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Abstract. The Di�erential Transfer Matrix Method is extended to the complex plane,
which allows dealing with singularities at turning points. The results for real-valued
systems are simpli�ed and a pair of basis functions are found. These bases are a bit less
accurate than WKB solutions but much easier to work with because of their algebraic form.
Furthermore, these bases exactly satisfy the initial conditions and may go over the turning
points without the divergent behavior of WKB solutions. The �ndings of this paper allow
explicit evaluation of eigenvalues of con�ned modes with high precision, as demonstrated
by few examples.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Many physical problems in optics and quantum me-
chanics are modeled using the equation [1-3]:

y00(x) + f(x)y(x) = 0; (1)

where f(x) = g(x) + ih(x) and y(x) = u(x) + iv(x) are
complex analytic functions. Eq. (1) may be written as:

d
dx
fF(x)g = [K(x)]fF(x)g; (2)

fF(x)gt = fu(x) v(x) u0(x) v0(x)g ;

[K(x)] =
�

[0] [1]
[E(x)] [0]

�
;

[E(x)] = �
�
g(x) �h(x)
h(x) g(x)

�
;

in which [0] and [1] are, respectively, the zero and iden-
tity matrices. Using the Di�erential Transfer Matrix
Method (DTMM), the DTMM-like system (Eq. (2)) is
subject to the initial conditions:

fF(0)gt = fRf(0) Jf(0) Rf 0(0) Jf 0(0)g ; (3)
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having the exact solution using the DTMM [4,5]:

fF(x)g=Texp
�Z x

0
[K(t)]dt

�
fF(0)g=[Q0!x]fF(0)g:

(4)

The transfer matrices [Q(p!q)] observe [4] the self-
projection [Qp!p] = [1], inversion [Qp!q] = [Qq!p]�1,
determinant jQp!qj = exp(trf[Kp!q]g), and decom-
position [Qp!r] = [Qq!r][Qp!q] properties. One may
omit the ordering operator T [5-7] to reach the explicit
but approximate solution:

fF(x)g=exp
�Z x

0
[K(t)dt]

�
fF(0)g�= [Q0!x]fF(0)g;

(5)

while the trace trf[Q0!x]g [7] and the above �rst three
properties remain intact. We now de�ne:

[M(x)] =
Z x

0
[K(t)]dt =

�
[0] x[1]

[B(x)] [0]

�
;

[B(x)] =
Z x

0
[E(t)]dt = �

�
G(x) �H(x)
H(x) G(x)

�
: (6)
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The matrix exponentials here can be simpli�ed as:

[Q0!x] = cosh[D(x)]
�
[1] [0]
[0] [1]

�
+ sinh[D(x)]

�
[0] x[D(x)]�1

1
x [D(x)] [0]

�
; (7)

with sinh(.) and cosh(.) being de�ned according to
their Taylor expansions. Here, we have assumed that
[D(x)] is a matrix root of [B(x)] in such a way that
x[B(x)] = [D(x)]2. If qij0!x are elements of [Q0!x],
then the solution will be:

y(x) =
�
q11
0!xu(0) + q12

0!xv(0) + q13
0!xu0(0)

+ q14
0!xv0(0)

�
+ i
�
q21
0!xu(0) + q22

0!xv(0)

+ q23
0!xu0(0) + q24

0!xv0(0)
�
: (8)

We also de�ne [C(x)] = cosh[
p
xD(x)] = [Cij(x)] and

[S(x)] = x[D(x)]�1 sinh[D(x)] = [Sij(x)] to ultimately
obtain the function y(x) = u(x) + iv(x) as:

u(x) =C11(x)u(0) + C12(x)v(0) + S11(x)u0(0)

+ S12(x)v0(0);

v(x) =C21(x)u(0) + C22(x)v(0) + S21(x)u0(0)

+ S22(x)v0(0); (9)

with the derivative y0(x) = u0(x) + iv0(x):

u0(x) =T11(x)u(0) + T12(x)v(0) + C11(x)u0(0)

+ C12(x)v0(0);

v0(x) =T21(x)u(0) + T22(x)v(0) + C21(x)u0(0)

+ C22(x)v0(0); (10)

where:

