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KEYWORDS Abstract. The purpose of this paper is to investigate the effects of magnetohydrodynamic
peristaltic flow of Walter’s B fluid in an inclined asymmetric channel under the influence of
slip conditions. The effects of heat and mass transfer are also taken into account. Analytical
solutions of nonlinear coupled equations are obtained by regular perturbation method.
Graphs for different flow parameters of interest are sketched and analyzed. It is observed
that the absolute value of shear stress and heat transfer coefficient decreases by increasing
the magnetic parameter, whereas with the increase of magnetic parameter, concentration
decreases. Opposite behavior has been noted for temperature and heat transfer coefficient
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parameter, and material constant of Walter’s B fluid. Oscillatory behavior of heat transfer
coefficient is observed, which is due to propagation of peristaltic waves along the walls of
the channel.
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1. Introduction flow, hyperthermia compressor, etc. Magnets could
heat inflammations, ulceration, and several diseases of
intestine and uterus. Recently, several studies have
been made on the peristaltic motion of non-Newtonian
fluids under different assumptions.

Furthermore, Beard and Walter [6] have proposed
the constitutive equations for elastico-viscous fluids,
which are formally known as Walters’ B liquids. The
Walters” B fluid model describes the performance of
several polymeric liquids that come across in bio-
science. It can tremendously predict the complex flow
behavior of various industrial polymer solutions such
as hydrocarbons, paints, etc. This model also incor-
porates the elastic properties of the fluids that are ab-
solutely useful to understand certain extensional poly-
mers. A very careful review of the literature divulges
that amongst the viscoelastic fluids, the Walter’s B
. Corresponding author. model has gained very little attention so far. Few stud-
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rahmatellahi@yahoo.com (R. Ellahi) mentioned by the attempts [7-12] and several therein.

Peristaltic transport is a mechanism for mixing and
transporting fluids, which is caused by a progressive
wave of contraction and expansion travelling on the
walls of the channel. The study of peristalsis has
gained a distinct status amongst several researchers
because of its various applications in physiological
processes [1].  Moreover, effects of heat transfer
have a significant role in peristalsis processes, such
as oxygenation and hemodialysis. The properties
of tissue can be pigeonholed through heat transfer
analysis. Heat is either produced or locally inserted
to monitor the thermal clearance rate [2-5]. Likewise,
the effects of magnetohydrodynamics in peristalsis are
very much noteworthy in magnetic therapy, arterial
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With all the aforementioned points in mind, one
can clearly observe that no analysis for magnetohy-
drodynamic peristaltic flow of Walter’s B fluid in the
presence of heat and mass transfer under the influence
of slip conditions is accorded in available literature yet.
The courtesy in exploring the said topic is a motivating
factor for this study. In fact, we intend to strengthen
our efforts to understand the problems having more
complicated nature. This is particularly in modeling of
peristaltic flow of non-Newtonian fluids in an inclined
asymmetric channel. The constitutive relationship of
Walter’s B fluid is used in the mathematical formula-
tion of the problem. The resulting nonlinear governing
equations are computed for the series solutions valid
for small wave numbers and low Reynolds numbers.
Graphs for magnetic parameter, slip parameter, heat
transfer coeflicient, Walter’s B fluid parameter, Prandtl
number, Eckert’s number, Schmidt number, and Soret
number are sketched and analyzed.

2. Mathematical formulation of the problem

Consider the Walter’s B fluid through an inclined
asymmetric channel of peristaltic transport having
width di + ds such that the upper and lower walls are
respectively at distances of d; and ds from the center
line of the channel. The sinusoidal waves of different
amplitudes and phases are moving along the channel
walls with constant speed c¢. The upper and lower walls
are maintained at temperatures Ty and 77, respectively.
The upper and lower walls have different amplitudes
a;(i = 1,2) with phase difference ¢(0 < ¢ < 7). The
flow is considered in the direction of X-axis, whereas
Y-axis is taken normal to it. In the laboratory frame,
we seek the velocity field of the form:

V = [U(X,Y,HV(X,V,H0], (1)

in which U and V are the velocity components in the
longitudinal and transverse directions correspondingly.
The geometry of the channel walls H; and Hs is defined
as:

Hmna:m+mwﬂﬁkx_®y )
H(X,0) = —ds — as sin R” (X —cf) + ¢] B

Here, X is the wavelength and 7 is time.

