani
et al. [17], and so on. For more information about
di�erent studies in the area of change point estimation
after a signal by control charts refer to Amiri and
Allahyari [10]. Estimation of the change point in the
area of pro�le monitoring is also discussed by many
researchers. Mahmoud et al. [18] proposed the change
point approach to monitor the regression parameters in
a simple linear pro�le in Phase I. Shara� et al. [19] used
Maximum Likelihood Estimator (MLE) to estimate the
real time of a drift change in the parameters of a
logistic regression pro�le. Zand et al. [20] developed
two methods to estimate the real time of a step change
in Phase I monitoring of the logistic pro�les. Shara� et
al. [21] proposed the use of an MLE to estimate a step
change in the parameters of Poisson regression pro�les.
Kazemzadeh et al. [22] developed the Maximum Like-
lihood Estimators (MLEs) for both step change and
linear drift in the regression parameters of multivariate
linear pro�les.

There are also few researches in �eld of the
change point estimation in the autocorrelated pro�les.
Keramatpour et al. [23] considered the polynomial
pro�les with autocorrelated structure of the �rst-order
autoregressive. At �rst, they proposed a remedial
measure to diminish the e�ect of autocorrelation in
Phase II monitoring of autocorrelated polynomial pro-
�les. Then, they suggested a control chart based on
the Generalized Linear Test (GLT) for monitoring the
coe�cients of polynomial pro�les, and an R-chart was
used to monitor the error variance. Finally, they
proposed an estimator of likelihood ratio to estimate
the changes in the parameters of the autocorrelated
polynomial pro�les. Kazemzadeh et al. [24] applied
two estimators, including MLE and clustering, to
estimate the step change point in monitoring of AR(1)
autocorrelated simple linear pro�les. They used the
transformation method to omit the autocorrelation
e�ect of the observation within each pro�le. Finally,
they evaluated and compared the performance of the
two proposed estimators by simulation. In this paper,
a maximum likelihood estimator based on the joint
probability density function of the AR(1) observations
in each pro�le is proposed to estimate the step change
point. Also, the performance of the proposed estimator
is compared with the two estimators discussed by
Kazemzadeh et al. [24] through simulation studies. Fi-

nally, a real case is presented to show the applicability
of the proposed estimator. The structure of the paper
is as follows.

In Section 2, formulation of the problem model is
presented and the assumptions are expressed. The T 2

control chart for monitoring the �rst-order autoregres-
sive autocorrelated simple linear pro�les is explained
in Section 3. In Section 4, the existing methods for
estimating the change point in AR(1) autocorrelated
simple linear pro�les are discussed. In Section 5, the
proposed estimator for the estimation of the change
point is described. In Section 6, the performance of the
proposed estimator is compared with the performance
of the existing methods through simulation studies. A
real case is discussed in Section 7. Our concluding
remarks are presented in the �nal section.

2. Problem formulation

Similar to Soleimani et al. [1], we suppose that for
jth sample gathered over time, we have observations
(xi, yij), i = 1; 2; � � � ; n. When the process is under
statistical control, then the relationship between the
response and independent variables is as in Eqs. (1)
and (2):

yij = A0 +A1xi + "ij ; (1)

"ij = �"(i�1)j + uij ; (2)

where "ijs are the autocorrelated error terms with �rst-
order autoregressive structure, and uijs are normal
random variables with mean zero and variance �2(uij �
NI(0; �2). It is assumed that x-values are �xed and
constant from pro�le to pro�le. Also, Phase II monitor-
ing analysis is considered in this paper. In other words,
it is assumed that A0, A1, and � values are known
parameters. There is the �rst order autoregressive
autocorrelation structure within the pro�le, and the
autocorrelation between pro�les does not exist.

Here, we use the transformation method of
Soleimani et al. [1] to deal with the e�ects of autocor-
relation. The observation in each pro�le can be stated
as:

yij = A0 +A1xi + "ij : (3)

Also, we have:

y(i�1)j = A0 +A1xi�1 + "(i�1)j : (4)

By replacing Eqs. (2) and (4) in Eq. (3), we have:

y0ij=(A0+A1xi+"ij)��(A0+A1xi�1+"(i�1)j); (5)

where y0ij = yij � �y(i�1)j . After simplifying Eq. (5),
we have:

y0ij=A0(1��)+A1(xi��xi�1)+("ij��"(i�1)j): (6)
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Therefore, considering the following relationship:

uij = "ij � �"(i�1)j ;

we have:

y0ij = A00 +A01x0i + uij ; (7)

y0ij = Ao(1� �) +A1(xi � �xi�1) + uij ; (8)

where uij 's are independent random variables with
mean zero and variance of �2 and A00 = A0(1��), A01 =
A1. Thus, we obtain a simple linear pro�le model where
the corresponding residuals are independent of each
other. Hence, by using the transformed variables x0i,
and y0ij , a simple linear pro�le model with independent
residuals is obtained. Then, we can use the ordinary
square (OLS) to estimate the regression parameters.

