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Abstract. Wide-Area Monitoring, Protection, And Control (WAMPAC) is a key factor in
the implementation of smart transmission grids. WAMPAC has a crucial role in detection
and prevention of widespread events with an ultimate goal of improving the electricity
service reliability. Several mathematical techniques were proposed for the Optimal Phasor
Measurement Units (PMU) Placement (OPP) problem which represents the �rst step
toward the development of WAMPAC. These techniques consider either the solution to
the network observability or realization of speci�c PMU applications. This paper proposes
a multi-objective framework for OPP which emphasizes the reliability of power systems.
The objective functions minimize the investment cost and maximize the system reliability.
Since the objectives are in con
ict, the non-dominated sorting genetic algorithm II approach
is adopted as an intelligent state sampling tool to �nd non-dominated solutions (Pareto
front). The �nal placement scheme among Pareto points is chosen by a fuzzy decision
making approach.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The emergent Wide-Area Monitoring, Protection, And
Control (WAMPAC) structure o�ers a precise and near
real-time overview of power grids to control centers.
The main building block of WAMPAC is Phasor
Measurement Units (PMUs) which are dispersed over
the grid. WAMPAC o�ers unprecedented dynamic
information representing the power system status for
decision making in critical circumstances.

The number and installation sites of PMUs along
with their operational availabilities are the main factors
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a�ecting the WAMPAC performance. In the literature,
a vast range of studies has focused on the Optimal
PMU Placement (OPP) problem. The preliminary
objective in the majority of those works is to install
a minimal set of PMUs so as to make the network
completely observable [1-12]. Apart from satisfying the
observability criterion, a few application-based objec-
tives were also considered. In [13], the OPP problem
intended the identi�cation of fault locations. In [14],
the objective was to maximize the detection capability
of system topology errors. A fuzzy clustering approach
in [15] was devised to reduce the number of installed
PMUs required for dynamic vulnerability assessment.
In [16], a strategic PMU placement algorithm was to
improve the bad data processing capability.

The OPP problem with observability require-
ments as its objective was successfully solved by a
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variety of optimization techniques including classical
optimization methods such as integer linear program-
ming [1-3] and integer quadratic programming [4], as
well as heuristic methods such as Non-dominated Sort-
ing Genetic Algorithm (NSGA) [5], canonical genetic
algorithm [6], simulated annealing [7], Tabu search [8],
simulated annealing combined with Tabu search [9],
particle swarm optimization [10], and immunity ge-
netic algorithm [11]. Moreover, since OPP problem
could o�er multiple solutions for a given number of
PMUs, deterministic and probabilistic observability
indices were introduced to identify the dominant so-
lution [3].

In [3-5] the OPP problem was considered for
satisfying the system observability when considering
contingencies of PMU and/or transmission line out-
ages. Such considerations are technically sensible as
the solution of the OPP problem is highly dependent
on the network topology and the availability of PMU
devices and their communication links.

The WAMPAC infrastructure receives data from
PMUs through their fast communication links dispread
over the power grid. So, any failures in PMUs and
their accessories may degrade operators' situational
awareness. That is, grid operators would not be able
to monitor the system performance, take actions, or
o�er remedies if severe power system contingencies
occur. The lack of situational awareness on August
14, 2003 prevented any early identi�cation of the
Northeast blackout and timely action [17]. The sit-
uational awareness could be more prevalent in power
system operations, particularly when WAMPAC fail-
ures are among contributing factors in system-wide
disturbances. Therefore, power system reliability is
a�ected by the monitoring system performance, though
few studies to date have focused on this issue.

The impact of SCADA failures on power system
load curtailments was analyzed in [18]. A qualitative
framework was considered in [19] to measure the impact
of failures in the information infrastructure on the
electricity supply reliability. The impact of WAMPAC
malfunctions on power system reliability was assessed
in [20]; however, the number and location of PMUs
have been assumed to be �xed in this study. A
multi-state model was proposed in [21] for assessing
the impact of insu�cient situation awareness on the
probability of power system blackouts. In [21], the
optimal solution of the OPP problem was o�ered using
a greedy search method. A cost/bene�t analysis of
OPP problem was conducted in [22]. In [23], a multi-
objective PMU placement framework was proposed to
simultaneously maximize system reliability and mini-
mize implementation cost while power system is fully
observable.