The channel walls and magnetic field are inclined
at angles w and 7, respectively. A uniform magnetic
field By is applied in the transverse direction to
the flow. The magnetic Reynolds number is taken
small so that the induced magnetic field is neglected.
Henceforth, the governing equations in the form of
components are obtained as:
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The extra-stress tensor for Walter’s B fluid is defined
as [13]:

é = 27706 - 2]€06757 (9)
ot
in which:
6 0
X E ovVe-evV - (VV) e, (10)
ot Ot
e=vV+(vv)T. (11)

The moving and fixed frames are related by the
expressions:

y=Y, u=U~—c, v=V, p=P.
(12)

iz)_(—ct

The flow becomes steady in the wave frame (Z,y) by
opting a wave frame moving with velocity ¢ as that of
travelling wave away from the laboratory frame (X.Y).
Velocity components  and v in terms of stream
function and dimensionless variables are defined by:
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The Eq. (4) is identically satisfied and Egs. (5) to (8)
in terms of stream function can be expressed as follows:
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The resulting heat and thermos-diffusion equations
become:
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Here, bars have been omitted for simplicity.
Solving Eqgs. (15) and (16), simultaneously, we get
the following vorticity transport equation:

000 0Nl (0 a0
6Re[<3y8x 5I8y>v¢}_(8y2 681’2 Sey

o2 0% [ ()
+O0——7(5z2 — 5y M2 [(—1—1) cos Y
y( 2 9y [\ 0y

(18)

where:
L
ox2  Oy?
The components of the extra-stress tensor are:
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3. Boundary conditions

In wave frame, the equations of boundary conditions
for dimensionless stream function are:

T/J—E a¢+ﬁsxy— 1, 77:0, v=0 at y:hl(x),
(24)
= f; W —BS,,=—1, 7=1, v=1at y=hs(z).

(25)
The dimensionless flux F' is defined by the following
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relation [14]:

h1(z)
= / a—wdy. (26)

In the laboratory frame, dimensionless average flux is
obtained as:

§=F+1+d. (27)

4. Methodology

The perturbation method for small wave number
6(6 << 1), which is appropriate in the study of
peristalic flow in tubes or channels, is used for solving
the problem. Thus, we expand the flow quantities as:

¥ = o + by 4+ O(6%)
n =10+ 6m + O(6%)
v =1+ év; + O(8?%) (28)
S =Sy +65 +0(8
Z =Zy+ 671+ 0(6?)

Substituting Eq. (28) into Egs. (17) to (19) along
with boundary conditions given in Eqgs. (24) and (25),
and collecting the like terms of we obtain the following
zeroth- and first-order problems.

4.1. Zeroth-order system
Collecting the coefficients of like terms of O(6), we
obtain:
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The heat coefficient at upper and lower walls can be
calculated by the relations:
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The heat coefficients at upper and lower walls are
defined by the relations:

_ Oha Im

T, = 29 229 4
lhy al' ayv lho 8ZE 8y ( 6)

5. Solution of the problem

5.1. Zeroth-order solution
The solutions of Eqgs. (29) to (36) along with the heat
coefficient at upper and lower walls are given by:

wO = Aly —+ A2 + A3 cosh ay + A4 sinh ay, (47)
Sozy = 20*(Az cosh ay + Ay sinh ay), (48)

no = As + Agy + Ary® + Ag cosh 20y + Ag sinh 2ay,
(49)

vo=A1g +A11y+A12y2 + Aj3 cosh 2ay+ Aq4sinh2ay,
(50)