3. Monitoring procedure: T 2 control chart

To monitor the autocorrelated pro�les, we apply the T 2

control chart by Kang and Albin [25]. For this purpose,
we �rst use the transformation method by Soleimani et
al. [1] as explained in Section 2 to decrease the e�ect
of autocorrelation within each pro�le. Based on the
transformation method, the intercept and the slope
in the original model are replaced by the transformed
regression parameters. Consequently, the T 2 statistic
is written as follows:

T 2
j = bT��1b; (9)

where b and � are computed using Eqs. (10) and (11),
respectively:

b =
h
Â00j Â01j

i� �A00 A01
�
; (10)

� =

0B@�2
�

1
n�1 + �X

02
sx0x0

� ��2 �X0
sx0x0

��2 �X0
sx0x0

�2

sx0x0

1CA : (11)

When the process is in-control, the T 2 statistic follows
a central chi-square distribution with two degrees of
freedom. Hence, the upper control limit for the T 2

control chart is UCL = �2
2;�, where �2

2;� is the 100
(1 � �) percentile of the chi-square distribution with
two degrees of freedom [1].

4. The existing estimators to estimate the step
change point

In this section, two estimators in the literature pro-
posed by Kazemzadeh et al. [24] are introduced for
estimating the step change point in the parameters of a
simple linear pro�le in the presence of autocorrelation
within each pro�le. They include maximum likelihood
and clustering estimators described as follows.

4.1. The maximum likelihood estimator for the
transformed observations

In this method, to write the likelihood function, �rst,
y0ij 's distribution are determined. Since the uij 's follow
the normal distribution, it can be concluded that the
y0ij has a normal distribution with mean A0o + A01x0i
and variance of �2. Therefore, the probability density
function of the observations is computed as follows:

f(y0ij)=
1

�
p

2�
exp

�
� 1

2�2

�
y0ij�(A00+A01x0i)

�2� ;
(12)

where y0ij is the response value of ith predictor variable
in jth pro�le. After some times and in unknown
pro�le � , the process becomes out-of-control and A0,
A1 parameters change as in Eqs. (13) and (14):

A001 = A1 + �1�; (13)

A000 = A0 + �2�: (14)

And, until the control chart has not been signaled, the
parameters remain in the out-of-control state. Also,
it is assumed that the error standard deviation and
the autocorrelation coe�cient remain �xed during the
process.

In order to estimate the unknown parameters
using the maximum likelihood estimation method,
assuming that the change occurs in the time � , the
likelihood function of model is given as follows:

L(A001 ; A000 ; � jy0) =
1QT

j=1
Qn
i=1 �

p
2�

: exp

(
� 1

2�2

 
�X
j=1

nX
i=1

�
y0ij � (A00 +A01x0i)

�2
+

TX
j=�+1

nX
j=1

�
y0ij � (A000(1� �) +A001x0i)

�2!); (15)

where T is the number of the �rst pro�le which
falls out of the upper control limit. In other words,
for pro�les j = 1; 2; � � � ; � , the value of regression
parameters is equal to A01 and A00. And, for pro�les
j = �+1; �+2; � � � ; T , these values change to A000(1��)
and A001 , respectively. The unknown parameters of the
likelihood functions are � , A001 , and A000 which should
be estimated. The maximum likelihood value of � is
the value of � that maximizes the likelihood function
in Eq. (15). Taking the logarithm of Eq. (15), we have:

Ln [L (A001 ; A000 ; � jy0)] = Ln

0BBB@ 1
TQ
j=1

nQ
i=1

�
p

2�

1CCCA
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� 1
2�2

 
�X
j=1

nX
i=1

�
y0ij � (A00 +A01x0i)

�2
+

TX
j=�+1

nX
i=1

�
y0ij � (A000(1� �) +A001x0i)

�2!: (16)

In Eq. (16), the parameters A001 and A000 are unknown
and should be estimated by taking the partial deriva-
tion from Eq. (16) with respect to these parameters.
Initially, by taking the partial derivation with respect
to A001 and A000 , putting them equal to zero, the values
of Â000 and Â001 are estimated. Then, by replacing the
obtained values in Eq. (16) and by simplifying it, the
change point is obtained using Eq. (17) as follows (the
proof is given in Appendix A):

_� = arg
0��<T

max

"
� 1

2�2

 
TX

j=�+1

nX
i=1

��
y0ij

� �Â000(1� �) + Â001x0i
��2

�
�X
j=1

nX
i=1

�
y0ij � (A00 +A01x0i)

�2!: (17)

4.2. The clustering estimator
The clustering method is the process of dividing data
into di�erent groups with the concept of cluster. Thus,
a cluster is a series of similar data in a group. We
can use the clustering method to estimate the change
point because we can separate the observations into
two clusters: in-control and out-of-control [15].

