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Abstract. A novel CT imaging structure based on Compressive Sensing (CS) is proposed.
The main goal is to mitigate the CT imaging time and, thus, X-ray radiation dosage without
compromising the image quality. The utilized compressive sensing approach is based on
radial Fourier sampling. Thanks to the intrinsic relation between captured radon samples
in a CT imaging process and the radial Fourier samples, partial Fourier sampling could be
implemented systematically. This systematic compressive sampling helps in better control
of required conditions such as incoherence and sparsity to guarantee adequate image quality
in comparison to previous CS-based CT imaging structures. Simulation results prove the
superior quality of the proposed approach (about 4% improvement in peak signal-to-noise
ratio), achieving the smallest CT scan time and the best image quality.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Three-Dimensional (3D) bio-imaging has many appli-
cations in medical diagnostics and therapy. Comput-
erized Tomography (CT) is a powerful tool among
existing bio-imaging techniques for capturing three-
dimensional bio-images. In fact, CT imaging systems
have attracted great attention in last decades because
of their fast and high-quality reconstruction, which
results in low-complexity and low-cost hardware solu-
tions.

In a CT scan procedure, several linear sensors
receive X-ray radiations passed through the patient's
body; then, special algorithms are utilized in order to
reconstruct 2D and 3D images from the collected data.
The quality of the reconstructed image is essentially
inuenced by the number of captured line projections.
Nevertheless, gathering the required large amount of
data requires the patient to be exposed to X-ray
radiations for a long time. On the other side, the
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intensi�cation of X-ray radiations potentially leads to
ionization of body cells, which in turn raises the risk
of cancer. Thus, one of the most important challenges
in using the CT technique for biomedical imaging is
to reduce the required samples without degrading the
image quality.

Traditionally, image reconstruction requires a
number of samples (measurements or observations),
which are dictated purely by Nyquist limits. Due to
the Nyquist constraint, image capturing with fewer
samples than the Nyquist rate leads to a performance
degradation. In traditional CT imaging systems,
after data gathering in the form of radon coe�cients,
image reconstruction is performed through traditional
algorithms such as Filtered Back Projection (FBP),
which needs a complete set of radon coe�cients de-
termined by the Nyquist criteria. The main challenge
of traditional algorithms is that by going under the
Nyquist rate, the quality of the reconstructed image
degrades signi�cantly. For example, FBP [1,2] is one of
the renowned CT reconstruction algorithms requiring
a large number of lownoise projections to yield an
accurate reconstruction. Still, in a large number of
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applications, a complete projection cannot be obtained
because of practical limitations such as short exposure
time and detector's slip. To overcome these challenges,
algebraic methods have been introduced, which su�er
from high computational complexity, requiring a long
time for reconstruction.

Recently, several works have been reported trying
to reduce the sampling duration as well as image recon-
struction time by interpolating the less-than-Nyquist
captured samples [3]. These algorithms are based on
the Fourier Slice Theorem (FST) to obtain data in the
Fourier domain by mapping the 1D Fourier transform
of radon measurements into the regular rectangular
system. Yet, the estimation of Fourier samples on
the rectangular system is errorprone due to subsequent
interpolations. Furthermore, the density of radial
points becomes sparser as one gets farther away from
the center. This implies that the interpolation error of
high-frequency components is greater than that of low-
frequency ones. To reduce the interpolation error, the
sampling rate along the radial and angular directions
should be chosen to be large enough. However, since a
high sampling rate requires more projections, gathering
enough measurements translates to additional exposure
time and, thus, the main fundamental challenge still
remains.

More recently, other solutions have been intro-
duced, trying to reduce the CT scanning time with
the aid of Compressive Sensing (CS). The compressive
sensing concept utilizes the sparseness of the natural
signals and images in di�erent domains such as time,
space, and frequency in order to reconstruct the desired
signal with less-than-Nyquist samples [4-6]. Speci�-
cally, the Compressed Sensing (CS) method has found
its application in CT imaging, being able to provide a
low-radiation CT image reconstruction platform [7-13].
In fact, by using the CS approach in CT algorithms, the
reconstruction process can be done with small number
of data, reducing the health risk.