Zon, = acosx(Ag + 247y + 2aAg sinh ay
+ 2aAgcosh 2ay), (51)
Zon, = — beos(z + ¢)(As + 247y + 2aAg sinh 2ay
+ 2aAg cosh 2ay). (52)
5.2. First-order solution
Upon making use of zeroth-order solution in the first-
order system and then solving the resulting problems,
one arrives at:
1 =By + Byy + cosh ay(By + Bsy + Bsy”)
+ Bsy? + sinh ay(B;7 + Bgy + Boy?), (53)
Sizy =D1g + cosh ay(Bi1 + Biay + Bisy?)
+ By7 cosh 2ay+sinh ay(Bi4 —|—Bl5y—|—B16y2)
+ Bigsinh 2ay. (54)
m =Big + Baoy + Bayy® sinh ay(Bas + Basy
+ Bsgy”) + cosh ay(Bar + Basy + Baoy”)
+ Bsg sinh 3ay + sinh 2ay(Bsg + B3y
+ Bsoy?) + Basy* + Bo1y? 4 cosh 2ay(Bss

+ Bauy + Bssy?) 4+ Bsr cosh 3ay, (55)

v1 =Bsg + Bsgy + Baoy® + sinh ay(Bus + Buy
2 3 4
+ Basy”) + Ba1y® + Basy™ + cosh ay(Bug
+ B47y =+ B48y2) + sinh Qay(B49 =+ B50y
+ Bs1y?) 4 Bss sinh 3ay + cosh 2ay(Bss

+ Bs3y + Bsay?) + Bsg cosh 3ay. (56)
Heat transfer coefficient is:

Z1h, =a cos z(cosh ay(Bag + aBag + (aBas
+2B39)y + aBagy®) + sinh ay(Bas
+ aByr + (aBag + 2Bag)y + 2aBagy?)
+ 2Bs1y + cosh 2ay(Bss + 2aBsg + (2aBs3;
+ 2B35)y + 2aBsyy?) + By + sinh2ay(Bs;
+2a L33 + (2aBsg + 2B3s)y + 2aBs5y?)
+ 3a B3¢ sinh 3ay + 3aB3; cosh 3ay
+ 3Basy? + 4Ba3y®), (57)
Zihy = — beos(z + ¢)(cosh ay(Bag + aBay + (aBas
+ 2Bsg)y + aBagy?) + sinh ay(Bas + aBayy
+ (aBas + 2Ba6)y + 2aBagy®) + 3Baoy”
+ cosh 2ay(Bsys + 2aB3g + (2aBs31 + 2B35)y
+ 2aB3yy?) + 4By3y® + sinh 2ay(Bs;
+ 2 L33 4 (20B34 + 2B32)y + 2aBs5y?)
+ Bso + 2B21y + 3aBsg sinh 3ay

+ 3aBsy cosh 3ay). (58)

The values appearing in Eqgs. (47) to (58) are given in
the Appendix.

6. Results and discussion

In this section, the effects of physical parameters such
as viscoelastic parameter, x; MHD parameter, M; slip
parameter, 3; Eckert number, ER; Prandtl number, Pr;
Schmidt number, Sc; and Soret number, Sr, have been
displayed in Figures 1 to 11.

Figures 1 to 3 are prepared to discuss the vari-
ations of x, M, and § on shear stress 5., . Figure
1 depicts that, by increasing K, the absolute value of
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Figure 4. Variations of (a) Pr and (b) Er on 7.

shear stress at the upper wall S, ,1,) and lower wall
Smy(h2 ), respectively, decreases and increases in the first
half of the wave and then increases and decreases in the
second half of the wave as increasing k. Figure 2 shows
that there is decrease in the absolute value of shear
stress when M increases. From Figure 3, it is found
that with increasing the value of 3, the absolute value
of shear stress decreases.
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Figure 5. Variations of (a) 8 and (b) v on n.
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Figure 6. Variations of (a) Sc and (b) Sr on v.
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Figure 7. Variation of (a) M and (b) on v.
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Figure 8. Variations of Er on heat transfer coefficients:
(a) Zn, at upper wall; and (b) Z, at lower wall.