To use the clustering method, initially, the auto-
correlated observations are transformed and the e�ect
of autocorrelation is eliminated. Now, the clustering
method is used on the transformed observations and
the change point is estimated. The structure of the
clustering method is described as follows:

Suppose that an out-of-control signal is noti�ed
by the control chart at the time T . We are intended
to �nd � , the real time of the change, where the
parameters of pro�le change from A0 and A1 to A000
and A001 , respectively. Hence, two clusters including in-
control and out-of-control clusters are considered. All
observations before � belong to the in-control cluster,
and the observations after � are placed in out-of-
control cluster. To estimate the change point, �rst,
an index is suggested. The index is computed for
all possible combinations of observation's assignment
to each of the in-control and out-of-control clusters.
The change point is the point in which the proposed
index is optimized. The clustering index, considering
Ghazanfari et al. [15], is de�ned as follows, such that
the lowest values of the variation within each cluster

are obtained:

SSW = SSWin + SSWout; (18)

SSW =
�X
j=1

M0��1
0 M +

TX
j=�+1

N0��1
0 N; (19)

where:

M =
h�
Â00jÂ01j

�� (A00A01)
i
;

N =
h�
Â00jÂ01j

�� Cout

i
;

and:

Cout =
� TP
j=�+1

Â00j
(T��)

TP
j=�+1

Â01j
(T��)

�
:

Cout is considered as the center of the out-of-control
cluster. Also,

P�1
0 is the inverse of covariance matrix

of the process which was de�ned in Eq. (11). SWin and
SSWout show the variation of in-control and out-of-
control clusters, respectively. When this index has the
lowest value, it means that observations are assigned to
the most appropriate cluster. Hence, the change point
is the � in which this index is minimized:

_� = arg
0��<T

minfSSWg: (20)

5. Proposed step change point estimator

In this section, we propose another method to deal
with the autocorrelation e�ect of observations within
each pro�le which seems to give more accurate results
compared to the transformation and the clustering
estimators. In this method, instead of eliminating
the autocorrelation e�ect of observations using the
explained transformation method, we obtain the joint
probability distribution of the autocorrelated obser-
vations, and then we use the maximum likelihood
estimation method to estimate the step change point.

Timmer et al. [26] found the joint probability
density function of the AR(1) observations. They used
the following model for the �rst-order autoregressive
process:

"ij = �"(i�1)j + � + uij ; (21)

where uij � N(0; �2) is a normal random variable with
the mean 0 and the variance �2.

In this parameterization of the AR(1) model,
� is the location parameter. The autocorrelation
coe�cient is �, and �2 is the variance of the (Gaussian)
white noise process. The steady-state expected value
of "ij is E("ij) = �

1�� . They presented the joint
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probability density function (pdf) for the AR(1) pro-
cess. Accordingly, they developed the joint probability
density function of AR(1) autocorrelation observations
as follows:

f("1j ; "2j ; � � � ; "nj) = (2��2)�n=2(1� �2)1=2

� exp

"
� 1

2�2

(
(1� �2)

�
"1j � �

1� �
�2

+
nX
i=2

�
"ij � � � �"(i�1)j

�2)#: (22)

Based on Eqs. (1) and (2), the following Eq. is obtained:

yij�(A0+A1xi)=�(y(i�1)j�(A0+A1xi�1))+uij :
(23)

As a result:
yij=�y(i�1)j+[(A0+A1xi)��(A0+A1xi�1)]+uij :

(24)

Eq. (24) is similar to Eq. (21) developed by Timmer et
al. [26], where �i = [(A0+A1xi)��(A0+A1xi�1)]. Now,
we can show the joint probability density function of
the observations based on Eqs. (22) and (24) as follows:

f(y1j ; y2j ; � � � ; ynj) = (2��2)�n=2(1� �2)1=2

� exp

"
� 1

2�2

(�
1� �2� (y1j � (A0 +A1x1))2

+
nX
i=2

(yij � �i � �y(i�1)j)2

)#
:

for j = 1; � � � ; T: (25)

In Eq. (25), A0 and A1 are the regression parameters
values under the in-control state; yij 's are the response
observations; � is the coe�cient of autocorrelation;
and n shows the number of levels of independent
variables. Based on the probability density function of
the autocorrelated response observations, we compute
the likelihood function and estimate the step change
point. The likelihood function generally is obtained as
multiply of the joint probability density functions of the
response variables for each pro�le. Accordingly, using
Eq. (25), the likelihood function for the simple linear
pro�le model with the AR(1) structure in the residuals
is developed as follows:

L(A0; A1; � jy) =
�Y
j=1

f(y1j ; y2j ; � � � ; ynj)

TY
i=�+1

f(y1j ; y2j ; � � � ; ynj): (26)

As a result:

L(A0; A1; � jy) =
�Y
j=1

(
(2��2)�n=2(1� �2)1=2

� exp

"
� 1

2�2

(
(1� �2)(y1j � (A0 +A1x1))2

+
nX
i=2

(yij � �i � �y(i�1)j)2

)#)
�

TY
j=�+1

(
(2��2)�n=2

�
1� �2�1=2

� exp
�
� 1

2�2

�
(1� �2)(y1j � (A000 +A001x1))2

+
nX
i=2

�
yij � �0i � �y(i�1)j

�2)#):
(27)

Since the likelihood function and its logarithm have the
same extremum point, so we have:

log(L(A0; A1; � jy))=
�X
j=1

log
��

2��2��n=2 �1��2�1=2�
+

�X
j=1

"
� 1

2�2

(�
1� �2� (y1j � (A0 +A1x1))2

+
nX
i=2

�
yij � �i � �y(i�1)j

�2)#
+

TX
j=�+1

log
��

2��2��n=2 �1� �2�1=2�
+

TX
j=�+1

"
� 1

2�2

(�
1� �2� (y1j � (A000 +A001x1))2

+
nX
i=2

�
yij � �0i � �y(i�1)j

�2)#: (28)

It is assumed that the regression parameters of the
AR(1) autocorrelated simple linear pro�le are out-of-
control after the time � . This means that the regression
parameters are A0 and A1 for pro�les 1; 2; � � � ; � and
A000 and A001 for pro�les � + 1; � + 2; � � � ; T , where T is
when an out-of-control signal appears on the control
chart. In Eq. (28), the parameters � , A000 , and A001 are
unknown and they should be estimated. At �rst, the
parameters A000 and A001 are estimated, and then the
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estimates are replaced in the logarithm of the likelihood
function. Eventually, the change point estimator is
obtained as follows (proof is given in Appendix B):

�̂ = arg max
0��<T(

TX
j=�+1

"
� 1

2�2

(�
1� �2� �y1j �

�
Â000 + Â001x1

��2

+
nX
i=2

�
yij � �̂0i � �y(i�1)j

�2
)#

�
TX

j=�+1

"
� 1

2�2

��
1� �2� (y1j � (A0 +A1x1))2

+
nX
i=2

�
yij � �i � �y(i�1)j

�2�#): (29)

The change point estimator (�̂) is the value that
maximizes the above equation. In the next section,
performance of the proposed estimator is evaluated
through simulation studies.

6. Simulation studies

In this section, we evaluate the performance of the
proposed estimator using Monte Carlo simulation, and
the results are compared with the performance of the
two existing estimators in the literature. To do so,
it is assumed that the AR(1) autocorrelated simple
linear pro�le model under the in-control state is as
yij = 3 + 2xi + "ij , where the residuals have AR(1)
structure and are modeled as "ij = �"(i�1)j + uij .
uij 's are the normal random variables with mean 0
and variance 1. Four levels for explanatory variable
are considered as follows, which are the same in all
pro�les:

x = [2468]:

The T 2 control chart with the probability of false alarm
equal to 0.005 is used to monitor the pro�les. Also, it
is assumed that the real change point value is equal to
50. The simulation procedure is such that initially, 50
vectors for the response variable are generated using
the autocorrelated simple linear pro�le model under
in-control state. Then, the transformation method
is implemented on the explanatory and the response
variables. According to the transformed variables, the
regression parameters are estimated for each of the
50 pro�les, and then T 2

j 's statistics for 50 pro�les are
calculated using the values of estimated parameters.
During the generation of the 50 pro�les, the statistics
related to some pro�les may fall out of the UCL.

These pro�les are considered as false alarms because
we assumed that the �rst 50 observations are generated
based on the in-control model. So, if there is a
statistic that is out-of-control at time t < � , it is
considered as a false alarm. After the 51th point, the
regression parameters of the model (A0 and A1) change
to A0 + �1� and A1 + �2�. Consequently, the new
model whose parameters are out-of-control is obtained
as follows:

yij = (3 + �1) + (2 + �2)xi + "ij ;

k=2(T��)

"�
1��2�x1+(��1)

nX
i=2

(�xi�1�xi)
#
:

After time of 50, the pro�les are generated based on
the above out-of-control model. The generation of
pro�les last as long as the T 2 control chart warn that
the process is out-of-control. At this moment, the
generation of observations is ceased and the proposed
estimator is applied for all obtained pro�les. To
compute the change point by the proposed estimator,
the maximum likelihood method is used for the au-
tocorrelated observations. This procedure is repeated
10,000 times, and �nally, the mean of all the obtained
change points from all iterations is reported as the
estimated change point.