In a group of CS-based CT methods, Adaptive
Steepest Descent Fourier Transform (ASD-FT) has
been introduced that brings the projection data into
the image's Fourier space by using FST, ensuring
the consistency of the transformed projection data
with Fourier transform of the reconstructed image [7].
However, this approach encounters some challenges in
mapping data from polar coordinate into the regular
rectangular system, which in turn degrades the quality
of the reconstructed images. To solve this problem,
ASD-Projection Onto Convex Sets (ASD-POCS) is
proposed, which substitutes the Fourier transform with
Gradient Magnitude Image (GMI) [8]. This approach
employs the steepest-descent method, which su�ers
from a low convergence rate. Therefore, the slow
convergence speed is the major drawback of the ASD-
POCS algorithm.

Another problem of the steepest-descent method
is dependence on the initialization points and param-
eters, meaning that if the optimality conditions are
violated, it should be re-executed with new parameters.

Another group of CS-based CT image reconstruc-
tion approaches use Total Variation (TV) for image
reconstruction with incomplete set of measurements [9-
11]. Bian et al. exploited the sparsity of objects in the
Total Variation (TV) domain, naming it the CSTV
model [9]. This work was completed later in [10,11]
where the priori information was introduced as con-
straints that assisted the TV minimization formula to
provide a high-quality image reconstruction.

Still, there are generally two di�culties in existing
applications of CS to CT image reconstruction systems.
The �rst problem arises from the fact that most CT
images may not be piecewise smooth, thus not being
sparse in the spatial domain. The second issue is
that for a stable reconstruction, the fundamental CS
theory requires the compressed sampling scheme to
have an incoherence property in terms of the Restricted
Isometry Property (RIP) of the CS matrix.

So far, there have been no results on the CS
reconstruction of CT images under the RIP condi-
tion, though there are several works on the analysis
of RIP [14] and empirical study of the incoherence
property in terms of the phase transition map [15].

To solve these issues, recently, an adaptive CS
approach has been introduced for the CT reconstruc-
tion, which updates the sampling matrix in each
iteration [12]. The requirement for updating the
sampling matrix in this approach obliges the patient
to be under radiation of X-ray for a long time, which
is contrary to the main goal of the exposure time
reduction. In another recently reported work, a CT
structure is proposed, which performs the compressive
sampling in the Fourier domain [13]. This is done
through random sampling in the Fourier domain, where
the RIP constraint is better satis�ed. Consequently,
image reconstruction is done with a rate less than
Nyquist while having a better image quality. However,
the resulting image reconstruction performance is not
adequate and the distortion of reconstructed image
results in a non-smooth reconstruction output. This
is mainly because of their random sampling in the
radon Fourier domain, which has no guarantee for
the consequent random sampling in spatial or Fourier
domain of Cartesian coordinates. Also, this algorithm
has high sensitivity to noise because of using ramp �lter
for weighting high frequency elements.

In this paper, a new CS-based CT image recon-
struction is introduced in order to utilize the decent
properties of the Fourier sampling in a more systematic
manner. This is done by performing the compressive
sampling based on the theory of partial Fourier sam-
pling [16-18]. This sampling is possible by taking an
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advantage from the relation between radon coe�cients
and radial Fourier samples based on the Fourier slice
theorem [19].

The paper is organized as follows. The proposed
CT image reconstruction structure is addressed in
Section 2, where also a brief review on the compressive
radial Fourier sampling is presented. Section 3 presents
simulation results, proving that the proposed approach
reconstructs CT images with considerably low samples
while, at the same time, keeping the image quality
better than previous similar approaches. Finally,
Section 4 concludes the paper.

2. Proposed CT imaging structure

As mentioned, the main foundation of this work is to
minimize the CT scanning time through the partial
Fourier sampling. Radial Fourier sampling is here
possible because of the intrinsic relation between radial
Fourier samples and the captured radon coe�cients
through the Fourier slice theorem [19]. Thus, in this
section, �rst, the concept of the compressive sensing
with speci�c emphasis on the radial Fourier sampling
is briey discussed and, then, the proposed structure
will be introduced and analyzed.

2.1. A short review on compressive sensing
In the last decade, the concept of Compressive Sensing
(CS) has opened new windows to reconstruct sig-
nals with fewer-than-Nyquist number of measurements
through unifying sampling and compression process.
In traditional compression techniques, a complete set
of samples, dictated by the Nyquist rate, is acquired
and then, the reconstructed image is compressed due to
the limitations on the memory and transmission rate.
In contrast, the compressive sensing approach tries to
reduce the number of captured samples making the
sampling faster and more e�cient.