A probabilistic multi-objective model for the OPP
problem is introduced in this paper in which the impact

of WAMPAC malfunctions on power system reliability
is incorporated in the OPP problem. The objective
functions consider investment costs and reliability met-
rics. It is worthwhile to mention that it would make
much more sense to formulate the PMU placement
problem with explicit reliability constraints while leav-
ing the observability of the network to be adapted,
consequently. A linearized optimization of the load

ow model is used for reliability assessment. The Non-
dominated Sorting Genetic Algorithm II (NSGAII) is
adopted as an intelligent state sampling tool to �nd
a set of non-dominated solutions which constitute the
Pareto front. Finally, a fuzzy decision making method
is employed to determine the best PMU placement
scheme among non-dominated solutions. Numerical
studies are carried out on a 9-bus system and the
IEEE 57-bus test system. Sensitivity analyses are
additionally conducted to investigate the impact of
some important parameters on the problem solution.
The current paper has three major contributions as
follows:

� The �rst contribution of this paper is the consid-
eration of power system reliability indices among
objectives of the OPP problem. This is a signi�cant
extension to the existing literature where observabil-
ity indices and either the number or installation cost
of deployed PMUs were mostly considered;

� In order to evaluate impacts of WAMPAC mal-
functions on the system performance, the paper
utilizes a two-layer power system model and an
extended optimal power 
ow analysis which have
been developed by the same authors recently. The
model intelligently considers impacts of operators'
insight on the system when remedial actions are
chosen following the emergence of faults in power
system components;

� The paper's last but not least contribution is to
provide a very comprehensive investigation on the
impact of taking reliability criterion as an objective
on the OPP problem. This is done by simulating
several case studies on two standard systems.

The paper is outlined as follows. In Section 2,
the joint model of WAMPAC and power system is
reviewed. The optimization method applied to the
multi-objective OPP problem is described in Section 3.
Section 4 presents the proposed algorithm. Numerical
analyses and the obtained results are discussed in
Section 5. Finally, concluding remarks are drawn in
Section 6.

2. Statement of the problem

In this section, two main characteristics of the OPP
problem are discussed. A joint reliability model is
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adopted for WAMPAC and power system components,
and the demand of considering various objectives in the
OPP problem is explored.

2.1. Joint WAMPAC and power system model
The WAMPAC infrastructure relies on accurate and
quickly updated information of power system sta-
tus which is intended to enable e�ective operational
tools for making quicker and more targeted corrective
actions. To do so, the information communicated
to control centers is compiled and graphically pre-
sented to the personnel on dynamic mimic diagrams.
This process is demonstrated schematically in Fig-
ure 1, where the lower and upper layers represent
the power system schematic and its mimic diagram
in a control center, respectively. The WAMPAC in
Figure 1 is responsible for transmitting measurements,
monitoring signals, and/or controlling actions 
owing
between power system and its control center. The
WAMPAC consists of a chain of components such
as instrumentation transformers, PMUs as measuring
devices, and communication links. If these elements
lack any redundancy, their single failure degrades the
WAMPAC performance missing the observability in
a portion of the power network. In such cases, the
operator would not receive the pertinent information
necessary for taking remedial actions in unobservable
regions. Such cases could trigger cascading out-
ages that would potentially lead to a large black-
out.

2.2. Objective functions of the OPP problem
In the majority of existing models, the aim of OPP
problem is to determine the minimum number of
PMUs and installation locations subjected to the power
network observability constraints in the base case and
contingencies. The minimum set of PMUs is syn-

Figure 1. Schematic for a joint WAMPAC and power
system model [20].

onymous with the least cost solution when a uniform
cost is associated with PMU installations at various
locations. The proposed solutions can be extended
to cases in which PMU installation costs are speci�c
to locations in power grids. However, other merits of
PMU deployments, in addition to the minimizing costs,
should be taken into account to determine an optimal
scheme for PMU placements.