To evaluate the accuracy and precision of the
proposed estimator, proportion of the times' numbers
which the estimated change point place on the distance
of maximum i(i = 1; 2; � � � ; 15) from the real change
point is computed as p(j�̂ � � j � i). And, based on
the obtained probabilities, it is clari�ed that how far
the estimated change point from the real change point
is. Finally, the obtained results are compared with the
results of the two existing estimators in the literature
under the weak autocorrelation coe�cient (0.1) and the
strong autocorrelation coe�cient (0.9). The results of
these comparisons are reported in Tables 1 to 4.

Table 1 shows the simulation results of three
estimators under the autocorrelation coe�cient of 0.1
between the observations within each pro�le, con-
sidering various shifts in the A1 parameter. The
�rst three rows of Table 1 demonstrate the mean of
estimated change points by three estimators. (For
better illustration, the results are also depicted in
Figure 1.) The results show better accuracy of the
proposed estimator rather than the other estimator
especially in large shifts. However, in very small shifts
in the slope, the accuracy of the clustering estimator
is roughly better than the proposed estimator. In
the next rows of the table, the standard errors of
change point estimates as well as the probability values
for i = 1; 2; � � � ; 15 by three estimators are reported.
The smaller values of standard error as well as the
larger probability values by the proposed estimator
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Table 1. The accuracy and precision of estimators under shift in the slope from A1 to A1 + �1� and � = 0:9 when � = 50.

0.08 0.06 0.04 0.02 0.01 �1

The proposed estimator 49.97 51.02 54.54 65.54 72.19
�̂MLE estimator 49.95 51.43 55.86 66.14 74.79

Clustering estimator 46.5 48.65 50.88 61.14 66.83

The proposed estimator 0.14 0.18 0.29 0.45 0.57
se�̂MLE estimator 0.14 0.19 0.30 0.49 0.59

Clustering estimator 0.20 0.25 0.35 0.48 0.59

The proposed estimator 0.21 0.12 0.07 0.04 0.02
p(jb� � � j � 0)MLE estimator 0.18 0.11 0.06 0.03 0.02

Clustering estimator 0.13 0.09 0.04 0.03 0.02

The proposed estimator 0.37 0.25 0.16 0.08 0.06
p(jb� � � j � 1)MLE estimator 0.34 0.23 0.15 0.08 0.05

Clustering estimator 0.26 0.19 0.13 0.09 0.05

The proposed estimator 0.49 0.35 0.23 0.12 0.09
p(jb� � � j � 2)MLE estimator 0.45 0.34 0.22 0.11 0.08

Clustering estimator 0.41 0.28 0.19 0.11 0.09

The proposed estimator 0.58 0.43 0.29 0.16 0.12
p(jb� � � j � 3)MLE estimator 0.56 0.41 0.27 0.14 0.11

Clustering estimator 0.48 0.36 0.25 0.15 0.12

The proposed estimator 0.64 0.50 0.34 0.20 0.15
p(jb� � � j � 4)MLE estimator 0.61 0.48 0.31 0.18 0.13

Clustering estimator 0.54 0.41 0.28 0.19 0.14

The proposed estimator 0.92 0.84 0.66 0.48 0.40
p(jb� � � j � 5)MLE estimator 0.90 0.81 0.63 0.43 0.34

Clustering estimator 0.83 0.74 0.59 0.46 0.35

Figure 1. The mean of the change point estimates under
di�erent shifts in the parameter A1 by three estimators
when the real change point is equal to 50 and the
autocorrelation coe�cient is 0.1.

rather than the other existing estimators con�rm better
precision of the proposed estimator in estimating the
change point.

Table 2 indicates the simulation results of the pro-
posed estimator under the autocorrelation coe�cient

of 0.9, and the results are compared with two other
estimators under di�erent shifts in A1 regression pa-
rameter. The �rst three rows of Table 2 illustrate that
the estimations obtained by the proposed estimator are
closer to the real change point value compared with
the other two estimators. (See Figure 2 for elaborating
the results regarding the mean of change point esti-
mates using three methods.) The comparison of the
estimators based on the obtained standard error and
probability values con�rm the better precision of the
proposed estimator rather than the other estimators in
most of the shifts considered.