With respect to the sparsity of conventional sig-
nals in a speci�c domain, the reconstruction with a
low data-rate is possible; thus, the sampling domain
and sampling pattern are two of the main challenges
for better CS reconstruction. In addition, another
requirement for a successful compressive sampling ap-
proach is the satisfaction of the RIP condition. In
other words, in order to guarantee the lossless image
reconstruction through the CS theory, the acquisition
matrix must satisfy the Restricted Isometry Prop-
erty (RIP) [5,20,21]. The most well-known matrices
satisfying the RIP condition with a high probability
should have matrix elements drawn from Gaussian
independent and identically distributed (iid) random
numbers. Yet, another recently proposed high perfor-
mance sampling pattern is the radial sampling in the
Fourier domain [16-18].

A compressive sampling procedure can be mod-

eled as follows:

Y = �� v; (1)

where y 2 R(m�1) is the incomplete set of samples to be
captured, � denotes the compressive sampling matrix
that determines the method and structure of sampling
such that m << n, and v 2 R(n�1) is the original signal
that should be reconstructed.

The formulation in (1) is an ill-posed problem
whose number of equations is less than the number
of variables. Thus, without extra information, this
problem does not converge. However if v is a sparse
signal, using this formula, it could be completely
reconstructed with a high probability (see [5] for
detail). Nevertheless, most natural images are not
sparse in spatial domain while a majority of them have
sparse representation in the Fourier or Wavelet domain.
Therefore, the desired image, u, is sparse in a special
basis like v, meaning that v =  u, where v is the sparse
representation of u and  is the transformation matrix,
which transforms the image u into the sparse basis v.

There exist various compressive sampling tech-
niques, which yield a high-quality reconstructed image
from a few number of captured samples. In fact, the
sampling method determines the sampling pattern, �,
and the sampling domain,  . Thus, Eq. (1) could be
edited as follows:

y = (� )u: (2)

Incoherent property of � and  is one of the main
constraints that should be satis�ed for a proper signal
reconstruction [5]. The reconstruction process is indeed
an optimization procedure, which tries to minimize a
well de�ned cost function based on Eq. (2) and the
signal sparsity constraint.

It has been shown that an acceptable reconstruc-
tion can be obtained by using appropriate nonlinear
recovery algorithms applied to only one part of the
Fourier coe�cients given on a set of L radial lines in
the Fourier plane [5]. In this case, the � matrix has a
pattern such as the one shown in Figure 1 where the  
matrix represents the Fourier transformation.

Figure 1. Two examples of radial sampling matrices.
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Apart from the satisfaction of RIP and IP con-
straints, in a Radial Fourier sampling scheme, low-
frequency components are sampled more densely than
high-frequency components. This fact resembles the
concept behind the common digital compression tech-
niques where the most useful information from an
object is gathered around the center of the Fourier
plane.

Given that in a CT scan structure data are
gathered as radon coe�cients, the Radial Fourier
sampling could be utilized due to the direct relations
between radial Fourier samples and radon coe�cients
based on FST. This property is here utilized in order
to perform CS-based CT imaging through the radial
Fourier sampling where the RIP condition could be
analyzed more systematically. The presented approach
is described in the sequel.

2.2. Proposed structure
In this paper, the main goal is to implement a fast CS-
based CT imaging structure based on radial Fourier
sampling in order to satisfy the RIP condition more
systematically. This is done through exploiting the
relation between radon coe�cients and radial Fourier
samples. The main framework of the proposed struc-
ture for Radial Fourier CT scan is illustrated in
Figure 2.

Let I(x; y) represent a compactly supported con-
tinuous function on R2 that shows an m�n image. The
CT imaging system works based on capturing the radon
samples. The radon transform, <I(:), is a function
de�ned on the space of straight lines L in R2 by the
line integral along each such line:

<I(L) =
Z
L
I(x)jdxj: (3)

Concretely, parametrization of any straight line, L,
with respect to arc length, t, can always be written
as:

(x(t); y(t))=((t sin � + s cos �);(�t cos �+s sin �)); (4)

Figure 2. Proposed structure of the compressive
sensing-based CT imaging structure.

where s is the distance of L from the origin and � is the
angle between the normal vector to L and the x axis.
It follows that the quantities (s; �) can be considered
as coordinates on the space of all lines in R2, and the
radon transform can be expressed in these coordinates
by:

<I(s; �)=
Z Z

I(x; y)�(x cos � + y sin � � s)dxdy: (5)