Based on the previous discussions, higher system
reliability is an aspect in
uenced by the WAMPAC
development which is adopted here as another objective
function for the OPP problem. It should be noted
that system observability and reliability are strongly
but indirectly coupled to each other. In dispatching
centers, it is highly intended to have an observable
power network so as to be able to preserve the system
operational reliability. In other words, when the
system is su�ciently observable and controllable, the
severe events threatening the reliability of electricity
service can be detected and tackled in a timely and
e�ective fashion. From the opposite perspective, a
high reliability power system calls for an acceptable
level of observability and controllability over the power
system and components. In terms of the number
of PMUs in a typical power system, Figure 2 shows
a typical variation of WAMPAC development cost
with the system reliability index and the Expected
Energy Not Supplied (EENS). Here, more PMU devices
correspond to a greater investment cost and a higher
reliability level (i.e., lower EENS). In Figure 2, we
considered a uniform cost for PMU installations at
di�erent locations. So, the investment cost increases
monotonically. However, there would be a limit on
lowering the reliability index as we increase the number
of PMUs. This observation is regularly referred to
as reliability improvement saturation, and it is in
accord with the reliability concepts for attaining an
optimal level of PMUs. To identify the optimal
point, the reliability enhancement is converted to a
monetary value which is often a challenging task. The
multi-objective optimization method may otherwise be
considered in which the two objective functions are in
con
ict. The multi-objective method o�ers a set of
optimal solutions to decision-makers for specifying the
�nal plan.

Figure 2. The investment cost and reliability index
versus the number of PMUs.
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3. Multi-objective optimization technique

This section discusses the multi-objective optimization
and NSGAII method applied to the proposed OPP
problem.

3.1. Multi-objective optimization
There are two approaches to a multi-objective opti-
mization problem. In the �rst approach, the weighted-
sum of objectives is introduced which would require a
prior knowledge of the solution in order to properly
determine the weights [24]. The second approach is
based on the non-dominance concept [25].

Among various methods applied to the non-
dominance concept, NSGAII has shown its superiority
and robustness for handling non-convex and mixed
integer-programming [25].

3.2. NSGAII method
NSGAII optimization technique, which is used fre-
quently, is an enhanced version of NSGA in solving
multi-objective optimization problems. NSGAII uses
the crowding distance method instead of sharing pa-
rameters which seems to be more e�cient in terms
of yielding an appropriate diversity of �nal solutions.
NSGAII is based on an elite selection method in which
o�spring and parents are composed in a set and the
selection and recombination are accomplished [25,26].

The �rst population in NGSAII is initialized and
sorted into the fronts regarding the objective func-
tion and e�ectively based on non-dominance concept.
Accordingly, each Pareto front and its individuals
are assigned with a rank, e.g. the �rst front and its
individuals dominate the others and thereby attributed
to rank 1. The second front dominates the others
except the �rst front, and consequently possesses rank
2, and so on. Every member of each Pareto front
with the same non-dominance rank is then assigned
a distance which is calculated based on the crowding
distance approach and in accordance with the other
members in the same Pareto front.

The crowding distance parameter indicates how
close two individuals are. So, individuals with a large
average crowding distance parameter are selected and
a better diversity of solutions is achieved. Meanwhile,
the individuals in the boundary are always selected
since they have in�nite distance assignments.

The binary tournament algorithm is then utilized
to select the present populations by which the lower
ranked in non-dominance and higher ranked in distance
values are considered in the parents' selection process.
The o�spring populations are generated using the tra-
ditional crossover and mutation. Parents and o�spring
are ultimately combined to form a collection and the
next generation. This process will continue until the
criterion is satis�ed, i.e. the number of iterations or

Figure 3. Flowchart of the proposed method for
multi-objective OPP problem.

trivial improvements in the objective functions are
satis�ed.

4. Proposed methodology

In this section, the proposed OPP methodology is
presented which considers WAMPAC malfunctions in
power system reliability evaluations. The �nal decision
procedure considering several OPP schemes is also
discussed.

4.1. Outline of the methodology
Figure 3 shows block diagram of the proposed solution
for the OPP problem. The candidate buses for PMU
placements are initially determined by the �rst popu-
lation creation. The investment cost and the reliability
index associated with each solution are then calculated.
Mathematical formulations of these objective functions
would be presented in the following subsections. The
NSGAII examines the non-dominance concept for the
created population according to the objective value of
individual placement schemes.

It also sorts the plans in Pareto fronts. The
termination criteria are checked next, and the opti-
mization procedure is terminated if one of the criteria
is met. Otherwise, a new population is built using
the NSGAII operators. The termination criteria are
checked again once the values of objectives for the
new population are computed and Pareto fronts are
updated. Usually, either or both the numbers in
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the Pareto front and the iterations are considered as
termination criteria. Subsequent to the termination
of the iterative procedure, the fuzzy decision making
method is implemented to select the �nal solution in
the non-dominated set. This process would be further
discussed in the following section.