Table 3 expresses the simulation results of three
estimators when shifts occur in A0 regression parame-
ter, and also there is the autocorrelation between the
observations within each pro�le with autocorrelation
coe�cient of 0.1. The �rst three rows of the table
indicate the mean of change point estimates by three
estimators. (Refer to Figure 3 for better understanding
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Table 2. The accuracy and precision of estimators under shift in the slope from A1 to A1 + �1� and � = 0:9 when � = 50.

0.08 0.06 0.04 0.02 0.01 �2

The proposed estimator 52.18 56.54 63.04 66.16 72.49
�̂MLE estimator 54.82 58.92 65.54 71.43 76.09

Clustering estimator 53.90 58.18 61.26 68.01 74.03

The proposed estimator 0.28 0.33 0.41 0.49 0.58
se�̂MLE estimator 0.37 0.44 0.53 0.59 0.66

Clustering estimator 0.38 0.42 0.48 0.53 0.61

The proposed estimator 0.08 0.06 0.03 0.02 0.02
p(jb� � � j � 0)MLE estimator 0.05 0.03 0.02 0.01 0.01

Clustering estimator 0.06 0.04 0.03 0.02 0.02

The proposed estimator 0.12 0.10 0.09 0.07 0.05
p(jb� � � j � 1)MLE estimator 0.10 0.07 0.06 0.04 0.04

Clustering estimator 0.11 0.10 0.06 0.04 0.04

The proposed estimator 0.19 0.17 0.15 0.09 0.08
p(jb� � � j � 2)MLE estimator 0.15 0.12 0.09 0.07 0.06

Clustering estimator 0.14 0.14 0.13 0.12 0.07

The proposed estimator 0.23 0.21 0.18 0.14 0.11
p(jb� � � j � 3)MLE estimator 0.20 0.15 0.12 0.10 0.09

Clustering estimator 0.21 0.20 0.18 0.17 0.09

The proposed estimator 0.29 0.25 0.22 0.17 0.14
p(jb� � � j � 4)MLE estimator 0.28 0.21 0.17 0.14 0.13

Clustering estimator 0.29 0.25 0.21 0.17 0.14

The proposed estimator 0.66 0.59 0.44 0.39 0.35
p(jb� � � j � 5)MLE estimator 0.54 0.46 0.39 0.34 0.33

Clustering estimator 0.64 0.59 0.54 0.51 0.35

Figure 2. The mean of the change point estimates under
di�erent shifts in the parameter A1 by three estimators
when the real change point is equal to 50 and the
autocorrelation coe�cient is 0.9.

of the results.) The results show the better accuracy
of the proposed estimator in all shifts considered.
The standard error of change point estimates and the
probabilities of locating the change point estimates
at di�erent intervals from the real change point are

Figure 3. The mean of the change point estimates under
di�erent shifts in the parameter A0 by three estimators
when the real change point is equal to 50 and the
autocorrelation coe�cient is 0.1.

also reported in the next rows of Table 3. As
shown in this table, the probabilities of estimating
the real change point in di�erent distances from the
real change in the proposed estimator is larger than
the obtained proportions by the other two estimators
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Table 3. The accuracy and precision of estimators under shift in the slope from A0 to A0 + �1� and � = 0:1 when � = 50.

1 0.6 0.4 0.2 0.1 �1

The proposed estimator 50.14 50.26 50.60 55.59 65.80
�̂MLE estimator 49.26 49.58 51.14 60.21 70.54

Clustering estimator 49.55 50.68 53.50 67.78 72.74

The proposed estimator 0.05 0.10 0.15 0.31 0.48
se�̂MLE estimator 0.07 0.12 0.18 0.36 0.52

Clustering estimator 0.06 0.11 0.19 0.38 0.51

The proposed estimator 0.10 0.09 0.07 0.03 0.02
p(jb� � � j � 0)MLE estimator 0.09 0.07 0.05 0.03 0.02

Clustering estimator 0.07 0.04 0.03 0.02 0.02

The proposed estimator 0.71 0.45 0.28 0.12 0.06
p(jb� � � j � 1)MLE estimator 0.70 0.43 0.26 0.11 0.05

Clustering estimator 0.70 0.41 0.24 0.09 0.06

The proposed estimator 0.86 0.62 0.41 0.18 0.10
p(jb� � � j � 2)MLE estimator 0.83 0.55 0.36 0.17 0.09

Clustering estimator 0.81 0.53 0.34 0.13 0.09

The proposed estimator 0.93 0.72 0.50 0.24 0.13
p(jb� � � j � 3)MLE estimator 0.88 0.64 0.44 0.21 0.11

Clustering estimator 0.88 0.62 0.41 0.17 0.12

The proposed estimator 0.95 0.78 0.57 0.29 0.17
p(jb� � � j � 4)MLE estimator 0.91 0.70 0.51 0.26 0.16

Clustering estimator 0.91 0.69 0.46 0.20 0.17

The proposed estimator 0.99 0.96 0.88 0.63 0.45
p(jb� � � j � 5)MLE estimator 0.98 0.94 0.84 0.55 0.42

Clustering estimator 0.98 0.93 0.82 0.50 0.36

in the literature. Also, the standard error of the
estimates by the proposed estimator is smaller than
the other estimators. These two criteria con�rm the
better precision of the proposed estimator.