Based on this, in order to make the CT scan procedure
faster, we propose to reduce the number of samples
through the partial Fourier sampling. To this end, we
should �rst select the required radial Fourier samples of
the object based on the chosen radial Fourier sampling
pattern. This pattern has di�erent models such as
uniform or golden-angle as shown in Figure 1 [17]. The
next step is to relate the selected radii in the Fourier
domain to the corresponding radon coe�cients through
the Fourier slice theorem. With respect to FST, the 1D
Fourier transform of line projections in an arbitrary
angle, �, (named as FR(!; �)) is equal to a 1D slice
of the 2D Fourier transform of the image in the same
angular direction. This theorem could be modeled as
follows:

F<(!; �) = FI(! cos �; ! sin �); (6)

where FI(:) represents the 2D Fourier transform of the
original image. With this relation in hand, the cor-
responding required radon coe�cients, <I(s; �), could
be obtained from the selected radial Fourier samples.
Then, the CT structure scans the object to capture the
obtained desired radon coe�cients.

The schematic of the recording procedure is shown
in Figure 3. These captured radon coe�cients should
be converted to the corresponding radial Fourier sam-
ples in order to run the CS optimization step and
reconstruct the full image. However, before performing
the conversion procedure, the radon coe�cients should
undergo a zero-padding step as shown in Figure 3,
where the schematic of the capturing process for
obtaining the required Fourier radii is demonstrated.
The 1D Fourier transforms of the zero-padded radon
coe�cients are computed in the next step, which yield
the required Fourier radii.

With these radial Fourier samples in hand, the op-
timization procedure based on the wellknown method
of alternating direction of multiplier [22] is run in order
to reconstruct the whole image in the Cartesian coor-
dinate. After choosing the optimization method, the
�nal goal is to �nd the image, which has the minimum
total variation with the maximum accuracy. This goal
results in the following minimization problem:

min �ikDiuk2 + � j uj+ �=2k� u� yk22; (7)
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Figure 3. The obtained radial Fourier samples from the
radon coe�cients.

where the �rst term is the discretization of the Total
Variation (TV) of u over its all pixels across vertical
and horizontal directions, the second term is l1-norm
of the sparse representation of u under  , and the
last term denotes the relaxation term. Moreover,
� and � are regularization parameters. The main
challenge to �nd the solution of Relation (7) is the
non-di�erentiability of its �rst and second terms. By
de�ning two auxiliary variables z and w, Relation (7)
can be rewritten as:

min �ikwik2 + � j zj+ �=2k� u� yk22;
s.t. wi = Diu 8 i; z =  Tu: (8)

In order to solve Relation (8) linearly, the augmented
Lagrangian term is used as the minimization goal. By
means of the augmented Lagrangian of Relation (8)
and using an Alternating Direction Method (ADM),

this equation could be simply converted to a least
squares problem. Therefore, the reconstruction time
is decreased by using ADM algorithm for solving the
optimization problem. The algorithm uses one- and
two-dimensional shrinkage to compute w and z in each
iteration in parallel. Then, the value of u is updated
until the relative error becomes small enough (less than
a prede�ned threshold value) (see [22] for details).

Therefore, there are three main tasks in each
iteration for the ADMM algorithm: computing the
variables z and w, obtaining a new output, and up-
dating the required variables for the next iteration. To
support our proposed CT imaging structure, we design
a VLSI architecture for the reconstruction algorithm,
which provides a real-time prototype. The block
diagram of its top module is depicted in Figure 4(a).
It is composed of three processing units and one
memory management unit, working in accordance with
a control unit. The control unit sends the necessary
control signals to the processing units to initiate their
operations, and generates the address values to do
the read and write operations on the memory unit.
In addition, this design includes the infrastructure
overheads such as memory and Ethernet controller to
run on the Xilinx Virtex-6 FPGA ML605 Evaluation
Kit. The overall data-path of this design is shown in
Figure 4(b).

Thus, the proposed structure reduces the sam-
pling points signi�cantly compared to common scan-
ning structures such as FBP, which in turn reduces the
whole scanning time.