4.2. Total investment cost of WAMPAC
The total investment cost of WAMPAC is divided
into two parts. The �rst part is known as the
�xed cost which mainly refers to the control center
hardware/software facilities. For a given system, this
cost is usually deemed independent of the number of
PMUs to be installed in the power network. Note that
this term does not have any e�ect on the solution of
optimization problem since it is independent of the
decision variables, i.e. PMU locations. The second
part, generally known as the PMU cost, depends on the
number of installed PMUs and their locations. The cost
associated with PMUs at a given bus includes PMU
procurement expense, cost of PMU installation panel,
power supply provision, GPS installation and wiring,
other auxiliary equipment, and labor fees.

The cost associated with communication link
could be taken into account by updating the PMU
installation cost. However, the resulting model might
be impractical because the communication system
expansion often depends on other factors which sur-
pass PMU requirements. In essence, communication
system functionalities encompassing SCADA, control,
voice, teleprotection, etc. could exceed those of PMUs.
Accordingly, the cost associated with communication
systems would not be included in the objective func-
tion.

For each solution, the investment cost is [22]:

IC = FC +
X
i2I

uici; (1)

where IC denotes the investment cost of WAMPAC
infrastructure, FC is the �xed cost term of IC, ui is
a binary decision variable that is equal to 1 if bus i
is equipped with PMU and 0 otherwise, ci stands for
the installation cost of PMU at bus i, and I represents
the set of system buses. It should be mentioned that
FC in Eq. (1) has no impact on the �nal solution since
it is independent of the number of PMUs. Generally
speaking, the cost of WAMS center software/hardware
facilities can, however, be a function of the number of
PMUs supported in some real cases. This means that
FC can be a function of the number of PMUs. In
this paper, without loss of generality, FC is deemed
to be independent of the number of PMUs, but it
is incorporated in the objective function in order to
compute the whole implementation cost as well as to
keep generality of the model.

It is worth noting that presently, the PMUs on the

shelf have a limited number of channels due to technical
limitations. Accordingly, it might be technically and
�nancially justi�able to have more than one PMU in a
substation with many connections. In such a case, ui
should be an integer variable instead of binary. In [27],
the placement problem of limited-channel PMUs has
been thoroughly discussed.

4.3. Joint reliability assessment of power
systems with WAMPAC infrastructure

In the following, the impact of WAMPAC malfunctions
on the power system reliability evaluation is discussed
brie
y [20]. The assessment of power system reliability
consists of three steps including state selection, state
analysis, and index calculation. In the �rst step,
credible states of the system under study are de�ned.
The conventional reliability assessment method speci-
�es the system state as the combination of status of
power system components such as transmission lines,
generating units, and transformers. In addition to
these components, the framework of joint reliability
evaluation of power system and WAMPAC infrastruc-
ture determines the status of WAMPAC equipment in
the state generation process. Additional components
could also be considered in the state generation which
would increase the required computation time for the
reliability assessment. Intelligent sampling techniques
and scenario reduction methods are the two e�ective
alternatives to overcome the computation issues [28].

In the second step, the state analysis is intended.
We would label the sampled state as healthy if the
system load can be supplied without any violations
of line 
ows or bus voltages. In the case of any
violations, an observability assessment is conducted
considering the state of power system and WAMPAC
components. The results would identify unobservable
regions of the system. The unobservable regions cannot
be observed centrally by system operators (lack of sit-
uational awareness); consequently, no remedial control
action is operative. In these regions, only the local
protection system monitors the component and acts in
the case of violation or fault. The operator would take
appropriate remedial actions if any violations occur in
observable regions.

The last step is to calculate reliability indices
based on the results in the last two steps. Here, Loss
Of Load Probability (LOLP), Expected Demand Not
Served (EDNS), and EENS are calculated as follows:

LOLP =
X
s2Sc

�s; (2)

EDNS =
X
s2Sc

X
i2IL

�s:LSi;s; (3)

EENS = EDNS:8760; (4)
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where �s is the occurrence probability of scenario
s, LSi;s represents the load shedding at bus i and
associated with scenario s, Sc denotes the set of
scenarios with load curtailment, and IL stands for
the set of system load buses. It should be noted
that, in Eq. (3), EDNS has no time nature. However,
multiplying EDNS with a speci�c time period, a day
or a year, leads to EENS index which re
ects the
expected energy not supplied in the associated time
period. Here in Eq. (4), 8760 is selected to calculate
the expected energy not supplied in a year. Other
reliability indices may similarly be incorporated in the
proposed approach [29,30].