Table 4 includes the results of the change point
estimation by three estimators when the shifts occur in
A0 regression parameter, and there is the autocorrela-
tion coe�cient of 0.9 between the observations within
each pro�le. The results show the better accuracy
of the proposed estimator compared to the accuracy
of the two other estimators. The mean values of the
change point estimates by three estimators in this case
are also depicted in Figure 4. The standard error
values as well as probability values, reported in the next
rows of Table 4, also con�rm precision of the proposed
estimator with respect to the other estimators.

Generally, the proposed estimator performs better
than the other two methods in terms of both accuracy
and precision criteria.

Figure 4. The mean of the change point estimates under
di�erent shifts in the parameter A0 by three estimators
when the real change point is equal to 50 and the
autocorrelation coe�cient is 0.9.

7. Case study

In this section, a real data based on the �ndings
of Soleimani et al. [1] is used to demonstrate the
performance of the proposed estimator in practical
applications. In this case study, there are 10 apple
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Table 4. The accuracy and precision of estimators under shift in the slope from A0 to A0 + �1� and � = 0:9 when � = 50.

1 0.6 0.4 0.2 0.1 �2

The proposed estimator 50.59 52.25 56.53 63.28 70.83
�̂MLE estimator 62.78 69.05 69.95 72.29 72.67

Clustering estimator 59.31 61.11 62.82 71.11 71.26

The proposed estimator 0.11 0.24 0.32 0.42 0.55
se�̂MLE estimator 0.51 0.59 0.6327 0.633 0.639

Clustering estimator 0.502 0.56 0.57 0.601 0.613

The proposed estimator 0.09 0.08 0.03 0.02 0.01
p(jb� � � j � 0)MLE estimator 0.06 0.04 0.02 0.01 0.01

Clustering estimator 0.07 0.04 0.04 0.04 0.03

The proposed estimator 0.38 0.22 0.13 0.07 0.05
p(jb� � � j � 1)MLE estimator 0.11 0.06 0.05 0.04 0.04

Clustering estimator 0.12 0.09 0.07 0.06 0.04

The proposed estimator 0.58 0.30 0.20 0.11 0.08
p(jb� � � j � 2)MLE estimator 0.15 0.09 0.07 0.06 0.06

Clustering estimator 0.18 0.16 0.14 0.13 0.07

The proposed estimator 0.66 0.36 0.25 0.16 0.12
p(jb� � � j � 3)MLE estimator 0.17 0.12 0.10 0.09 0.09

Clustering estimator 0.20 0.18 0.18 0.17 0.10

The proposed estimator 0.73 0.41 0.30 0.22 0.15
p(jb� � � j � 4)MLE estimator 0.21 0.17 0.13 0.11 0.11

Clustering estimator 0.24 0.21 0.20 0.18 0.12

The proposed estimator 0.92 0.78 0.63 0.49 0.41
p(jb� � � j � 5)MLE estimator 0.43 0.39 0.35 0.34 0.33

Clustering estimator 0.50 0.45 0.43 0.39 0.37

trees and 25 apples are chosen randomly from each
tree. Analysis is done for the apples whose initial
diameter is larger than 2.75 inch. Consequently, from
the existing 250 apples, only 80 apples are held over.
Each apple diameter is measured every two weeks in
12 weeks. Thus, there are 6 di�erent measurements
for each 80 apples that the measurements of each
apple constitute a simple linear pro�le structure. The
analysis approves the AR(1) autocorrelation structure
between observations of each pro�le. In this example,
the relationship between the diameter and time is an
important quality characteristic, which should be mon-
itored during the time. Hence, a simple linear pro�le
is generated for each apple, and Hoteling method is
monitored by T 2. Finally, the change point is estimated
by the proposed estimator, and results are compared
with the two estimators in the literature. The data
analysis based on calculations of the Phase I provides

the values 0.02, 2.68, and 0.7 for the slope, intercept,
and the autocorrelation coe�cient, respectively. The
value of 0.0004 is obtained for variance of aijs as well.
The obtained equation is as yij = 2:68 + 0:02xi + "ij
where "ij = 0:7"(i�1)j + aij and it has the AR(1)
structure. aijs follow the standard normal distribution
with mean and variance of 0 and 0.0004, respectively.
After applying the transformation method to the ob-
servations and monitoring of the pro�les by the T 2

Hoteling control chart, we generate the shifts in A1
regression parameter from sample 26, and generate the
observations until a signal is taken by the control chart.
Then, the change point is estimated by the proposed
method as well as the estimators in the literature. As
illustrated in Figure 5, the accuracy of the proposed
estimator is better than the ones in the literature,
because it estimates the change point exactly at time
25 which is the real change point.
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Figure 5. The T 2 control chart for data of the apple
trees under shift in the slope from A1 to A1 + 0:009� by
the proposed estimator and two methods in the literature
(real change point is � = 25).