Figures 4 and 5 show the variations of Prandtl
number, Pr, Eckert number, Er, and slip parameter,
B, at inclination of magnetic field v on temperature n
From Figure 4, it is clear that by increasing Pr and Er,
temperature 7 increases. Figure 5 (a) illustrates the
decrease in temperature  with increase in 3, whereas
from Figure 5 (b), it is observed that temperature n
increases by increasing .
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Figure 11. Variations of M on heat transfer coefficients:
(a) Zn, at upper wall; and (b) Z, at lower wall.

These are not unexpected results as, based on
the definition, the Prandtl number is a ratio of mo-
mentum diffusion to thermal diffusion; consequently,
with increase in Pr, thermal diffusion decreases and,
thus, thermal boundary layer becomes thinner. In
other words, one can say that large values of Prandtl
number result in thinning of thermal boundary layer.
As a matter of fact, the increase of Prandtl number
slows the rate of thermal diffusion. However, in the
presence of viscous dissipation, the effect of increasing
the values of Prandtl number is to increase temper-
ature distribution, whereas in the absence of viscous
dissipation, the effect of increasing Prandtl number,
Pr, is to increase the heat transfer rate, significantly,
which are absolutely in accordance with the physical
expectation. In addition, the presented work is in
contrast to the effects of other parameters that show

the same tendency as that already reported in existing
literature [15,16].

Figures 6 and 7 indicate the behavior of pa-
rameters on v. The effects of SC and Sr on v are
indicated through Figure 6. In this figure, v decreases
by increasing Sc and Sr. Figure 7(a) illustrates the
effect of M on V. It is clearly observed that v increases
by increasing M. Figure 7(b) represents the influence
of v on v. It is seen that v decreases by increasing the
value of ~.

Figures 8 to 11 are plotted to study the effects
of heat transfer coeflicients Z,, and Z;, for different
values of Er, Pr, 3, and M . Heat transfer coeffi-
cient, Z, has oscillatory behavior, which is due to the
propagation of peristaltic waves along the walls of the
channel. Figures 8 and 9 represent that the absolute
value of heat transfer coefficient increases by increasing
the values of Er and Pr. Figure 10 depicts that the
absolute value of heat transfer coefficient decreases at
the upper wall, but increases at the lower wall of the
channel by increasing . Figure 11 indicates that the
absolute value of heat transfer coefficient Z decreases
when M increases.

7. Conclusion

In this study, the combined effect of slip condition,
heat transfer, and chemical reactions on the peristaltic
flow of Walter’s B fluid in an inclined asymmetric
channel has been investigated. The system of partial
differential equations is first written in terms of ordi-
nary differential equations by using adequate similarity
transformations and then solved analytically through
perturbation method. In particular, analytic solutions
have been developed for shear stress S,,,, temperature
7, concentration v, and heat transfer coefficient Z.
The results are discussed through graphs. The main
observations in this study are:

o The absolute value of shear stress, S;,, decreases as
M increases at the upper and lower walls;

e The temperature n decreases with an increase in (3,
while with increase in Pr, Er, and v, the temperature
71 increases;

e The absolute value of heat transfer coefficient, Z,
decreases by increasing M and (3, but the reverse
behavior is noted by increasing the values of Pr, Er,
and ~ at the upper wall of the channel;

e The absolute value of heat transfer coefficient, Z,
decreases by increasing M at the lower wall, whereas
its behavior is quite opposite for increasing values of
Pr, Er, 8, and ~;

e The concentration 7 increases with the increase of
M; however, with increase in Sr, Sc, and ~, the
concentration n decreases.
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Nomenclature
No Limiting viscosity at small shear rate
ko Short memory coefficient
k Thermal conductivity
£ Specific heat
Jé] Slip parameter
6 Wave number
K Viscoelastic parameter
P Pressure
I Identity tensor
S Extra-stress tensor
T Fluid temperature
c Concentration
M MHD parameter
T Temperature of the medium
D Coefficient of mass diffusivity
Kr Thermal diffusion
e Rate of strain tensor
Re Reynolds number
Er Eckert number
Pr Prandtl number
Sc Schmidt number
Sr Soret number
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Appendix