4.4. Final solution
The NSGAII method could result in several Pareto
optimal solutions. Among these non-dominated solu-
tions, a realistic and desirable solution is to be adopted
which can meet the decision maker's goals. In other
words, since the above described method tackles the
OPP problem in a multi-objective framework, a non-
dominated solution pool is �nally produced. However,
the system analyst should adopt a single solution
among the pool to be implemented in the system. This
process can be totally ful�lled by engineering judgment.
However, more systematic decision making methods
have been also proposed [31]. Among them, this paper
uses fuzzy satisfying decision making method where the
engineering judgment can be incorporated as well [32-
34]. The fuzzy satisfying method is an e�cient and
simple option which mimics the human interpretation
and would handle our decision problem through mem-
bership functions. For each objective, a rigorous and
monotonically declining and continuous membership
function is assigned. In the minimization method,
the assigned membership function is descending with
a value equal to 1 at the desired value and 0 at the
maximum of the objective. Figure 4 shows a typical
membership function for a minimization case. In this
�gure, fi and �fi denote objective function i and the
relevant membership degree. It is worth mentioning
that a1 and a2 are, respectively, associated with the
best solution (a desired one or logically the minimum
in most cases) and the worst solution (the maximum) of
fi. They can readily be set based on the solution pool
members or even engineering judgment. Function fi,
de�ned by the decision maker, represents the extent

Figure 4. A typical descending fuzzy membership
function.

by which an optimal solution satis�es each objective
ful�llment.

The next step for adopting the optimal OPP solu-
tion is performed by de�ning the following optimization
problem:

min
X
j2J
j�dj � �fj jk; (5)

where �fj is the membership degree associated with
the �nal value of the objective function j, �dj denotes
the desired level of membership degree of the objective
function j, k is a constant exponent greater than
unity, and J represents the set of objective functions.
This optimization problem would minimize the total
deviation of membership functions from desired levels.

5. Case studies

In this section, performance of the proposed approach
is examined on a 9-bus system and the IEEE 57-
bus test system. These systems have already been
studied in [20] for the reliability assessment considering
WAMPAC malfunctions. As discussed in Eq. (1), the
cost of WAMPAC implementation has a �xed term
for the control center development, and it is assumed
here to be $400,000. In practice, the PMU cost of
WAMPAC infrastructure is assumed to be a function
of the number and the location of PMUs. The PMU
installation has a �xed cost term for items such as
panel and GPS installation and a channel-dependent
term. At a given bus, one PMU channel is assigned to
the bus voltage measurement, and other channels are
allocated to current measurements for the associated
transmission lines, loads, and generating units.

The associated costs of PMU are given in Table 1.
If a PMU located at a speci�c bus is connected to
three transmission lines and a generating unit, the
cost of PMU installation would be $35k which includes
$20k for the �xed cost, $9k for three current channels
of transmission lines, $3k for a current channel of
generating unit, and $3k for the bus voltage channel.
Note that if among connections associated with a given
bus the currents of all except one are measured, the
remaining one could be computationally observable too
by applying Kirchho� current law. Hence, one can
reduce current channel requirements. However, this
feature is excluded here. For reliability assessment,
EDNS is adopted and objective functions include the

Table 1. PMU installation cost terms.

Cost terms Cost

PMU �xed cost $20,000
Voltage channel $3,000
Current channel $3,000
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minimization of reliability index and cost. Simulations
are executed in the MATLAB environment. It should
be noted that no comparison with the exiting research
is provided since the literature either accommodated
the network observability as the problem constraint
or used very di�erent assumptions in the reliability
modeling. In order to �ll up this gap and demonstrate
the performance and e�ectiveness of the proposed
method, various case studies and sensitivity analyses
have been performed and discussed.