In order to quantitatively demonstrate the im-
proved performance of the proposed structure, three
metrics are utilized in this paper. The �rst metric is
the Mean Square Error (MSE) between the original,
IO, and reconstructed, IR, images with the following
formula:

MSE = E[(IR � IO)2]: (9)

The second evaluation metric is the Peak Signal-to-

Figure 4. Hardware design: (a) The block diagram of the hardware design; (b) the overall data-path of the hardware
design.
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Noise Ratio (PSNR) of the reconstructed image. The
PSNR metric is de�ned as follows:

PSNR = 20 log

 
Ip

(MSE)

!
; (10)

where I represents the maximum intensity of the
reference image. PSNR results are complemented by
another well-known evaluation metric, i.e. Structure
Similarity Index Metric (SSIM), which measures the
similarity between the original and reconstructed im-
ages [23]. The SSIM metric is de�ned as follows:

SSIM =
(2mI1mI2 + c1)(2�I1I2 + c2)

(m2
I1 +m2

I2 + c1)(�2
I1 + �2

I2 + c2)
; (11)

where mI and �I represent the image mean and
variance, respectively, �I1I2 shows the covariance of the
original and reconstructed images, and c1 and c2 are
stabilization parameters.

In order to demonstrate superiority of the pro-
posed structure in reducing the CT scan time while,
at the same time, yielding a high quality image,
exhaustive simulations are performed, reported in the
next section. The performed simulations compare
the quality of the proposed method with those of
other interpolation-based and CS-based approaches,
intended to reduce the CT scan time.

3. Results and compariosn

In this section, the proposed structure is compared with
three other CT image reconstruction methods, which
try to lessen the CT scan time. These methods are
CSTV [9], interpolation [3], and WL1 [13]. The CT
image of a sample SheppLogan phantom is obtained
through MATLAB simulations. The considered sample
is an image of size 256 � 256 pixels while the value
of the regularization parameters in each algorithm is
selected empirically. The reconstructed image resulted
from each algorithm is shown in Figure 5. As it is clear
from the colormap results of MATLAB and enlarged
part of each image, shown in Figure 6, for CS-based
algorithms, the proposed structure performs better in
saving the image high-frequency contents while, at the
same time, not adding considerable distortion.

In order to evaluate the reconstructed images
based on these metrics, two simulation scenarios were
performed. In the �rst simulation, the reconstruction
process was done with 5 di�erent algorithms including
CSTV, WL1, FBP, interpolation, and the proposed al-
gorithm, where the quality of the reconstructed images
versus the number of projections was fully compared.
The evaluated PSNR for this simulation is shown in
Figure 7. This �gure clearly demonstrates the superior
performance of the proposed method based on PSNR
metric.

Figure 5. Reconstructed images with 24 projections: (a)
Proposed structure with uniform angelprojection (PSNR
= 42.42); (b) CSTV result (PSNR = 40.47); (c) WL1
result (PSNR = 40.83); and (d) interpolation result
(PSNR = 19.47).

Figure 6. Reconstructed images with JET colormap: (a)
Proposed structure with uniform angel projection; (b)
CSTV result with distorted high frequency contents; and
(c) WL1 result with added distortions apparent in upper
circle.

Figure 7. PSNR of di�erent algorithms with changing
projection numbers.

In the second simulation scenario, the results
of the CS-based CT image reconstruction algorithms
including CSTV, WL1, and our proposed method are
compared for various numbers of iterations. The
measured PSNR values for all algorithms are depicted
versus the iteration numbers in Figure 8. It is clear
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Figure 8. PSNR of di�erent algorithms with changing
iteration numbers.

that the proposed structure has better quality with the
same number of iterations, i.e. in 400 iterations.

With regard to this �gure, it is obvious that the
proposed method performs better based on the PSNR
metric for di�erent iteration numbers. Furthermore,
the superior performance of the image reconstructed
from the proposed structure is also con�rmed through
SSIM and MSE metrics. The numerical results are
shown in Table 1. As it is clear in this table, the
result of the proposed structure is better than the other
result (about 4% in PSNR). Also, this structure has the
minimum MSE and better SSIM.

As mentioned in the Introduction, the high sensi-
tivity to noise is one of the important shortcomings of
WL1. In contrast, CSTV and the proposed structure
have low sensitivity to noise by using the total variation
and minimizing the gradient of image. Figure 9 shows
the results of reconstructed images with noisy data.
As can be seen clearly, distortion in the texture of
the result of WL1 is obvious while CSTV and the
proposed structure perform better in the presence of
noise.