Alz

Ay =

Az =

A4:—

A5:

Fo  (Fo+hy = hy)(CsCy = C2C5)
hi — ha (hy — h2)C5 ’

_ Fo(hy + ha)
2(hy — hy)

(Fo 4+ h1 — h2)Cy
(hi — ho)Cr 7

(Fo + hy — hQ)CG
Cs ’

(FO + hl — h2)
(h1 — h2)C7

1
(ha — h1)

[—h1 + Azhohy(hy — hy)

+ Ag(hi cosh 2ahe — ho cosh 2ahy)

+ Ag(hy sinh 2ahy — hy sinh 2ahy )],
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1
Ag=———[1— A7(h3 - h?
6 (hg _ hl)[ 7( 2 1)
— Ag(cosh 2ahy — cosh 2ahy)
— Ag(sinh 2ahy — sinh 2achy )],
ErPra*(A? — A2%)
A’T = )
2
—ErPra?(A% + A2)
A8 = )
4
Ay = —Er Pra2A4A3’
2
A :A50—A50(1+h2—h1)—1
10 h2 _ hl )
1— Aso + Aga
A= —F—F—=, A5 =-SrScA
11 ho — hy ) 12 rscAr,
A13 = —SI’SCAg, A14 = —SrSCAg,

A15 = MQ(SiIl’\/COS’}/ + COS2 ’}/)7 A16 = A11A147

Ayr =Re(A; Aja® — AL A40®) + k(-84 Aza®
— 2A’2A4Oé5 + 2A1A:’3a4) + CYAQA5,

Alg :Re(AlAﬁlozz — A;A3a3) + H(—8A£A4Oé4
— 2A’2A3045 + 2A1A2a4) —+ CYA%A:;,

A19 = —R€A3A/1a3 — 2/%1411430[57

AQO = ReA4A'1a3 — 2I€A/1A4045,
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Ay = 220
21 Aus
F1 A49 h1 A47 cosh Oéhl
Agpg = — — -
2 Agg Agg
A45 sinh ah1
- A4
A46 34,
Agr Ays
Ao = 2 Aoy = —2
23 Ay 24 A,
Ai7(hg sinh aho — hy sinh ahy)
Ags =

43

| Alg(hg cosh ahz—hl cosh Oéhl) Ale(hé—hf)
+ —
% 4o

(a®h34-5ahy —4)(Ayg cosh ahy+ Agg sinh ahy)

' 8a’

(a?h? —5ahy —4)(A1g cosh ahy + Asgg sinh ahy)
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A26 = 4:A11A3CY2 — 2AI3A10£2 + 2A4A'20z3,
A27 = 2A4A'1a3,
Agg = 4:A/1A40[2 + 214’21430[3 — 2A1A£1012,

A29 = 2A3A'1a3,

1 /.3 3
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1 /3 3
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i Aghs  3Ashs A
8a? 8at 205 )’
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— 2a°B(sinh ahy + sinh ahy),
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Ass = Az — Azz — B(Az1 + Ass),
Asg = asinh ahy + 2a23 cosh ahy,
Ao = acosh ahy + 2023 sinh ahy,
Ag1 = Az + BAss,

Ago = asinh ahs — 2023 cosh ahs,
Ags = acosh ahy — 2023 sinh ahs,

A44 = A33 - 614317

Aszg A
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Bgo = A1 A — A1 Ag — 2A5 Ar,
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where prime denotes the derivative with respect to x:
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