5.1. The 9-bus system
The 9-bus system has 3 generator buses, 3 load buses,
and 9 transmission lines. The single-line diagram of
this system is depicted in Figure 5. If we use the data in
Table 1, depending on the number of required channels,
the cost of PMU installation for the 9-bus system is
presented in Table 2. The required data for power 
ow
study and reliability assessment are provided in [20].

Figure 5. Single-line diagram of the 9-bus system.

Table 2. PMU installation cost at the 9-bus system.

Bus # Installation cost

1-3 $29,000
4-9 $32,000

The proposed OPP algorithm is applied to the 9-
bus system with a population size of 100 individuals.
The following cases are studied:

- Case I. (base case): In this case, failures of both
power system and WAMPAC components are incor-
porated. 13 non-dominated solutions are obtained
after 50 iterations which are presented in Table 3
and depicted in Figure 6. According to Figure 6,
the optimal investment cost ranges between $432k
and $679k which correspond to an EDNS between
4.779 and 2.256 MW, respectively. Solution 1 has
only one PMU located at bus 9 which is the major
load point [20]. In the next plan, EDNS is reduced
by 50% when the investment cost is increased from
$432k to $461k. In Solution 2, the added PMU is
assigned to bus 1 which corresponds to the largest
generating unit [20]. The higher priorities of buses
associated with large generating units and major
loads would match the empirical PMU placement
criteria. The next optimal solution allocates two
PMUs at buses 4 and 8. The perceived reliability
limit is apparent in Figure 6 where the additional

Figure 6. Pareto optimal solutions of the 9-bus system
(Case I).

Table 3. Non-dominated solutions of the 9-bus system: Case I.

Solution # PMU locations
(bus #)

Investment cost
(k$)

EDNS
(MW)

Number of
observable buses

1 9 432 4.779 3
2 1, 9 461 2.473 4
3 4, 8 464 2.392 7
4 1, 8, 9 493 2.297 6
5 4, 8, 9 496 2.284 7
6 1, 2, 4, 8 522 2.283 7
7 1, 4, 8, 9 525 2.264 7
8 1, 2, 4, 8, 9 554 2.263 7
9 1, 4, 7, 8, 9 557 2.262 8
10 1, 3, 4, 7, 8, 9 586 2.261 9
11 1-4, 7-9 615 2.259 9
12 1-4, 6-9 647 2.258 9
13 1-9 679 2.256 9
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investment in PMU placement has a minute impact
on reliability improvements.

Among several non-dominated optimal solu-
tions, only one OPP should be implemented. The
fuzzy decision making approach is employed here to
select the most appropriate plan. The �nal solution
depends on the desired levels of objectives which
represent the decision maker's preferences. Here,
the desired values of investment cost and reliability
index are considered to be $450k and 2.256 MW,
respectively. Here, Solution 2 with PMUs at buses 1
and 9 signi�es the most appropriate OPP plan for
the 9-bus system subject to a set of desired levels.
As expected, the �nal solution would be di�erent
if desired levels of objective functions vary. The
impact of desired level of investment cost is given in
Table 4 for a given desired level of reliability index
(i.e., 2.256 MW).

- Case II. In this case, the WAMPAC is assumed to
be fully reliable, while power system components
are exposed to random failures. Table 5 shows
6 non-dominated optimal solutions when applying
the proposed multi-objective methodology to the

OPP problem. As expected, comparing Solutions 1
and 3 in Table 5 with those presented in Table 3
con�rms that when the WAMPAC infrastructure
is free from failures, the power system reliability
improves and the EDNS index drops. However, more
realistic assumptions for reliability assessment would
correspond to OPP solutions that match the real-
world experiences.

5.2. The IEEE 57-bus system
In this section, the proposed multi-objective OPP
methodology is applied to the IEEE 57-bus system.
This system, shown in Figure 7, has 80 transmission
lines, 7 generating units with 1975 MW generation
capacity, and 42 bulk loads with 1250 MW demand [35].

The base case power 
ow solution and generating
unit data are available in [32]. The failures of both
power system and WAMPAC elements are taken into
consideration, and the reliability and power system
data are provided in [20]. The simulation is conducted
with a population size of 100 individuals.

We use the data given in Table 1 to calculate
the cost associated with PMU installation at each
bus of the system. The results, given in Table 6,

Table 4. IMPACT of various desired levels of investment cost given a �xed desired level of reliability index.