[T(x)] =
1
x

[B(x)][S(x)] = [Tij(x)]: (11)

2. Basis functions

For real-valued equations having the following form,
the DTMM [4,8] fails at zeros of g(x):

u00(x) + g(x)u(x) = 0: (12)

While the generalized DTMM [5] and Airy functions [9]
are able to alleviate some problems connected to these
singularities, the method discussed in this paper easily

removes singular points since they are now located at
zeros of

R x
0 g(t)dt instead of g(x). In fact, the only

singular expression now corresponds to [S(x)], which
may also show the capability to be smoothed out.
Hence, in real plane with v(0) = v0(0) = 0, the DTMM
solution is given by:

u(x) = C(x)u(0) + S(x)u0(0): (13)

We obtain, after signi�cant algebra [10], the new basis
functions:

C(x) = cos

s
x
Z x

0
k2(t)dt;

S(x) = xsinc

s
x
Z x

0
k2(t)dt; (14)

where g(x) = k2(x) and sinc(x) = 1
x sin(x). In

quantum mechanics, we have k(x) =
q

2m
~2 [E � V (x)]

where m is mass, ~ is reduced Planck's constant, E is
energy, and V (x) is the potential. In optical problems,
we have k(x) = c�2

p
!2[�(x)�N ] where c is the speed

of light in vacuum, ! is the angular frequency, �(x) is
the relative permittivity pro�le of the dielectric, and N
is the normalized propagation constant.

It is easy to verify that if g(x) = g(�x), then
C(x) = C(�x) and S(x) = �S(�x). These functions
may be shown to exactly satisfy the initial conditions
C(0) = S0(0) = 1 and C 0(0) = S(0) = 0.

These basis functions are not necessarily or-
thonormal, except for the trivial case of constant
wave-function k(x). They furthermore do not span
a complete space; neither do �xed k, sin(kx), and
cos(kx). But, they may be always combined linearly
to satisfy any arbitrary initial or boundary conditions.

In contrast, then, the well-known WKB bases are:

~C(x) =
1p
k(x)

cos
�Z x

0
k(t)dt

�
;

~S(x) =
1p
k(x)

sin
�Z x

0
k(t)dt

�
: (15)

While WKB bases (Eq. (15)) clearly diverge at turning
points with k(x) = 0, the newly introduced bases
(Eq. (14)) do not. The reason is that at the turning
points where k2(x) changes sign, the relationships of
these bases (Eq. (14)) remain algebraically continuous
and di�erentiable. In contrast, WKB basis functions
(Eq. (15)) are neither di�erentiable nor continuous at
the turning points, because of the 1=

p
k(x) prefactor.

It should be pointed out that another pair of im-
proved basis functions using Airy functions also exist.
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They are actually found from asymptotic expansions
near a turning point at x = �, given by [11, p. 165]:

�C(x) =
[
R �
x k(t)dt] 1

6p
k(x)

Ai

8<:�3
2

"Z �

x
k(t)dt

# 2
3
9=; ;

�S(x) =
[
R �
x k(t)dt] 1

6p
k(x)

Bi

8<:�3
2

"Z �

x
k(t)dt

# 2
3
9=; ; (16)

where the plus and minus signs are used across the
turning point, respectively, in the classically forbidden
and allowed zones, and Ai(.) and Bi(.) are respectively
the Airy's functions of the �rst and second kinds.

While relatively accurate, these bases are too
complicated for practical analytical purposes and have
also to be exchanged across the singularities for smooth
solutions. Furthermore, it is impossible to obtain the
analytical spectrum of con�ned systems, even systems
as simple as harmonic oscillator, using the above
equation.