Finally, in order to have a more reliable com-
parison between the performances of the proposed
structure and other CS-based methods, real projection
data are employed and analyzed. Figure 10 shows
the reconstructed images with real dataset [24]. As
is clear from this �gure, the proposed algorithm has
a better reconstruction quality than CSTV and WL1
algorithms. CSTV has di�culty in the reconstruction
of edges due to the nature of the total variation and
WL1 has distortion in the speci�ed parts.

Figure 9. Reconstructed images with noisy data: (a)
Proposed structure with uniform angel projection (PSNR
= 36.45); (b) CSTV result (PSNR = 38.38); (c) WL1
result (PSNR = 31.11); and (d) DFT result (PSNR =
18.39).

Figure 10. Reconstruction results with real dataset (250
iteration): (a) Proposed structure with uniform angel
projection (PSNR = 32.95); (b) CSTV result (PSNR =
29.45); and (c) WL1 result (PSNR= 31.08).

In summary, both the qualitative visual perfor-
mance and the quantitative metrics con�rm the supe-
riority of the proposed CS-based CT imaging structure
in preserving the image quality while, at the same time,
lessening the CT scan time.

4. Conclusion

In this paper, an e�cient CT imaging structure based
on compressive sensing is proposed in order to miti-
gate the CT scanning time. In order to satisfy the
requisite of the compressive sampling algorithms in
a systematic manner, partial Fourier sampling was
utilized. Thanks to the intrinsic relation between
captured radon samples and radial Fourier samples,

Table 1. Comparison of the results of di�erent CS-based algorithms (24 line projection and 400 iteration).

This Work CSTV [9] WL1 [13] FBP Interpolation

PSNR 42.42 40.47 40.83 13.43 17.81
MSE 5:6989e�05 8:9741e�05 7:9831e�05 0.0315 0.0746
SSIM 0.9999 0.9998 0.9999 -1 0.9992



H. Abbasi et al./Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 2908{2916 2915

Partial (radial) Fourier sampling could be implemented
more systematically. This systematic implementation
helped in better satisfaction of CS conditions, such
as Restricted Isometry Property (RIP). Simulations
were performed, in which the performance of the
proposed structure was compered with those of 3 other
approaches that also tried to lessen CT scan time
through either CS or interpolations. The presented
qualitative and quantitative results showed the superior
performance of the proposed structure.

Acknowledgment

We would like to thank Amir Ashkan Farsaei for his
very helpful comments on a draft of hardware design
parts of this article.

References

1. Bracewell, R.H. and Riddle, A.C. \Inversion of fan
beam scans in radio astronomy", Astrophysics Journal,
150, pp. 427-434 (1967).

2. Ramanchandran, G.N. and Lakshminarayanan, A.V.
\Three dimensional reconstructions from radiographs
and electron micrographs: Application of convolution
instead of Fourier transforms", Proceedings of the Na-
tional Academy of Sciences, 68, pp. 2236-2240 (1971).

3. Stark, H., Woods, J. and Paul, I., \Direct Fourier re-
construction in computer tomography", IEEE Trans.,
Speech and Signal Processing, 29, pp. 237-245 (Apr.
1981).

4. Donoho, D.L. \Compressed sensing", IEEE Trans.
Inform. Theory, 52, pp. 1289-1306 (2006).

5. Candes, E., Romberg, J. and Tao, T. \Robust un-
certainty principles: exact signal reconstruction from
highly incomplete frequency information", Informa-
tion Theory, IEEE Transactions on, 52, pp. 489-509
(Feb. 2006).

6. Candes, E. and Tao, T. \Near-optimal signal recovery
from random projections: Universal encoding strate-
gies?", Information Theory, IEEE Transactions on,
52, pp. 5406-5425 (Dec. 2006).

7. LaRoque, S.J., Sidky, E.Y. and Pan, X. \Accurate
image reconstruction from few-viewand limited-angle
data in di�raction tomography", Journal of the Optical
Society ofAmerica, 25(7), pp. 1772-1782 (Jun 2008).

8. Sidky, E.Y. and Pan, X.C. \Image reconstruction
in circular cone-beam computed tomography by con-
strained, total-variation minimization", Physics in
Medicine and Biology, 53, pp. 777-807 (2008).

9. Bian, J., Wang, J., Han, X., Sidky, E.Y., Shao, L.
and Pan, X. \Optimization-based image reconstruc-
tion from sparse-view data in o�set-detector CBCT",
Physics in Medicine and Biology, 58, pp. 205-230
(2013).