Desired level of
investment cost (k$)

PMU locations
(bus #)

Investment cost
(k$)

EDNS
(MW)

Number of
observable buses

450 1, 9 461 2.473 4
475 4, 8 464 2.392 7
500 4, 8, 9 496 2.284 7
525 1, 4, 8, 9 525 2.264 7
550 1, 4, 8, 9 525 2.264 7
575 1, 4, 7, 8, 9 557 2.262 8

Table 5. Non-dominated solutions of the 9-bus system: Case II.

Solution # PMU locations
(bus #)

Investment cost
(k$)

EDNS
(MW)

Number of
observable buses

1 9 432 4.740 3
2 1, 9 461 2.386 4
3 4, 8 464 2.265 7
4 1, 7, 9 493 2.264 6
5 4, 7, 9 496 2.263 7
6 1, 3, 7, 9 522 2.262 7

Table 6. Cost of PMU installation at buses of the IEEE 57-bus test system.

Bus # Installation
cost ($)

Bus # Installation
cost ($)

21, 26, 33, 34, 39, 40, 45, 46 29,000 5, 7, 16-20, 22-25, 27, 28, 30, 31,
35-37, 42-44, 47, 48, 50-55, 57

32,000

2, 4, 10, 11, 14, 29, 32 35,000
1, 6, 13, 38 41,000 3, 8, 15, 41, 49, 56 38,000

9 47,000 12 44,000
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Figure 7. The IEEE 57-bus network.

depend on the number of transmission lines, generating
units, and load connections associated with each bus.
The simulation leads to 105 non-dominated solutions
forming the problem Pareto front which is shown in
Figure 8. Table 7 shows the solutions with considerable
di�erence in the reliability index (those in the left hand

Figure 8. Pareto optimal solutions of the IEEE 57-bus
system.

side of Figure 8) and the most reliable solution (the last
Pareto point in the right hand side of Figure 8).

Given that the desired levels of the investment
cost and the reliability index are $600k and 5 MW, the
�nal OPP scheme would be Solution 8 in which 4 PMUs
are allocated to buses 9, 12, 13, and 15. Figure 7 de-
picts this solution. Here, buses with the most number
of connections are selected for OPP. Additionally, the
power 
ow data show that the major loads of 150, 121,
and 377 MW demands are located at buses 8, 9, and 12,
respectively. The OPP corresponding to Solution 8 will
make the listed buses observable either directly (buses
9 and 12) or indirectly (bus 8). On the other hand, the
proposed OPP scheme will lead to the observability of
all buses hosting system generations save bus 6 which
includes a 100 MW generating unit. So, the heuristic
rules considered in some real practices for allocating
PMUs to buses with major generations and demands
are endorsed in this case as well.

6. Conclusion

The �rst consideration in the development of WAM-
PAC is to decide on the number and location of PMUs.

Table 7. Some non-dominated solutions of the IEEE 57-bus system.

Solution # PMU locations
(bus #)

Investment cost
(k$)

EDNS
(MW)

Number of
observable buses

1 15 438 211.9 6
2 15, 34 467 211.8 9
3 13, 15 479 150.6 10
4 9, 13 488 112.3 10
5 7, 13, 15 511 62.2 14
6 12, 13, 15 523 8.98 13
7 11, 12, 13, 15 558 8.96 15
8 9, 12, 13, 15 570 5.95 15
9 9, 11, 12, 13, 15 605 5.94 17
10 4, 7, 11, 12, 13, 15 625 3.12 22
...

...
...

...
...

105 1-57 2320 1.46 57
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Since the objective in the deployment of WAMPAC
is the enhancement of power system reliability, relia-
bility metrics were explicitly incorporated in the OPP
algorithm proposed here. The algorithm has a multi-
objective framework to keep the investment cost rather
low along with maximizing the system reliability. As
demonstrated by the numerical results, the cost of
WAMPAC development and the enhancement in power
system reliability are two con
icting objective func-
tions which result in a set of non-dominated solutions.
So, a compromised solution conducted by the fuzzy
decision satisfying technique is adopted. Numerical
results show that buses with large generating units
and bulk loads would be candidates for OPP. The
monitoring and control infrastructures have a proven
and indispensable role in managing large power system
disturbances and the ultimate blackouts. Thus, the
probabilistic evaluation of these infrastructures and
their failure impacts on the power system vulnerability
are to be scrutinized in our future studies.
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