3. Examples

3.1. Periodic systems
For periodic system with g(x) = g(x + L), one may
adapt DTMM to calculate the Bloch waves [3,5,8],
which satisfy:

u(x;�) = exp(ix�)�(x;�);

�(x;�) = �(x+ L;�); (17)

where � is the Bloch wavenumber. The DTMM
solution of Eq. (17) takes the form:

fF(x+ L)g = [Qx!x+L]fF(x)g; (18)

while the periodic boundary conditions demand:

u(x+ L) = exp(i�L)u(x);

u0(x+ L) = exp(i�L)u0(x): (19)

Finally, the simple result for the Bloch wave number �
is:

exp(i�L) = eig[Qx!x+L]: (20)

It is not di�cult to see that the extended solutions
based on the functions in Eq. (14) as:

u(x;�) = exp

 
�i
s
x
Z x

0
k2(t)dt

!
; (21)

are actually Bloch waves. To verify this, we may write:

u(x+ L;�)
u(x;�)

= exp
�
�i
s

(x+ L� x)
Z x+L

x
k2(t)dt

�
= exp

0@�isL Z L

0
k2(t)dt

1A :
(22)

Comparison with Eq. (19) reveals that the Bloch wave
number is actually given by the dispersion relation:

� =
1p
L

sZ L

0
k2(t)dt; (23)

or:

�2 =
1
L

Z L

0
k2(t)dt: (24)

Doing the same procedure with the WKB bases leads
to a di�erent dispersion equation as:

� =
1
L

Z L

0
k(t)dt: (25)

The dispersion equation using the new basis functions
(Eq. (24)) matches the long-wave length limit (alter-
natively known as homogenization) of the photonic
crystals [12], while the WKB solution (Eq. (25)) does
not. In that sense, the proposed basis functions provide
higher accuracy for such class of problems.

3.2. Con�ned bounded states
Here, we demonstrate the power of new bases in
analytical solution of a wide class of problems in optics
and quantum mechanics. We suppose that an even
con�ning potential or refractive index pro�le is given,
which is of the form:

V (x) = U jxj�; (26)

where both � and U are any positive real constants.
The turning points are therefore located at � =
�(E=U)1=�. The cases � = 2[1; 11; 13; 14] and � =
1[14] respectively correspond to the harmonic oscillator
and quarkonium potentials. Hence, the wavenumber
function is de�ned as:

k2(x) =
2m
~2 [E � V (x)]: (27)

Noting the form of bases in Eq. (14), the eigenstates
may be found by the Wilson-Sommerfeld's quantiza-
tion [14] as:s

2�
Z �

��
k2(x)dx = �

�
n+

1
2

�
; (28)
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in which n is a non-negative integer denoting the state
number. The �=2 phase shift on the right-hand-side
of the above has to be normally added because of the
reection phase of wave-function at the turning point.

In contrast, the WKB quantization will lead to
the alternative form:Z �

��
k(x)dx = �

�
n+

1
2

�
: (29)

While neither Eq. (28) nor Eq. (29) is generally exact,
the WKB quantization (Eq. (29)) cannot be analyt-
ically integrated except for � = 1; 2. It is known
that, only for the special case of � = 2, however, the
WKB quantization leads to an exact result. Anyhow,
plugging Eqs. (26) and (27) into Eq. (28) and noting
the even symmetry give:

4�
Z �

0

2m
~2 [En � Ux�]dx = �2

�
n+

1
2

�2

; (30)

which after integration and some simpli�cation leads
to the algebraic equation:

�U
�+ 1

�
En
U

�1+ 2
�

=
�2~2

8m

�
n+

1
2

�2

: (31)

Hence, the nth energy eigenstate will be given by:

En =
�
�2~2

8m
(1 +

1
�

)U
2
�

� �
�+2

�
n+

1
2

� 2�
�+2

: (32)

Therefore, the ground state energy according to
Eq. (32) will be:

E0 =
�
�2~2

8
p

2m
(1 +

1
�

)U
2
�

� �
�+2

: (33)

It is easy to verify that the expression for spectrum
Eq. (32) indeed agrees remarkably well with the known
behavior of spectrum for quarkonium En � (n+ 1

2 )2=3

and harmonic oscillator En � n+ 1
2 .

For the case of quarkonium with � = 1, we get
the following from Eq. (32):

En = 3

r
�2~2U2

4m

�
n+

1
2

� 2
3

; (34)

while the WKB solution [14] is:

En = 3

r
9�2~2U2

32m

�
n+

1
2

� 2
3

: (35)

These relations di�er within a factor of 2= 3
p

9, corre-
sponding to an error of only 3.8%.