10. Lauzier, P.T. and Chen, G.H. \Characterization of sta-
tistical prior image constrained compressed sensing. I.
Applications to time-resolved contrast-enhanced CT",
Medical Physics, 39, pp. 5930-5948 (2012).

11. Lauzier, PT. and Chen, GH. \Characterization of
statistical prior image constrained compressed sensing
(PICCS): II. application to dose reduction", Medical
Physics, 40 (2013).

12. Barkan, O., Weill, J., Averbuch, A. and Dekel, S.
\Adaptive compressed tomography sensing", IEEE
Conferance, Computer Vision and Pattern Recognition
(CVPR), pp. 2195-2202 (2013).

13. Hou, W. and Zhang, C. \A Compressed sensing
approach to low-radiation CT reconstruction", Com-
munication Systems, Networks & Digital Signal Pro-
cessing (CSNDSP), pp. 793-797 (2014).

14. Jrgensen, J.H., Sidky, E.Y. and Pan, X. \Quantify-
ing admissible undersampling for sparsity-exploiting
iterative image reconstruction in X-ray CT", IEEE
Transactions on Medical Imaging, 32, pp. 460-473
(2013).

15. Jrgensen, J.H., Sidky, E.Y., Hansen, P.C. and Pan, X.
\Quantitative study of undersampled recoverability for
sparse images in computed tomography", Arxiv, pp. 1-
20 (2012).

16. Stern, A. \Compressed imaging system with linear
sensors", Opt. Lett., 32, pp. 3077-3079 (Nov. 2007).

17. Evladov, S., Levi, O. and Stern, A. \Progressive
compressive imaging from radon projections", Opt.
Xpress, 20, pp. 4260-4271 (Feb. 2012).

18. Yang, J., Zhang, Y. and Yin, W. \A fast alternating
direction method for tvl1-l2 signal reconstruction from
partial fourier data", Selected Topics in Signal Process-
ing, IEEE Journal of, 4, pp. 288-297 (April 2010).

19. Hsieh, J., Computed Tomography: Principles, Design,
Artifacts, and Recent Advances, Bellingham, WA:
SPIE (2009).

20. Duarte, M., Davenport, M., Takhar, D., Laska, J.,
Sun, T., Kelly, K. and Baraniuk, R. \Single-pixel
imaging via compressive sampling", Signal Processng
Magazine, IEEE, 25, pp. 83-91 (March 2008).

21. Willett, R.M., Marcia, R.F. and Nichols, J.M. \Com-
pressed sensing for practical optical imaging systems:
a tutorial", Optical Engineering, 50, no. 7, pp. 072601-
072601-13 (2011).

22. Yang, J., Zhang, Y. and Yin, W. \A fast alternating
direction method for tvl1-l2 signal reconstruction from
partial fourier data", Selected Topics in Signal Process-
ing, IEEE Journal of, 4, pp. 288-297 (April 2010).

23. Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli,
E.P. \Image quality assessment: From error visibility
to structural similarity", Trans. Img. Proc., 13, pp.
600-612 (Apr. 2004).



2916 H. Abbasi et al./Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 2908{2916

24. DICOM sample image sets (http://www.osirix-
viewer.com/datasets/).

Biographies

Hasan Abbasi received his BS degree in Electrical
Engineering in 2013 from Shahid Beheshti University,
Tehran, Iran, and MSc degree in 2015 from Sharif
University of Technology. He is currently PhD student
at Sharif University of Technology. His areas of
interest and experience are medical imaging and signal
processing.

Zahra Kavehvash received her BS degree in 2005 and
PhD degree in 2013, both in Electrical Engineering
from Sharif University of Technology, Iran. She is

interested in 3D imaging, millimeter-wave imaging and
holography, and biomedical imaging systems. Dr.
Kaveh vash joined the Department of Electrical En-
gineering at Sharif University of Technology, Tehran,
as an Assistant Professor in 2013.

Mahdi Shabany received his BS degree in Electrical
Engineering from Sharif University of Technology, Iran,
in 2002. He �nished his MS and PhD degrees in Elec-
trical Engineering at Toronto University in 2009. He is
interested in VLSI implementation of biomedical signal
processing algorithms, architecture/algorithm design
for 5G communication systems, and ASIC/RTL digital
circuit design. Dr. Shabany joined the Department of
Electrical Engineering, Sharif University of Technology,
Tehran, as an Assistant Professor in 2010.