8. Conclusion and future researches

In this paper, we proposed a new estimator to estimate
the step change point in Phase II monitoring of AR(1)
autocorrelated simple linear pro�les when the auto-
correlation structure of the observations within each
pro�le is AR(1). In the proposed estimator, we used
the joint probability density function of the AR(1) au-
tocorrelated observations to develop the MLE change
point estimator for original observations instead of
developing the estimator for transformed observations
after eliminating the e�ect of autocorrelation. This is
the main novelty of the paper. Performance of the
proposed estimator was evaluated through simulation,
and the results were compared with the performance of
two estimators in the literature. The results indicated
that under both autocorrelation coe�cients of 0.9 and
0.1 and in most shifts in the regression parameters, the
proposed estimator outperforms the other estimators.
However, in the case of shift in parameter A1, in four
initial shifts, the clustering estimator outperforms the
proposed estimator. One can generalize the type of
pro�le to the multivariate linear pro�les rather than the
simple linear pro�le considered in this paper. In addi-
tion, the other autocorrelation structures, such as Mov-
ing Average (MA) and Autoregressive Moving Average
(ARMA), could be a fruitful area for future research.
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Appendix A: Calculations of obtaining the
maximum likelihood estimator for the
transformed observations

Initially, logarithm of the likelihood function is written
as:

Ln [L (A001 ; A000 ; � jy0)] = Ln
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Then, by deriving with respect to the parameters of A000
and A001 , a system of equations is obtained as:

TX
j=�+1

nX
i=1

y0ij=
TX

j=�+1

nX
i=1

A000(1��)+
TX

j=�+1

nX
i=1

A001x0i;

TX
j=�+1

nX
i=1

x0iy0ij=
TX

j=�+1

nX
i=1

A000(1��)x0i+
TX

j=�+1

nX
i=1

A001x
02
i :

(A.2)

By solving the system of the above equations, we will
have:
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Now, the obtained values for A001 and A000 are replaced in
Eq. (A.1) and by simplifying it, Eq. (A.5) is obtained.
Finally, the change point is obtained using Eq. (A.6):
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Appendix B: Computations of the proposed
change point estimator

To obtain the proposed change point estimator in
Eq. (28), we �rst take the partial derivations from the
logarithm of the likelihood function given in Eq. (27)
with respect to the unknown parameters A000 and A001 ,
and two equations are obtained as follows:
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The above equations are put equal to zero, and a
system of two equations and two unknowns is created.
Then, by solving the equation system, we will have:
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and:
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In the above equations, k and H are de�ned as
Eqs. (B.6) and (B.7), respectively.
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Also, we have:
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F =2x1
�
1� �2� TX

j=�+1

�
y1j � Â01x1

�
� 2

TX
j=�+1

nX
i=2

(�xi�1 � xi)
�
yij

+ Â01 (�xi�1 � xi)� �yi�1j

�
: (B.9)

F is computed based on Eq. (B.9).
By replacing the estimates of parameters A00 and

A01 in Eq. (B.10), the proposed change point estimator
is obtained as Eq. (B.11):

log(L(A0; A1; � jy))=
�X
j=1

log
�
(2��2)�n=2(1��2)1=2

�
+

�X
j=1

"
� 1

2�2

(�
1� �2� (y1j � (A0 +A1x1))2

+
nX
i=2

�
yij � �i � �y

(i�1)j

�2

)#

+
TX

j=�+1

log
�

(2��2)�n=2
�
1� �2�1=2�
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+
TX

j=�+1

"
� 1

2�2

(�
1� �2� �y1j � (A+

0 A
x1
1 )
�2

+
nX
i=2

�
yij � �0i � �y(i�1)j

�2)#; (B.10)

�̂ = arg max
0��<T(

TX
j=�+1

"
� 1

2�2

(�
1� �2� �y1j �

�
Â00 + Â01x1

��2

+
nX
i=2

�
yij � �̂0i � �y(i�1)j

�2
)#

�
TX

j=�+1

"
� 1

2�2

��
1� �2� (y1j � (A0 +A1x1))2

+
nX
i=2

�
yij � �i � �y(i�1)j

�2�#): (B.11)
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