Also, for the case of harmonic oscillator with � =
2, and by taking 1

2m
2 = U , the spectrum according
to the proposed bases is:

En =
r

3�2

32
~

�
n+

1
2

�
; (36)

which di�ers with the exact spectrum En = ~
(n+ 1
2 )

within a factor of
p

3�2=32 again corresponding to an
error of 3.8%.

It is also instructive to check out the limiting
case of � ! 1 in Eq. (32). We �rst note that the
wave-function should abruptly terminate at the turning
points because of the existence of the in�nite potential
wall at x = �1. Hence, the �=2 phase shift on the
right-hand-side of Eq. (28) would be unnecessary. Now,
taking the limit here yields:

En =
�2~2

8m
n2; (37)

which is exactly the well-known spectrum of a con�ned
massive particle in in�nite potential well.

3.3. Singular potentials
As another example, we may also verify the existence
of bounded solutions for the singular even con�ning
potential of the form:

V (x) = �U jxj�� ; (38)

where � < 1 is any positive real constant less
than 1. The turning points are now located at � =
�(�U=E)1=� . Using Eq. (28) results in:

�
Z �

0
(En + Ux��)dx =

�2~2

8m

�
n+

1
2

�2

; (39)

o�ering the solution for the energy spectrum as:

En = �
��

1
�
� 1
�

�2~2

8U2=�m

� �
��2

�
n+

1
2

� 2�
��2

: (40)

Since � � 2 is negative, it would be better to rewrite
the above as:

En = �
�

8�U2=�m
�2~2(1� �)

� �
2�� 1

(n+ 1
2 )

2�
2��

; (41)

showing that En � 1=(n + 1
2 )

2�
2�� . Therefore, the

ground state corresponding to the potential (Eq. (38))
is now given by:

E0 = �
�

32�U2=�m
�2~2(1� �)

� �
2��

; (42)

which is divergent when � ! 1. This justi�es the
existence of a ground state bounded from below only
when 0 < � < 1.
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Figure 1. Illustration of numerically calculated
wave-functions (solid black) inside the singular quantum
well (dashed) with � = 1

2 . The ground and �rst excited
eigenstates are leveled with horizontal lines (dot-dashed).

3.3.1. Numerical example
For the case of � = 1

2 in the normalized atomic units
where ~2=2m! 1 and U ! 1, we obtain from Eq. (40):

En = �
�
�
2

�
n+

1
2

��� 2
3

: (43)

Hence, the energy of the ground and �rst excited state
is, respectively, E0 = � 3

p
16=�2 � �1:17474 and

E1 = � 3
p

16=9�2 � �0:56475. The exact values
by numerical computation are E0 = �1:6534 and
E1 = �0:43804; thus, the error of estimation (Eq. (43))
for the �rst two states is about 28.9%. Figure 1
illustrates the numerically calculated wave-functions
and the eigenstates inside the quantum well.

Figure 2 compares the numerically exact solu-
tions of the un-normalized wave-functions. Here, the
ground and �rst excited states are shown versus the
solution obtained by our proposed bases (Eq. (14)),
improved WKB bases (Eq. (15)), and simple WKB
basis cos(

R x
0 k(t)dt). The superior accuracy of the

solution by Eq. (14), close to the expansion point, is
clearly visible in this plot. The improved WKB bases
are highly erroneous for bounded modes as can be seen
here, while simple WKB solutions are still less accurate
than our proposed basis functions (Eq. (14)).

4. Conclusions

In summary, we presented a new pair of bases for
solving the wave equation. Through several explicit
examples, we have established the analytical power of
the proposed basis functions and their advantage over
WKB basis solutions. Our new basis functions are
not divergent close to singularities at turning point
and they maintain remarkable accuracy compared to
the analytical solutions in the vicinity of expansion
point. The basis functions also exactly satisfy the
initial conditions.

Figure 2. Comparison of un-normalized ground state
wave-functions for � = 1

2 within a subdomain of the range
spanned by turning points [��; +�]: numerically exact
(solid black); newly proposed basis functions (dashed);
simple WKB (dot dashed); improved WKB (dotted). All
solutions diverge at in�nity beyond the turning points, but
the improved WKB bases diverge at the turning points.
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